Sparse Stereo Disparity Map Densification using Hierarchical Image Segmentation - Mines Paris
Communication Dans Un Congrès Année : 2017

Sparse Stereo Disparity Map Densification using Hierarchical Image Segmentation

Sébastien Drouyer
  • Fonction : Auteur
  • PersonId : 997191
Serge Beucher
Michel Bilodeau
Maxime Moreaud
Loïc Sorbier

Résumé

We describe a novel method for propagating disparity values using hierarchical segmentation by waterfall and robust regression models. High confidence disparity values obtained by state of the art stereo matching algorithms are interpolated using a coarse to fine approach. We start from a coarse segmentation of the image and try to fit each region’s disparities using robust regression models. If the fit is not satisfying, the process is repeated on a finer region’s segmentation. Erroneous values in the initial sparse disparity maps are generally excluded, as we use robust regressions algorithms and left-right consistency checks. Final disparity maps are therefore not only denser but can also be more accurate. The proposed method is general and independent from the sparse disparity map generation: it can therefore be used as a post-processing step for any stereo-matching algorithm.
Fichier principal
Vignette du fichier
sebastien_drouyer_ismm2017_v2.pdf (2.48 Mo) Télécharger le fichier
sebastien_drouyer_ismm2017_v1.pdf (5.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01484143 , version 1 (29-05-2017)

Licence

Identifiants

  • HAL Id : hal-01484143 , version 1

Citer

Sébastien Drouyer, Serge Beucher, Michel Bilodeau, Maxime Moreaud, Loïc Sorbier. Sparse Stereo Disparity Map Densification using Hierarchical Image Segmentation. 13th International Symposium, ISMM 2017, May 2017, Fontainebleau, France. pp.172-184. ⟨hal-01484143⟩
4733 Consultations
4931 Téléchargements

Partager

More