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Abstract

Long �bers or strati�ed media show very long range correlations.
These media can be simulated by models of Boolean random varieties
and their iteration. They show non standard scaling laws with re-
spect to the volume of domains K for the variance of the local volume
fraction: on a large scale, the variance of the local volume fraction
decreases according to power laws of the volume of K. The exponent

 is equal to n�k

n for Boolean varieties with dimension k in the space
Rn: 
 = 2

3 for Boolean �bers in 3D, and 
 =
1
3 for Boolean strata

in 3D. When working in 2D, the scaling exponent of Boolean �bers is
equal to 1

2 . From the results of numerical simulations, these scaling
laws are expected to hold for the prediction of the e¤ective properties
of such random media.

Keywords: Boolean model, random �ber networks, random strata,
Poisson varieties, RVE, integral range, long range correlations, scaling law,
numerical homogenization
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1 Introduction

The scaling of �uctuations of morphological properties like the volume frac-
tion, or of local �elds (such as electrostatic or elastic �elds) is necessary
to de�ne the size of a statistical representative element (RVE). For years a
geostatistical approach (Matheron 1971) was used in image analysis for this
purpose (Hersant and Jeulin 1976). It was recently extended to the com-
putation of e¤ective properties by numerical homogenization (Cailletaud et
al. 1994; Jeulin 2005; Kanit et al. 2003). The calculation of the scaling of
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the variance makes use of the integral of the centred covariance, namely the
integral range. In some situations with very long range correlations, it turns
out that the integral range is in�nite, and new scaling laws of the variance
can occur (Lantuejoul 1991) . In this paper, we study such models of ran-
dom sets, the Boolean models built on the Poisson varieties, generating for
instance random �ber networks or random strata made of dilated planes in
the three-dimensional space.

After a reminder on Poisson varieties (Matheron 1975), of Boolean ran-
dom varieties (Jeulin 1991; Jeulin 1991) and on the statistical de�nition of
the RVE for the volume fraction, we give theoretical results on the scaling of
the variance of the Boolean random varieties and of their iterated version.

2 Poisson varieties

2.1 Construction and properties of the linear Poisson vari-
eties model in Rn

A geometrical introduction of the Poisson linear varieties is as follows (Math-
eron 1975),: a Poisson point process fxi(!)g, with intensity �k(d!) is con-
sidered on the varieties of dimension (n � k) containing the origin O, and
with orientation !. On every point xi(!) is located a variety with dimen-
sion k, Vk(!)xi , orthogonal to the direction !. By construction, we have
Vk = [xi(!)Vk(!)xi . For instance in R3 can be built a network of Pois-
son hyperplanes �� (orthogonal to the lines D! containing the origin) or a
network of Poisson lines in every plane �! containing the origin (�gure 1).

De�nition 1 In Rn, n Poisson linear varieties of dimension k (k = 0; 1; :::; n�
1) Vk, can be built: for k = 0 is obtained the Poisson point process, and for
k = n � 1 are obtained the Poisson hyperplanes. For k � 1, a network
of Poisson linear varieties of dimension k can be considered as a Poisson
point process in the space Sk � Rn�k, with intensity �k(d!)�n�k(dx); �k is
a positive Radon measure for the set of subspaces of dimension k, Sk, and
�n�k is the Lebesgue measure of Rn�k.

If �k(d!) is any Radon measure, the obtained varieties are anisotropic.
When �k(d!) = �k d!, the varieties are isotropic. If the Lebesgue mea-
sure �n�k(dx) is replaced by a measure �n�k(dx), we obtain non stationary
random varieties.

The probabilistic properties of the Poisson varieties are easily derived
from their de�nition as a Poisson point process.

Theorem 2 The number of varieties of dimension k hit by a compact set
K is a Poisson variable, with parameter �(K):

�(K) =

Z
�k(d!)

Z
K(!)

�n�k(dx) =

Z
�k(d!) �n�k(K(!)) (1)
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where K(!) is the orthogonal projection of K on the orthogonal space to
Vk(!), Vk?(!). For the stationary case,

�(K) =

Z
�k(d!) �n�k(K(!)) (2)

The Choquet capacity T (K) = PfK \Vk 6= ?g of the varieties of dimension
k is given by

T (K) = 1� exp
 
�
Z
�k(d!)

Z
K(!)

�n�k(dx)

!
(3)

In the stationary case, the Choquet capacity is

T (K) = 1� exp
�
�
Z
�k(d!) �n�k(K(!))

�
(4)

Proof. By construction, the random varieties Vk(!) induce by intersection
on every orthogonal variety of dimension n � k, Vk?(!), a Poisson point
process with dimension n�k and with intensity �k(d!)�n�k(dx). Therefore,
the contribution of the direction ! to N(K), is the Poisson variable N(K;!)
with intensity �n�k(K(!)). Since the contributions of the various directions
are independent, Eq. (1) results immediately.

