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make this version available as it can add some insight on the functionning of our
solution.

Abstract. We describe a novel method for propagating disparity values
using hierarchical segmentation by waterfall and robust regression mod-
els. High confidence disparity values obtained by state of the art stereo
matching algorithms are interpolated using a coarse to fine approach. We
start from a coarse segmentation of the image and try to fit each region’s
disparities using robust regression models. If the fit is not satisfying, the
process is repeated on a finer region’s segmentation. Erroneous values in
the initial sparse disparity maps are generally excluded, as we use robust
regressions algorithms and left-right consistency checks. Final disparity
maps are therefore not only denser but can also be more accurate. The
proposed method is general and independent from the sparse disparity
map generation: it can therefore be used as a post-processing step for
any stereo-matching algorithm.
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1 Introduction

One of the main research interest in computer vision is the matching of stereo-
scopic images, as it allows to obtain a 3d reconstruction of the observed scene.
A common practice is to first rectify the pair of images [I], that is to say slightly
distort them so that a point of the scene is projected on the same ordinate
on both images. This rectification allows to simplify the matching process to a
1D search problem. The difference of abscissa of a point’s projection between
the rectified pair of images is called disparity. A disparity map estimates the
disparity for each pixel of the rectified pair.



Many different algorithms evaluating these disparity maps already exist in the
literature. They generally use local [2], semi-global [3] [4] or global optimization
methods [10] [1I] [12] that minimize matching cost of image features between
two images. While some methods, especially the global ones, can produce dense
disparity maps, other methods produce sparse disparity maps - where there are
some pixels with undefined disparity values. This can happen for several reasons.
Disparity values can be removed when a confidence measure, such as texture or
uniqueness, is under a certain threshold. They can also be removed when a part
of the scene is occluded, either by global and semi-global methods, or by using
Left-Right Consistency (LRC) checks[22].

Global disparity evaluation methods often feature disparity propagation in
order to generate a complete map [13] [14], but these propagation techniques are
directly linked to the method and are not generalizable.

Apart from diffusion [I5] and interpolation [16], a few general propagation
methods exist in the literature. From a disparity map where only edges are
matched, VMP [17] diffuses disparity values by using predefined masks and a
voting process. FGS [I8] has been used by the OpenCV library [19] for propa-
gating LRC checked disparity values using an edge-preserving diffusion model.

This work proposes a new densification method that is able to produce a
denser and more accurate disparity map from an initial sparse disparity map.
We called our method TDSR, for Top Down Segmented Regression. From a coarse
segmentation of the image, we try to fit each region’s disparities using robust
regression models. If the fit is not satisfying, the process is repeated on a finer
region’s segmentation.

This coarse to- fine approach allows the algorithm to rely on general pur-
pose parameters. Since each region is processed separately, the algorithm can be
easily parallelized to improve efficiency. As we use linear regression models, it
is possible to get not only the disparity values but also normals in the dispar-
ity space, which can be convenient for multi-view stereo algorithms and object
recognition. Finally, the proposed method is general and independent from the
sparse disparity map generation: it can therefore be used as a post-processing
step for any stereo-matching algorithm.

2 Top Down Segmented Regression method

2.1 General concept

We have two rectified stereo images (left and right) depicting the same scene
(see example in figure [la). We also have a sparse disparity map between the
left and the right images obtained using an existing stereo matching algorithm
(see figure . Large areas of the disparity map can be undefined (gray pixels),
and defined areas can contain errors. Furthermore, we know the camera matrix:
if a point is defined in the sparse disparity map we can know its 3D relative
position in the scene, and vice versa. From these information, we want to obtain
a complete and accurate disparity map (see figure .



(a) Left image b) Sparse disparity map ¢) Objective

Fig.1: Objective : sparse disparity map to complete one. Adirondack pair
of the Middlebury dataset[23].

We will suppose that the scene is a collection of different objects. Each
object’s surface is composed of one or multiple simple shapes. Those simple
shapes can be planes, curves, tubes or spheres: all the 3D points inside a shape
can be modeled using a bivariate quadratic polynomial, that we will call model.

Our method will therefore try to separate all the simple shapes in the ref-
erence (left) image. If each region is a simple shape, we can obtain a 3D point
cloud estimate of the corresponding region from the sparse disparity map (by
converting each disparity value to a 3d point) and modelize it by a bivariate
quadratic polynomial. The model can then be used to correct existing disparity
values and fill undefined values in the region, by converting back each 3d point
of the model to a disparity value. However, this is not automatically feasible by
a segmentation algorithm, so we will instead rely on hierarchical segmentation.

The hierarchical segmentation of an image can be represented by a partition
tree. The concept is very similar to the binary partition tree[29] presented by
Salembier and Garrido, except that a node can have more than two children. The
top node represents the whole image, its children represent the most important
regions of the image according to the algorithm used, their children represent
secondary regions, and so on until a node can’t be separated into more sub
regions.

