Power Laws Variance Scaling of Boolean Random Varieties - Mines Paris
Article Dans Une Revue Methodology and Computing in Applied Probability Année : 2015

Power Laws Variance Scaling of Boolean Random Varieties

Dominique Jeulin

Résumé

Long fibers or stratifed media show very long range correlations. These media can be simulated by models of Boolean random varieties and their iteration. They show non standard scaling laws with respect to the volume of domains K for the variance of the local volume fraction: on a large scale, the variance of the local volume fraction decreases according to power laws of the volume of K. The exponent is equal to (n-k)/ n for Boolean varieties with dimension k in the space Rn : 2/3 for Boolean fibers in 3D, and 1/3 for Boolean strata in 3D. When working in 2D, the scaling exponent of Boolean fibers is equal to 1/2. From the results of numerical simulations, these scaling laws are expected to hold for the prediction of the effective properties of such random media.
Fichier principal
Vignette du fichier
RVE-Poisson-Var-v6a.pdf (204.07 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01207456 , version 1 (30-09-2015)

Identifiants

Citer

Dominique Jeulin. Power Laws Variance Scaling of Boolean Random Varieties. Methodology and Computing in Applied Probability, 2015, ⟨10.1007/s11009-015-9464-5⟩. ⟨hal-01207456⟩
219 Consultations
393 Téléchargements

Altmetric

Partager

More