Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for Hyperbolic-Valued Images - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2013

Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for Hyperbolic-Valued Images

Jesus Angulo
Santiago Velasco-Forero
  • Fonction : Auteur
  • PersonId : 1010164

Résumé

Mathematical morphology is a nonlinear image processing methodology based on the application of complete lattice theory to spatial structures. Let us consider an image model where at each pixel is given a univariate Gaussian distribution. This model is interesting to represent for each pixel the measured mean intensity as well as the variance (or uncertainty) for such measurement. The aim of this paper is to formulate morphological operators for these images by embedding Gaussian distribution pixel values on the Poincaré upper-half plane. More precisely, it is explored how to endow this classical hyperbolic space with partial orderings which lead to a complete lattice structure.
Fichier principal
Vignette du fichier
HyperbolicMM_GSI13_final.pdf (773.79 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01536381 , version 1 (11-06-2017)

Identifiants

Citer

Jesus Angulo, Santiago Velasco-Forero. Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for Hyperbolic-Valued Images. First International Conference on Geometric Science of Information (GSI'2013), Aug 2013, Paris, France. pp.535 - 542, ⟨10.1007/978-3-642-40020-9_59⟩. ⟨hal-01536381⟩
152 Consultations
228 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More