Drone Tracking Using an Innovative UKF - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Drone Tracking Using an Innovative UKF

Marion Pilté
  • Fonction : Auteur
  • PersonId : 1027100
Silvere Bonnabel
Frédéric Barbaresco

Résumé

This paper addresses the drone tracking problem, using a model based on the Frenet-Serret frame. A kinematic model in 2D, representing intrinsic coordinates of the drone is used. The tracking problem is tackled using two recent filtering methods. On the one hand, the Invariant Extended Kalman Filter (IEKF), introduced in [1] is tested, and on the other hand, the second step of the filtering algorithm, i.e. the update step of the IEKF is replaced by the update step of the Unscented Kalman Filter (UKF), introduced in [2]. These two filters are compared to the well known Extended Kalman Filter. The estimation precision of all three algorithms are computed on a real drone tracking problem.
Fichier principal
Vignette du fichier
GSI_17_Pilte.pdf (203.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01692469 , version 1 (25-01-2018)

Identifiants

  • HAL Id : hal-01692469 , version 1

Citer

Marion Pilté, Silvere Bonnabel, Frédéric Barbaresco. Drone Tracking Using an Innovative UKF. 3rd conference on Geometric Science of Information (GSI 2017), Nov 2017, Paris, France. ⟨hal-01692469⟩
288 Consultations
1043 Téléchargements

Partager

Gmail Mastodon Facebook X LinkedIn More