Proposition 3 We consider now the isotropic (�k being constant) and sta-
tionary case, and a convex set K. Due to the symmetry of the isotropic
version, we can consider �k(d!) = �k d! as de�ned on the half unit sphere
(in Rk+1) of the directions of the varieties Vk(!). The number of varieties
of dimension k hit by a compact set K is a Poisson variable, with parameter
�(K) given by:

�(K) = �k

Z
�n�k(K(!)) d! = �k

bn�kbk+1
bn

k + 1

2
Wk(K) (5)

where bk is the volume of the unit ball in Rk (bk =
�k=2

�(1 +
k

2
)

) (b1 = 2; b2 =

�; b3 =
4

3
�), and Wk(K) is the Minkowski�s functional of K, homogeneous

and of degree n� k (Matheron 1975).

The following examples are useful for applications:

� When k = n� 1, the varieties are Poisson planes in Rn; in that case,
�(K) = �n�1nWn�1(K) = �n�1A(K), where A(K) is the norm of K
(average projected length over orientations).
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� In the plane R2 are obtained the Poisson lines, with �(K) = �L(K),
L being the perimeter.

� In the three-dimensional space are obtained Poisson lines for k = 1

and Poisson planes for k = 2. For Poisson lines, �(K) =
�

4
�S(K) and

for Poisson planes, �(K) = �M(K), where S and M are the surface
area and the integral of the mean curvature.

3 Boolean random varieties

Boolean random sets can be built, starting from Poisson varieties and a
random primary grain (Jeulin 1991, 1991).

De�nition 4 A Boolean model with primary grain A0 is built on Poisson
linear varieties in two steps: i) we start from a network Vk; ii) every variety
Vk� is dilated by an independent realization of the primary grain A0. The
Boolean RACS A is given by

A = [�Vk� �A0

By construction, this model induces on every variety Vk?(!) orthogonal
to Vk(!) a standard Boolean model with dimension n � k, with random
primary grain A0(!) and with intensity �(!)d!. The Choquet capacity of
this model immediately follows, after averaging over the directions !; it can
also be deduced from Eq. (4), after replacing K by A0 � �K and averaging.

Theorem 5 The Choquet capacity of the Boolean model built on Poisson
linear varieties of dimension k is given by

T (K) = 1� exp
�
�
Z
�k(d!) �n�k(A

0(!)� �K(!))

�
(6)

For isotropic varieties, the Choquet capacity of Boolean varieties is given by

T (K) = 1� exp
�
��k

bn�kbk+1
bn

k + 1

2
W k(A

0 � �K)

�
(7)

Particular cases of Eq. (6) are obtained when K = fxg (giving the

probability q = Pfx 2 Acg = exp

�
�
Z
�k(d!) �n�k(A

0(!))

�
and when

K = fx; x+ hg, giving the covariance of Ac, Q(h) :

Q(h) = q2 exp

�Z
�k(d!) Kn�k(!;

�!
h :�!u (!))

�
(8)
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where Kn�k(!; h) = �n�k(A
0(!) \ A0�h(!)) and

�!u (!) is the unit vector
with the direction !. For a compact primary grain A0, there exists for any
h an angular sector where Kn�k(!; h) 6= 0, so that the covariance generally
does not reach its sill, at least in the isotropic case, and the integral range,
de�ned in section (4.1), is in�nite. We consider now some examples.

3.1 Fibers in 2D

In the plane can be built a Boolean model on Poisson lines. For an isotropic
lines network (�gure 1), and if A0� �K is a convex set, we have, from equation
(7):

T (K) = 1� exp
�
�� L(A0 � �K)

�
(9)

If A0 � �K is not a convex set, the integral of projected lengths over a line
with the orientation varying between 0 and � must be taken. If A0 and K
are convex sets, we have L(A0 � �K) = L(A0) + L(K). Consider now the
isotropic case. Using for A0 a random disc with a random radius R (with
expectation R) and for K a disc with radius r, equation 9 becomes:

T (r) = 1� exp
�
�2��(R+ r)

�
T (0) = Pfx 2 Ag = 1� exp(�2��R)

which can be used to estimate � and R , and to validate the model.

Figure 1: Simulation of a 2D Boolean model built on isotropic Poisson
lines.
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3.2 Random Fibers and Strata in 3D

In R3, we can build a Boolean model on Poisson planes or on Poisson lines.