An adapted segmentation can’t be obtained by simply choosing a specific
level of the partition tree: nodes at the lower levels will produce a very coarse
segmentation of the image, nodes at the higher levels will produce an over-
segmentation. At the middle, some simples shapes are over-segmented and others
are merged with neighboring shapes.

We will therefore proceed the following way. We start from the top node, and
try to modelize its associated 3D point cloud. If the modelization is satisfying
or if the node doesn’t have any children, we stop here, associate the model to
the node, and delete all the node’s children. If it is not satisfying, we retrieve
the node’s children, and apply the same process individually to each node.

If we combine all the leafs of the resulting tree, we can obtain a modeled
segmentation of the image, where each region is associated to a model. Some
post-processing are done on this modeled segmentation that we will describe in
section It can then be converted to a complete disparity map.

In order to concretize this general concept, we need to define the following:



How do we obtain the sparse disparity map S7

How do we construct the partition tree H?

How do we modelize a region?

What are the conditions defining a satisfying modelization?

2.2 The sparse disparity map S

In order to compute a complete disparity map, we first need an initial sparse
disparity map. The quality of our complete disparity map is highly correlated
to the quality of the initial disparity map, so choosing an accurate algorithm at
this stage is crucial.

We chose to compute this disparity map between the left and right image
using the MGM[4] algorithm as it evaluates high quality disparity maps. Chosen
parameters are shown in table [1l Except for the window size that we increased
for greater robustness, we used the ones proposed in [5]. Census|20] is used as
the distance function because it is robust to change in illumination and expo-
sure. Sub-pixel precision is obtained using the V-fit algorithm[21]. Inconsistent
disparities are removed using the Left-Right Consistency (LRC) check[22] with
threshold set to 1.

[Parameter [Value
P1 8

P2 32
Distance function CENSUS
‘Window size 9x9
Sub-pixel refinement method V-fit
Number of propagation directions 8

Table 1: MGM chosen parameters.

2.3 The partition tree H

Obtaining an adapted partition tree for our images is not a straightforward task.

First, the assumption of having simple shapes separated at least at the leafs
of the partition tree can be difficult to attain on some images. Segmentation,
whether it provides hierarchical information or not, relies on the image gradient.
An object occluding another one with similar color can, in the image, have
indistinguishable borders with very low or even null gradient.

Secondly, the partition tree must divide the image in a progressive manner.
If it does not - for instance a simple shape is merged with another one at a
level and divided into twenty parts at the next level of the tree - it can cause
our approach to poorly perform in many ways. Since the input disparity map
is sparse, it is possible that some regions at the over-segmented level would
contain no disparity values making them impossible to modelize. Since regions
are much smaller and contain fewer disparity points, the modelization would be
more sensitive to errors in the sparse disparity map.



We took these two problems into account when constructing our partition
tree. This partition tree will be obtained from the image gradient and defined
markers, so we address these issues when computing them.

A first problem that can occur is to have a border with a very progressive
change of color between two regions. If we compute a morphological gradient [8]
of size 1 in those areas, we will have a very low gradient around those borders,
preventing an accurate segmentation. There is a change of color that is occurring,
but we need to look at a larger scale. However, we don’t want to simply use a
morphological gradient with a larger size since we might lose out on small details.
That is why we used the multi-scale gradient presented in [6]. We computed this
gradient from scale 1 to scale 6.

For markers, we initially used the h-minima transformation of the gradient,
with h = 5. A second problem is that, when two adjacent regions have similar
colors, the gradient can be less than h at some parts of the border between them.
This effect is known as gradient leakage [30). A way to detect these leakage is
that markers will get thinner at these locations. Therefore, we want to encourage
a split when the markers get thinner. That is why we applied on these markers
the adaptive erosion presented in [7] with o = 0.25.

We then compute the valued watershed segmentation from the gradient and
markers, and apply on it the enhanced waterfalls operator discussed in [9], as it
better preserves the important contours than the standard waterfall algorithm
[8]. The result is a grayscale image Sp. If Sp(z,y). = n and n # 0, then the
pixel is a border between two or more regions at the level n or higher of the
hierarchical segmentation. The higher the level, the coarser the segmentation.
See figures

We finally transform this grayscale image S; to our partition tree H. The
transformation process is illustrated in figures First, we define S}’ =
Sy, > n with n > 0: it represents the segmentation at the level n. Let’s define
N = max(Sp). We then compute for all n € [1,N], L} = L(S}) + p, where
S}y is the complement of S}, L is the label transform and p = 0 if n = N and
p = max(Ly!)if n'< N. Each label in L} can be seen as a node identifier in H.
The children of the root node are LY. Due to the very nature of Sy, if L} (z,y) =
L (2" y') then Lyt (2, y) = Ly (2/,y'). A region R is represented by a single
label in the level n of the hierarchical segmentation: there will therefore be a
single region R,, in the level n + 1 that contain the pixels of the region . We
consider that R, is associated to the parent node of the node associated with
the region R.

