Delay-robust control design for two heterodirectional linear coupled hyperbolic PDEs
Résumé
We detail in this article the necessity of a change of paradigm for the delay-robust control of systems composed of two linear first order hyperbolic equations. One must go back to the classical trade-off between convergence rate and delay-robustness. More precisely, we prove that, for systems with strong reflections, canceling the reflection at the actuated boundary will yield zero delay-robustness. Indeed, for such systems, using a backstepping-controller, the corresponding target system should preserve a small amount of this reflection to ensure robustness to a small delay in the loop. This implies, in some cases, giving up finite time convergence.
Origine | Fichiers produits par l'(les) auteur(s) |
---|