3.2.1 Boolean model on Poisson planes

A Boolean model built on Poisson planes generates a structure with strata.
On isotropic Poisson planes, we have for a convex set A0� �K by application
of equation (7):

T (K) = 1� exp
�
�� M(A0 � �K)

�
(10)

When A0 and K are convex sets, we have M(A0 � �K) = M(A0) +M(K).
If A0� �K is not convex, T (K) is expressed as a function of the length l of the

projection over the linesD! by T (K) = 1�exp
�
��
Z
2�ster

l(A0(!)� �K(!)) d!

�
.

For instance if A0 is a random sphere with a random radius R (with expec-
tation R) and K is a sphere with radius r, equation 10 becomes:

T (r) = 1� exp(�4��(R+ r))
T (0) = Pfx 2 Ag = 1� exp(�4��R)

which can be used to estimate � and R , and to validate the model. Figure
1 can be interpreted as a 2D section of a 3D Boolean model built on Pois-
son hyperplanes. It was shown in (Jeulin 2001) that a two-components mi-
crostructure made of an in�nite superposition of random sets made of dilated
isotropic Poisson planes with a large separation of scales owns extremal
physical e¤ective properties (like electric conductivity, or elastic properties):
when the highest conductivity is attributed to the dilated planes, the e¤ec-
tive conductivity is the upper Hashin-Shtrikman bound, while it is equal to
the lower Hashin-Shtrikman bound, when a¤ecting the lower conductivity
to the dilated planes.

3.2.2 Boolean model on Poisson lines

A Boolean model built on Poisson lines generates a �ber network, with
possible overlaps of �bers. On isotropic Poisson lines, we have for a convex
set A0 � �K

T (K) = 1� exp
�
�� �

2
S(A0 � �K)

�
(11)

If A0 � �K is not a convex set, T (K) is expressed as a function of the area A
of the projection over the planes �! by

T (K) = 1� exp
�
��
Z
2�ster

A(A0(!)� �K(!)) d!

�
(12)
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If A0 is a random sphere with a random radius R (with expectation R
and second moment E(R2)) and K is a sphere with radius r, equation 11
becomes:

T (r) = 1� exp
�
��

2

2
�(E(R2) + 2rR+ r2)

�
T (0) = Pfx 2 Ag = 1� exp(��

2

2
�E(R2))

which can be used to estimate �, E(R2) and R , and to validate the model. A
model of Poisson �bers parallel to a plane, and with a uniform distribution of
orientations in the plane was used to model cellulosic �ber materials (Delisée
et al. 2001). In (Schladitz et al. 2006), non isotropic dilated Poisson lines
were used to model and to optimize the acoustic absorption of nonwoven
materials.

4 Fluctuations and RVE of the volume fraction

When operating on bounded domains, like 2D or 3D images of a material,
one can be concerned by estimating the �uctuations of spatial average values
�Z(V ) of some random function Z(x) over the domain B with volume V . For
instance if Z(x) is the indicator function of a random set A, �Z(V ) is the
area (in 2D) or the volume (in 3D) of the intersection A \ V . If Z(x) is
some component of the strain �eld or of a stress �eld in an elastic medium,
we can compute as well the average of these components over V , which
are the standard way to de�ne and to estimate the e¤ective properties by
homogenization (Jeulin 2001; Jeulin 2005; Kanit et al. 2003).

When working on images of a material or on realizations of a random
medium, it is common to consider the representativity of the volume fraction
or of the e¤ective property estimated on a bounded domain of a microstruc-
ture. Practically, we need to estimate the size of a so-called "Representative
Volume Element" RVE (Hersant and Jeulin 1976; Jeulin 2001; Jeulin 2005;
Kanit et al. 2003). We address this problem by means of a probabilistic ap-
proach giving size-dependent intervals of con�dence, and based on the size
e¤ect of the variance of the e¤ective properties of simulations of random
media.

4.1 The integral range and scaling of the variance

We consider �uctuations of average values over di¤erent realizations of a
random medium inside the domain B with the volume V . In Geostatistics
(Matheron 1971), it is well known that for an ergodic stationary random
function Z(x), with mathematical expectation E(Z), one can compute the
variance D2Z(V ) of its average value �Z(V ) over the volume V as a function

7



of the central covariance function C(h) of Z(x) by :

D2Z(V ) =
1

V 2

Z
B

Z
B
C(x� y) dxdy; (13)

where
C(h) = Ef(Z(x)� E(Z)) (Z(x+ h)� E(Z))g

For a large specimen (with V � A3), equation (13) can be expressed to the
�rst order in 1=V as a function of the integral range in the space R3, A3, by

