Multivariate mathematical morphology for DCE-MRI image analysis in angiogenesis studies - Mines Paris
Article Dans Une Revue Image Analysis & Stereology Année : 2015

Multivariate mathematical morphology for DCE-MRI image analysis in angiogenesis studies

Résumé

We propose a new computer aided detection framework for tumours acquired on DCE-MRI (Dynamic Contrast Enhanced Magnetic Resonance Imaging) series on small animals. In this approach we consider DCE-MRI series as multivariate images. A full multivariate segmentation method based on dimensionality reduction, noise filtering, supervised classification and stochastic watershed is explained and tested on several data sets. The two main key-points introduced in this paper are noise reduction preserving contours and spatio temporal segmentation by stochastic watershed. Noise reduction is performed in a special way that selects factorial axes of Factor Correspondence Analysis in order to preserves contours. Then a spatio-temporal approach based on stochastic watershed is used to segment tumours. The results obtained are in accordance with the diagnosis of the medical doctors.
Fichier principal
Vignette du fichier
1109-2538-4-PB.pdf (4.59 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01152401 , version 1 (19-05-2015)
hal-01152401 , version 2 (25-10-2019)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Guillaume Noyel, Jesus Angulo, Dominique Jeulin, Daniel Balvay, Charles-André Cuenod. Multivariate mathematical morphology for DCE-MRI image analysis in angiogenesis studies. Image Analysis & Stereology, 2015, 34, pp.1-25. ⟨10.5566/ias.1109⟩. ⟨hal-01152401v1⟩

Collections

INSERM
699 Consultations
248 Téléchargements

Altmetric

Partager

More