Asymmetrical Bi-RNN for Pedestrian Trajectory Encoding - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

Asymmetrical Bi-RNN for Pedestrian Trajectory Encoding

Résumé

Pedestrian motion behavior involves a combination of individual goals and social interactions with other agents. In this article, we present an asymmetrical bidirectional recurrent neural network architecture called U-RNN to encode pedestrian trajectories and evaluate its relevance to replace LSTMs for various forecasting models. Experimental results on the Trajnet++ benchmark show that the U-LSTM variant yields better results regarding every available metrics (ADE, FDE, Collision rate) than common trajectory encoders for a variety of approaches and interaction modules, suggesting that the proposed approach is a viable alternative to the de facto sequence encoding RNNs. Our implementation of the asymmetrical Bi-RNNs for the Trajnet++ benchmark is available at: github.com/JosephGesnouin/Asymmetrical-Bi-RNNs-toencode-pedestrian-trajectories.
Fichier principal
Vignette du fichier
U_RNNS_RFIAP (1).pdf (871.49 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03682456 , version 1 (31-05-2022)

Identifiants

  • HAL Id : hal-03682456 , version 1

Citer

Raphaël Rozenberg, Fabien Moutarde, Joseph Gesnouin. Asymmetrical Bi-RNN for Pedestrian Trajectory Encoding. Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), Jul 2022, Vannes, France. ⟨hal-03682456⟩
53 Consultations
80 Téléchargements

Partager

Gmail Facebook X LinkedIn More