D2Z(V ) = D
2
Z

A3
V
; (14)

with A3 =
1

D2Z

Z
R3
C(h) dh; (15)

where D2Z is the point variance of Z(x) (here estimated on simulations) and
A3 is the integral range of the random function Z(x), de�ned when the inte-
gral in equations (13) and (15) is �nite. When Z(x) is the indicator function
of the random set A, (14) provides the variance of the local volume fraction
(in 3D) as a function of the point variance D2Z = p(1�p), p being the proba-
bility for a point x to belong to the random set A. When working in 2D, as
was done to solve sampling problems in image analysis (Hersant and Jeulin
1976), the volume V is replaced by the surface area, and the integral range
becomes A2 after integrating the covariance in the 2D space R2 in equation
15. The asymptotic scaling law (14) is valid for an additive variable Z over
the region of interest B. To estimate the e¤ective elasticity or permittivity
tensors from simulations, we have to compute the spatial average stress
h�i and strain h"i (elastic case) or electric displacement hDi and electrical
�eld hEi. For the applied boundary conditions, the local modulus is ob-
tained from the estimations of a scalar, namely the average in the domain
B of the stress, strain, electric displacement, or electric �eld. Therefore
the variance of the local e¤ective property follows the equation (14) when
the integral range A3 of the relevant �eld is known. Since the theoretical
covariance of the �elds (� or ") is not available, the integral range can be
estimated according to the procedure proposed by Matheron (1989) for any
random function : working with realizations of Z(x) on domains B with an
increasing volume V (or in the present case considering subdomains of large
simulations, with a wide range of sizes), the parameter A3 is estimated by
�tting the obtained variance according to the expression (14).

Some typical microstructures with long range correlations, like dilated
Poisson hyperplanes mentioned in section 3.2.1 or like dilated Poisson lines
in 3D have an in�nite integral range (Jeulin 1991; Jeulin 1991), so that
the computation of the variance D2Z(V ) of equation (14) cannot be used
anymore. In this situation, a scaling law by a power 
 < 1 was suggested
(Lantuejoul 1991), and used in various applications where a coe¢ cient close
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to 1 was empirically estimated (Cailletaud et al. 1994; Kanit et al. 2003).
With this scaling law, the variance becomes

D2Z(V ) = D
2
Z

�
A3
V

�

; (16)

where the volume A3 is no more the integral of the central covariance func-
tion C(h), but is still homogeneous to a microstructural volume. We will
show in section 5, that such theoretical scaling power laws appear in the
case of Boolean models built on the linear Poisson varieties.

4.2 Practical determination of the size of the RVE

The size of a RVE can be de�ned for a physical property Z, a contrast,
and a given precision in the estimation of the e¤ective properties depending
on the number n of realizations that are available. By means of a stan-
dard statistical approach, the absolute error �abs and the relative error �rela
on the mean value obtained with n independent realizations of volume V
are deduced from the 95% interval of con�dence by:

�abs =
2DZ(V )p

n
; �rela =

�abs
Z

=
2DZ(V )

Z
p
n
: (17)

The size of the RVE can now be de�ned as the volume for which for in-
stance n = 1 realization (as a result of an ergodicity assumption on the
microstructure) is necessary to estimate the mean property Z with a rela-
tive error (for instance �rela = 1%), provided we know the variance D2Z(V )
from the asymptotic scaling law (14) or (16). Alternatively, we can decide to
operate on smaller volumes (provided no bias is introduced by the boundary
conditions), and consider n realizations to obtain the same relative error.
This methodology was applied, among others, to the elastic properties and
thermal conductivity of a Voronoï mosaic (Kanit et al. 2003), of materials
from food industry (Kanit et al. 2006), or of Boolean models of spheres
(Willot and Jeulin 2009).

5 Scaling of the variance of the Boolean random
varieties

5.1 Boolean model on Poisson varieties in Rn

We consider a convex domain K in Rn, with Lebesgue measure �n(K).
Deriving the asymptotic expression of the local fraction (with average p)
from the covariance (8) in expression (13) is not an easy task. The scaling
law of the variance (16) can be directly obtained for the Boolean model
built on isotropic Poisson varieties Vk from the properties of the Poisson
point process. We have the following result.
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Proposition 6 In Rn, the variance D2Z(K) of the local fraction Z =
�n(A\K)
�n(K)

of a Boolean model built on isotropic Poisson varieties of dimension k (k =
0; 1; :::; n� 1) Vk, is asymptotically expressed, for homothetic convex sets K
with �n(K)!1, by

D2Z(K) = p(1� p)
�
Ak(K)

�n(K)

�n�k
n

(18)

the scaling exponent being 
 = n�k
n . The coe¢ cient Ak(K) depends on the

shape of K, but not on its size. As particular cases, Poisson points (k = 0)
give the standard Boolean model with a �nite integral range and 
 = 1,
Poisson lines (k = 1) generate Poisson �bers with 
 = n�1

n , and Poisson
hyperplanes (k = n� 1) provide Poisson strata with 
 = 1

n .

