Article Dans Une Revue Chemical Engineering Journal Année : 2018

Breakthrough studies of the adsorption of Cs from freshwater using a mesoporous silica material containing ferrocyanide

Résumé

The selectivity and fast exchange kinetics of porous silica adsorbents containing Cu or K ferrocyanide make them ideal candidates for the column decontamination of $^{137}$Cs effluents. The exchange thermodynamics of the K$^+$ ions in Sorbmatech® (S202, one such adsorbent) with the major cations present in natural (fresh or sea) water have recently been studied in competition with Cs$^+$ sorption to properly model batch data. This article reports an evaluation of this material for continuous, column processes of freshwater decontamination. Experimental data show that its performance is excellent under these conditions, with a steep breakthrough curve of Cs at column exit. The sorption capacity of S202 is completely retained at high flow rates (up to 10 m·h$^{−1}$ Darcy velocity) and its column behavior remains ideal down to a height/diameter ratio of 2. A reactive transport model accounting for 2 dispersive flow through the bed coupled to ion diffusion and exchange inside the porous adsorbent grains accurately reproduces the experimental data.
Fichier principal
Vignette du fichier
Paper-revised.pdf (3.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01787804 , version 1 (07-05-2018)

Identifiants

Citer

Caroline Michel, Yves Barré, Mehdi Ben Guiza, Caroline de Dieuleveult, Laurent de Windt, et al.. Breakthrough studies of the adsorption of Cs from freshwater using a mesoporous silica material containing ferrocyanide. Chemical Engineering Journal, 2018, 339, pp.288-295. ⟨10.1016/j.cej.2018.01.101⟩. ⟨hal-01787804⟩
117 Consultations
606 Téléchargements

Altmetric

Partager

More