Interactions between C-steel and blended cement in concrete under radwaste repository conditions at 80 °C - Mines Paris
Article Dans Une Revue Scientific Reports Année : 2023

Interactions between C-steel and blended cement in concrete under radwaste repository conditions at 80 °C

Résumé

Abstract Deep geological repository is widely considered as the preferred solution for the final disposal of high-level radioactive waste. Investigation representative of the Hungarian disposal concept was conducted using mock-up diffusion cells to study the chemical changes of S235JR carbon steel canister and CEM II/B concrete of the Public Limited Company for Radioactive Waste Management under anerobic and water saturated conditions at 80 °C. Micro-Raman, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, fluid and potentiometric analysis were performed over a period of 12 months. The analysis was supported by thermodynamic and reactive transport modeling using the HYTEC code. The findings revealed that a uniform corrosion process occurred, leading to rapid passivation of the C-steel with magnetite as the primary corrosion product. Modeling demonstrated that the increase in temperature to 80 °C and the chemical evolution of the concrete did not significantly affect the corrosion passivation process. Although the formation of Fe-siliceous hydrogarnets is thermodynamically possible at 80 °C, it did not jeopardize magnetite passivation. The results show that the passivation of the containers occurred under the test conditions and this is a promising result for further investigations.

Domaines

Géochimie
Fichier non déposé

Dates et versions

hal-04260699 , version 1 (26-10-2023)

Identifiants

Citer

Margit Fabian, Otto Czompoly, Istvan Tolnai, Laurent de Windt. Interactions between C-steel and blended cement in concrete under radwaste repository conditions at 80 °C. Scientific Reports, 2023, 13 (1), pp.15372. ⟨10.1038/s41598-023-42645-6⟩. ⟨hal-04260699⟩
73 Consultations
0 Téléchargements

Altmetric

Partager

More