Proof. Consider isotropic varieties Vk with dimension k and intensity �k.
From proposition 3, the number of varieties hit by K follows a Poisson
distribution with average and variance proportional to �kWk(K). To express
the scaling law of the variance D2Z(K), we consider the limiting case of a
low intensity �k in expression (5) for large K as compared to the primary
grain A0 (�n(A

0) << �n(K)), so that to �rst order Wk(K) � Wk(A
0 � �K).

For a given realization of Vk, the measure �n(A \ K) is proportional to
�k(Vk \ K). As a result of the ergodicity of the random varieties Vk, for
large K, �k(Vk \K) converges towards the mathematical expectation of the
measure of random sections of K, Ef�k(Vk \K)g. Its value can be deduced
from the Crofton formula given in (Matheron 1975), p. 82, or from (Klain
and Rota 1997) p. 129. We get:

Ef�k(Vk \K)g =
�n(K)

�n�k(K)

n!

k!(n� k)!

Making use of (5), the local volume fraction of A, �n(A\K)�n(K)
has an expectation

proportional to �kWk(K)
1

�n�k(K)
� �k and a variance proportional to

�kWk(K)
1

(�n�k(K))
2 �

1

�n�k(K)
� 1

�n(K)
n�k
n

It turns out that the most penalizing situation with respect to the scaling
of the variance is the case of Poisson strata, with a very slow decrease of the
variance with the volume of the sample K, with 
 = 1

n .
It is di¢ cult to give equivalent results for general non-isotropic models.

Instead, we will give below some speci�c examples useful for applications in
2D and in 3D.
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5.2 Random �bers in 2D

� For isotropic Boolean �bers in 2D, the scaling exponent is 
 = 1
2 . Note

that in that case the Poisson varieties are Poisson lines, which are at
the same time lines and hyperplanes in R2.

� An instructive and extreme anisotropic case is obtained for parallel
Poisson lines, with the intensity �1(d�) = �1�(�0)d�, �0 being the
orientation of the lines. For a sample K made of a rectangle with an
edge L orthogonal to �0, and an edge l parallel to �0. The number
of lines hitting K is a Poisson variable with average and variance �1L.
The average of the local area fraction of A is proportional to �1L l

Ll =

�1L
1
L and its variance is proportional to �1L

1
L2
= �1

L . The length l
plays no role in the variance, which is inversely proportional to L. In
that case, 1D samples orthogonal to �0 produce the same scaling of
the variance. This can be explained by the fact that the 1D sections
of the model orthogonal to �0 are a standard one-dimensional Boolean
model with a �nite integral range, showing a standard scaling of the
variance in 1D.

5.3 Random �bers in 3D

� For isotropic Boolean �bers in 3D, the scaling exponent is 
 = 2
3 .

This exponent was recovered for the volume fraction from numerical
simulations (Dirrenberger et al. 2014) for VV ' 0:16. In the case of
�bers with a �nite length, the expected scaling coe¢ cient is 
 = 1.
However an intermediary situation will occur in experiments, and an
apparent scaling coe¢ cient 2

3 6 
 6 1, depending on the size of the
specimen can be recovered (
 ' 2

3 for small specimens, and 
 ' 1 for
large samples). Simulations of various random networks of �nite �bers
having a length of the order of the size of the samples, and with various
radius distributions (Table 3 in Altendorf et al. 2014), gave apparent

 ' 0:66 � 0:87 instead of the true 
 = 1, but mostly around 0:8,
for the volume fraction, with VV ' 0:15. Simulations of the elastic
properties and of the conductivity of 3D random �ber networks by
�nite elements (Dirrenberger et al. 2014) or by FFT (Altendorf et
al. 2014) provide an empirical scaling law of the variance close to the
theoretical one obtained for the volume fraction. This is expected, as
a result of a high correlation between the elastic or thermal �elds and
the indicator function of the random set A.

� An extreme case of anisotropy is given for �bers parallel to a direction
�0, providing a standard 2D Boolean model in planes orthogonal to
�0. Consider for K a parallelepiped with a face orthogonal to the
direction �0 (with area S), and an edge parallel to the direction
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�0(with length l). The number of Poisson lines hitting K is a Poisson
variable with parameter �1S, and 2D sections of A generate a standard
2D Boolean model. The average of the local volume fraction of A
is proportional to �1S l

Sl = �1S
1
S and its variance is proportional to

�1S
1
S2
= �1

S . As in 1D, the length l plays no role in the variance,
which is inversely proportional to S. The same scaling is obtained for
2D sections in planes orthogonal to the direction �0. This was observed
on a silica �bers composite, for the �uctuations of the area fraction
(with AA = 0:4) and of the elastic and thermal �elds, calculated by
�nite elements on polished sections of the composite (Oumarou et al.
2011). Planar sections parallel to �0 generate a 2D model of Boolean
�bers. The variance is proportional to �1

L , L being the length of the
edge orthogonal to �0, the edge parallel to the �bers playing no roles.
In this situation, one dimensional sections orthogonal to �0, give the
same scaling law for the variance, that is decreasing much slower than
for transverse sections or for the isotropic model.

