Classification-Driven Stochastic Watershed: Application to Multispectral Segmentation - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2008

Classification-Driven Stochastic Watershed: Application to Multispectral Segmentation

Guillaume Noyel
Jesus Angulo
Dominique Jeulin

Résumé

The aim of this paper is to present a general methodology based on multispectral mathematical morphology in order to segment multispectral images. The methods consists in computing a probability density function pdf of contours conditioned by a spectral classification. The pdf is conditioned through regionalized random balls markers thanks to a new algorithm. Therefore the pdf contains spatial and spectral information. Finally, the pdf is segmented by a watershed with seeds (i.e., markers) coming from the classification. Consequently, a complete method, based on a classification-driven stochastic watershed is introduced. This approach requires a unique and robust parameter: the number of classes which is the same for similar images. Moreover, an efficient way to select factor axes, of Factor Correspondence Analysis (FCA), based on signal-to-noise ratio on factor pixels is presented.
Fichier principal
Vignette du fichier
NoyelAnguloJeulin_CGIV2008_HAL.pdf (1.26 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00830667 , version 1 (13-03-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-00830667 , version 1

Citer

Guillaume Noyel, Jesus Angulo, Dominique Jeulin. Classification-Driven Stochastic Watershed: Application to Multispectral Segmentation. 4th European Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multispectral Colour Science (CGIV 2008/MCS'08), Jun 2008, Terrassa - Barcelona, Spain. pp.471-476. ⟨hal-00830667⟩
194 Consultations
43 Téléchargements

Partager

Gmail Facebook X LinkedIn More