Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints - Mines Paris
Communication Dans Un Congrès Année : 2020

Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints

Résumé

This work tackles the problem of reconstructing vehicle trajectories with the side information of physical constraints, such as inter-vehicular distance and speed limits. It is notoriously difficult to perform a regression while enforcing these hard constraints on time intervals. Using reproducing kernel Hilbert spaces, we propose a convex reformulation which can be directly implemented in classical solvers such as CVXGEN. Numerical experiments on a simple dataset illustrate the efficiency of the method, especially with sparse and noisy data.
Fichier principal
Vignette du fichier
pca.pdf (592.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03021643 , version 1 (24-11-2020)

Identifiants

  • HAL Id : hal-03021643 , version 1

Citer

Pierre-Cyril Aubin-Frankowski, Nicolas Petit, Zoltán Szabó. Kernel Regression for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints. IFAC 2020 World Congress, Jul 2020, Virtuel, Germany. ⟨hal-03021643⟩
58 Consultations
94 Téléchargements

Partager

More