Experimental characterization of coupled diffusion reaction mechanisms in low permeability chalk - Mines Paris Accéder directement au contenu
Article Dans Une Revue Chemical Geology Année : 2018

Experimental characterization of coupled diffusion reaction mechanisms in low permeability chalk

Résumé

Reactions caused by the diffusion of reactants from different sources can alter rock diffusivity and are thereforethe critical mechanisms for evaluating short and long-term behavior of low-permeability rocks used as confinementlayers for underground storage, for instance. This paper presents and discusses a set of two diffusiondrivenreaction experiments focusing on precipitation of two end-member types of sulfate minerals (gypsum:CaSO4.2H2O and barite: BaSO4) in low-permeability chalk. The time-resolved changes in porosity and effectivediffusion coefficient (De) were evaluated along the duration of the experiments (~140 days), by analyzing thebehavior of passive tracers and evaluating the amount of precipitated gypsum or barite from measuring thereactant concentration evolution in the reservoirs at both ends of the sample. Then SEM-EDS and X-ray microtomography(μCT) imaging were used to characterize the initial rock structure and the precipitated materials.Results showed that the change in porosity (from 45% to about 43%) corresponding to the volume of sulfateprecipitated, are similar for gypsum and barite. Conversely, the precipitation impact on diffusion properties ofthe water tracers that were injected 70 days after the beginning of the precipitation step is distinctly different forthe each of the studied sulfate mineral. The precipitation of barite generated a more significant impact thangypsum: Deintact=4.15×10−10m2·s−1 vs. Debarite=1.1×10−10m2·s−1 and Degypsum=2.5×10−10m2·s−1.Post-mortem imaging revealed a thin precipitated zone (~250 μm) in the center of the sample for the bariteprecipitation experiment, whereas isolated quasi-spherical clusters resulted from the gypsum precipitation. TheμCT images at higher resolution showed that the precipitation of barite is heterogeneous at small scale, whichexplains the HTO diffusion curve. For gypsum, the post mortem imaging around the quasi-spherical clustersshowed a significant presence of initial macropores of the connected porosity that were still unfilled. These intactchalk zones allowed HDO to diffuse through the precipitated zone lowering the impact on water tracer diffusivity.These experimental results indicate that the morphology and the distribution of barite precipitates ismainly controlled by homogeneous and heterogeneous nucleation phenomena, whereas gypsum precipitation ismainly controlled by the spatial variability of the initial porous system properties (reactive surface area, tortuosity,pore network structure).

Domaines

Géochimie
Fichier non déposé

Dates et versions

hal-01905938 , version 1 (03-02-2021)

Identifiants

Citer

A. Rajyaguru, E. L'Hôpital, S. Savoye, C. Wittebroodt, Olivier Bildstein, et al.. Experimental characterization of coupled diffusion reaction mechanisms in low permeability chalk. Chemical Geology, 2018, ⟨10.1016/j.chemgeo.2018.10.016⟩. ⟨hal-01905938⟩
164 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More