� It is possible to model a random woven composite by a network of
random �bers with a set of orientations, for instance two or three
orthogonal orientations �1, �2, �3, and corresponding intensities �1,
�2, �3. Consider for K a parallelepiped with a face orthogonal to the
direction �1 (with area S1), and faces orthogonal to direction �2 (with
area S2) and to direction �3 (with area S3). The lengths of the edges
in direction �i are Li (i = 1; 2; 3), so that S1 = L2L3, S2 = L1L3
and S3 = L2L1. In the case of two orthogonal directions �1, �2, the
variance scales as �1

S1
+ �2

S2
, while for three orthogonal orientations, it

scales as �1S1 +
�2
S2
+ �3
S3
. For a cube, an overall scaling in �

S is recovered
with � = �1 + �2 + �3, which still gives a scaling exponent 
 = 2

3 .
The microstructure can also be sampled by planar probes K. For
two directions of �bers �1, �2 and cuts orthogonal to direction �1,
the variance scales as �1

S1
+ �2

L2
. For cuts parallel to the plane de�ned

by orientations �1, �2 the variance scales as �1
L1
+ �2

L2
, which is the

most penalizing situations. These results extend to three orthogonal
orientations, with a variance scaling as �1S1+

�2
L2
+ �3
L3
for cuts orthogonal

to direction �1, which are therefore parallel to the plane de�ned by
directions �2, �3.

� Some �brous materials, like cellulosic �brous media (Delisée et al.
2001), are isotropic transverse: �bers are parallel to a reference plane,
orthogonal to some direction �3, with a uniform distribution of orien-
tations in this plane. The number of Poisson line hit by K follows a
Poisson distribution with parameter �(L1 + L2)L3, and the variance
of the local volume fraction scales as �

(L1+L2)L3
. Planar sections with

area S of this model orthogonal to the direction �3 generate a 2D
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isotropic Boolean model of �bers with the scaling exponent 
 = 1
2 for

1
S , as in 5.2.

� Projections of 3D Boolean �bers networks on a plane generate various
standard models with the corresponding scaling laws. Any projection
of the isotropic network, or a projection of transverse isotropic �bers
in a plane parallel to �bers (Delisée et al. 2001) are 2D isotropic
Boolean �bers with he scaling exponent 
 = 1

2 for
1
S as in 5.2. The

projection of parallel �bers in a plane parallel to �bers generates 2D
Boolean parallel �bers, with a variance scaling as 1

L , L being the
length of the edge of the section orthogonal to �bers. The projection
of parallel �bers in a plane orthogonal to �bers generates standard 2D
Boolean model with a scaling of the variance in 1

S . This models ap-
pear by observation of thick slides of �brous networks, as obtained by
optical confocal microscopy (Delisée et al. 2001), or from transmission
electron microscopy.

5.4 Random strata in 3D

� For isotropic Boolean strata in 3D, the scaling exponent is 
 = 1
3 .

This decrease of the variance with size is much slower than the case
of a �nite integral range. When considering random media with a
nonlinear behavior, like for instance a viscoplastic material, a strong
localization of strains resulting in shear bands is expected. This gen-
erates long range correlations of the �elds, that might be modeled by
Boolean strata in 3D, and scaling laws similar to the dilated Poisson
hyperplanes (with a scaling exponent close to 1

3) might be recovered,
so that a slow convergence towards the e¤ective properties should be
observed on numerical simulations with increasing sizes. This point
remains to be investigated by numerical experiments.

� A layered medium, generated by parallel hyperplanes, orthogonal to a
reference direction �0. corresponds to an extremal anisotropy. Con-
sider for K a parallelepiped with a face orthogonal to the direction �0
(with area S). The length of the edge parallel to �0 is L. The number
of planes hit by L is a Poisson variable with parameter �L. The local
volume fraction has an expectation equal to �L SV = � and its variance

is proportional to �L
�
S
V

�2
= �

L . For this situation, there is no e¤ect
of the surface S, and plane sections parallel to the direction �0 gives
the same scaling of the variance.

� Another instructive case is obtained by isotropic hyperplanes parallel
to a given direction �0. Consider for K a parallelepiped with a face
orthogonal to the direction �0 (with perimeter L and area S). The
number of Poisson planes hit by K follows a Poisson distribution with
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parameter �L. If the length ofK in the direction parallel to �0 is L, the
local volume fraction has an expectation equal to �LLLV = �, and its

variance is proportional to �L
�LL
V

�2 � �
S1=2

� �
V 1=3

. Planar sections
(or equivalently projections) orthogonal to �0 generate isotropic 2D
Boolean �bers, with a variance scaling in �

S1=2
. Vertical planar sections,

parallel to �0 (with a horizontal edge L) generate parallel 2D Boolean
�bers, with a variance scaling in �

L , the size of the vertical edge playing
no role in the variance.

� As for �bers, It is possible to model a random woven composite by
a network of random strata with a set of orientations, for instance
two or three orthogonal orientations �1, �2, �3. Consider for K a
parallelepiped with edges parallel to these orientations, and lengths
L1, L2, and L3. The variance scales as �1

L1
+ �2

L2
+ �3

L3
. When K is a

cube with edge L, the variance scales as �1+�2+�3L .

6 Two steps Boolean varieties

It is possible to generate further Boolean models by iteration of Poisson
varieties. For instance in R2, we �rst consider Poisson line, and in a second
step Poisson points on every lines. These points are germs to locate primary
grains A0 to generate a Boolean model. Compared to the standard Boolean
model, this one shows alignments of grains. Similarly in R3 we can start from
Poisson planes V2� and use Poisson lines V1� in every plane to generate a
Boolean model with �bers. In contrast with Poisson �bers in R3, this model
generates a random set with some coplanar �bers. Such long range random
sets could mimic speci�c microstructures with an order in a lower dimension
subspace of Rn, such as preferred germination of objects on speci�c planes
or lines.

These models are based on doubly stochastic Poisson random variables
for which the Choquet capacity and scaling laws of the variance can be
obtained.

De�nition 7 Two steps random varieties are de�ned as follows: starting
from Poisson linear varieties Vk of dimension k and with intensity �k(d!)
in Rn, Poisson linear varieties Vk0� with dimension 0 � k0 < k and with
intensity �k0(d!) are implanted on each Vk�. Then each Vk0� is dilated by
independent realizations of a random compact primary grain A0 � Rn to
generate the Boolean RACS A:

A = [�Vk0� �A0
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Remark 8 By construction, when k0 = 0 the varieties Vk0� are a particular
case of a Cox process driven by the random set Vk, and the derived random
set A is a Cox Boolean model (Jeulin 2012).

In what follows the purpose is restricted to the stationary and isotropic
case, with the two intensities �k and �k0 .

Theorem 9 The number N(K) of varieties of dimension k0 < k hit by the
compact set K is a random variable with generating function

Gk0(s;K) = EfsN(K)g = exp [�kakWk(K) ['k0(�k0ak0(1� s);K)� 1]] (19)

where ak0 =
bn�k0bk0+1

bn
k0+1
2 and 'k0(�;K) is the Laplace transform of the

random variable Wk0(K \ Vk�) , Wk0 being the Minkowski functional homo-
geneous with degree k � k0 in Rk:

'k0(�;K) = Efexp [��Wk0(K \ Vk)]g (20)

the mathematical expectation being taken over the realizations Vk�. As a con-
sequence, the Choquet capacity of the Boolean RACS A built on the Poisson
linear varieties Vk0 using a deterministic primary grain A0 is derived from
Gk0(0; A

0� �K), E fg being the expectation with respect to the random variety
Vk�:

1� T (K) (21)

= exp
�
��kakWk(A

0 � �K)
�
1� Efexp

�
��k0ak0Wk0(A

0 � �K \ Vk)
�
g
��

Proof. The random number Nk of varieties Vk� hit by K is a Poisson vari-
able with expectation �kakWk(K). On each Vk� are generated Nk0 varieties
Vk0�, Nk0 being a Poisson variable with expectation �k0ak0Wk0(K \ Vk). For
a random section K \ Vk�, the generating function of Nk0 is

�(s) = exp [��k0ak0Wk0(K \ Vk�)(1� s)] (22)

Taking the expectation of (22) with respect to Wk0(K \ Vk�) and then of
�(s)Nk gives (19).

The Choquet capacity requires the use of the Laplace transform 'k0(�;A0�
�K). It is not easy to expressed it in a closed form for speci�c compact sets
K and A0. However the required distribution functions and their Laplace
transforms can be estimated by simulation of the random variables obtained
from random variables Wk0(A

0 � �K \ Vk�) obtained from random sections.
As in section 5 it is possible to work out asymptotic scaling exponents

of the local volume fraction of A, �n(A\K)�n(K)
, starting from the variance of the

random number N(K). Using the generating function Gk0(s;K) given in
equation (19), we have

D2(N(K)) = G00k0(1;K) +G
0
k0(1;K)(1�G0k0(1;K))
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G0k0(s;K) = ��kakWk(K)�k0ak0
�
'0k0(�k0ak0(1� s);K)

�
Gk0(s;K)

G0k0(1;K) = E fN(K)g
= ��kakWk(K)�k0ak0

�
'0k0(0;K)

�
= �kakWk(K)�k0ak0E fWk0(K \ Vk)g

G
00
k0(s;K)

= �kakWk(K)�k0ak0
h
'
00
k0(�k0ak0(1� s);K)

i
Gk0(s;K)

� �kakWk(K)�k0ak0
�
'0k0(�k0ak0(1� s);K)

�
G0k0(s;K)

and

G
00
k0(1;K)

= �kakWk(K)�k0ak0
h
'
00
k0(0;K)

i
+
�
G0k0(1;K)

�2
= �kakWk(K)�k0ak0E

�
(Wk0(K \ Vk))2

	
+ (E fN(K)g)2

so that

D2(N(K))

= �kakWk(K)�k0ak0
h
'
00
k0(0;K)

i
+ �kakWk(K)�k0ak0E fWk0(K \ Vk)g

= �kakWk(K)�k0ak0
�
E
�
(Wk0(K \ Vk))2

	
+ E fWk0(K \ Vk)g

�
As in section 5, the local volume fraction of the random set A in K is

proportional to �k0(K \ Vk0). As a result of the ergodicity of the random
varieties Vk, for large K, �k0(Vk0 \ K) converges towards its mathematical
expectation. Applying the Crofton formula in two steps we get:

Ef�k0(Vk0 \K) j Vkg =
�k(K \ Vk)
�k�k0(K)

k!

k0!(k � k0)!

and

Ef�k0(Vk0 \K)g =
E f�k(K \ Vk)g
�k�k0(K)

k!

k0!(k � k0)!

=
�n(K)

�n�k(K)

n!

k!(n� k)!
1

�k�k0(K)

k!

k0!(k � k0)!
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The local volume fraction of A, �n(A\K)�n(K)
has a variance proportional to

1

(�n�k(K)�k�k0(K))
2D

2(N(K))

� 1

(�n�k(K)�k�k0(K))
2Wk(K)E

�
(Wk0(K \ Vk))2

	
� �n�k(K)(�k�k0(K))

2

(�n�k(K)�k�k0(K))
2 �

1

�n�k(K)
� 1

�n(K)
n�k
n

so that the scaling law of the variance is the same as in (18). Therefore
the variance of the volume fraction of iterated varieties is dominated by
the e¤ect of the varieties of the �rst iteration, namely Vk. For instance in
R2 a Boolean model built on Poisson lines or on Poisson points generated
on Poisson lines have the same scaling with the exponent 
 = 1

2 . In R
3 a

Boolean model built on Poisson lines or on Poisson points in Poisson planes
have the same scaling with the exponent 
 = 1

3 , while for a Boolean model
built on Poisson �bers or on Poisson points located on Poisson lines we have

 = 2

3 .

7 Conclusion

Boolean random varieties generate random media with in�nite range corre-
lations. As a consequence, non standard scaling laws of the variance of the
local volume fraction with the volume of domains K are predicted. These
laws are out of reach of a standard statistical approach. We have theoreti-
cally shown that on a large scale, the variance of the local volume fraction
decreases with power laws of the volume of K. The exponent 
 is equal to
2
3 for Boolean �bers in 3D, and

1
3 for Boolean strata in 3D. When working

in 2D, the scaling exponent of Boolean �bers is equal to 1
2 . Therefore the

decrease of the variance with the scale is much slower for these models as
compared to situations with a �nite integral range, like the standard Boolean
model built on a Poisson point process with compact primary grains, and
larger RVE are expected for the estimation of the volume fraction. From nu-
merical simulations to predict the e¤ective properties of such random media,
it turns out that these laws seem to hold, as already empirically observed
for the conductivity or for the elastic properties of random �bers models.
We can forecast the development of long range correlations when there is a
strong localization of strains resulting in shear bands for a non linear me-
chanical behavior. For these situations a power law scaling with 
 ' 1

3 is
suspected to occur, but this has to be checked on data.

Similar results are obtained for iterated Poisson varieties, the �rst step of
the iteration imposing its power law behavior for the scaling of the variance.

The obtained scaling laws in various cases, including anisotropic orien-
tations of the Boolean �bers or strata, and the iterated Poisson varieties,
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can help to design optimal sampling schemes with respect to minimizing the
variance of estimation.
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