2.4 How is a region modelized

When we process each node of the partition tree, we want to obtain a model
that best reflects the real geometry of the region. For doing that, we have an
estimated 3D point cloud extracted and converted from the sparse disparity map
which contain errors and bias. We need to answer two questions. First, do we
take all the 3D points into account or do we select a specific subset 7 Then, how
do we compute the model from this subset ?
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Fig.2: Waterfall and hierarchy tree. (a) Extract of the left image of the
Adirondack pair in the Middlebury dataset. (b) Top level of the enhanced wa-
terfall segmentation of (a). (¢) Intermediate level. (d) Example of a top level
of waterfall segmentation, where each region has been labeled. (¢) Example of
a lower level of waterfall segmentation, labeled. (f) Hierarchy tree constructed
from (d) and (e).

Points selection

A common issue is the well-known fattening effect[24]. For computing each
point’s disparity, stereo algorithms generally match blocks of pixels [2] [3] [4]
instead a single pixels for more robustness. However, around strong edges, the
center of the block inherits the disparity of the more contrasted pixels in the
block, hence the fattening effect. The worst consequences of this effect take
place around occlusions: near the border separating two objects, pixels on the
oceluded object will inherit the disparity of pixels on the occluding object. Such
an issue can seriously impede the modelization process.

Since disparities around borders are not reliable, we decided not to take them
into account when computing the model. For doing that, we first separate the
region A into two separate regions: A, being the border of A and A; being the in-
side of A. More specifically A; = ¢(A4), A, = A\ A;, e(A) being the morphological
erosion of A.

We want here to select all the pixels in A; whose matching blocks don’t

intersect with the border. Therefore the retained pixels A; belong to Aj=e 5 (A),

where €5 is the morphological erosion of size [£] (on a square grid) and B is

2
the matéhing block size.

We will keep all pixels in A, in the subset where the models will be fitted,
as A; might contain an insufficient number of disparity values for an accurate
fitting. For instance, a region might have a completely textureless inside resulting



in an absence of disparity values. Though there might be some outliers in the
borders, due notably to occlusions, we are relying on the model computation
method we will describe later to filter them out.

As a result, we will modelize only the 3D points from the sparse disparity
map in the region A = (A4; U Ap).

Points modelization

Now that we have selected the 3D points, we can compute our model. There
are however some issues that need to be addressed.

First, we have seen previously that some points from A, can contain outliers
which disparity have been contaminated by a mnearby object. An other issue is
the presence of small areas with disparity values very different from the ground
truth [28]. The problem generally appears on areas where there is very little
or repetitive texture, as the stereo matching algorithms generally fail on these
areas.

We will therefore use RANSACI|26] to perform a robust regression on these 3D
points: if the proportion of outliers isn’t too large, they should be automatically
excluded from the model evaluation process thanks to RANSAC. First, we will
perform a linear RANSAC regression: we try to fit z = A+ Bx+ Cy. If the model
is satisfying (see section , we stop here and the linear equation is affected as
the model of the region. Otherwise, we perform a quadratic RANSAC regression:
we try to fit 2 = A+ Ba+ Cy+ D2+ Exy+ Fy?. If the fitting score (see section
is better than the linear regression, we choose the quadratic equation as the
model of the region. However, we impose a minimum number of points (30)
for using the quadratic RANSAC regression as we don’t want to create a too
complex model from limited data.

If there are no points in the sparse disparity map, we can’t compute any
model: we will affect to the region an undefined model.

2.5 What are the conditions defining a satisfying modelization

We have constructed a model from a set of 3D points, and now we want to
know if the model is satisfying. By satisfying, we mean that we want a large
proportion of points that are close to the model. First, we convert the model
to disparity values thanks to the camera matrix. For each point i of the set, we
know therefore its value in the sparse disparity map d; and we also know its
disparity value according to the model d;. A point is an outlier if |d; — d;| > ¢4,
tq being a custom threshold (we chose t; = 2). We define the fitting score s as
the percentage of points in the set that are not outliers. A model is satisfying if
s > tg, with t, = 90%.



2.6 Post-processing

We have at this stage a modeled segmentation S, of our image. To further
improve the results obtained, some post-processing are done on S,,. We will
note D the disparity map obtained from S,,.

The first problem is that probably some regions have an undefined model
because of the absence of points in the sparse disparity map. We have to affect a
valid model to these regions, and to do that we will use the modeled segmenta-
tion’s concept to our advantage. Indeed, these regions are surrounded by regions
associated with a model: the main idea is to fill the undefined region with the
most probable model in the adjacent regions.

However, since each undefined region might cover multiple simple shapes, we
will cut these regions the following way. First, we create a label map £; labeling
all regions with an undefined model. We create a second label map ¢5 labeling
all the regions of the watershed segmentation computed in section We then
compute £; such as £¢(z) = s (y) <= ((41(x) = (1 (y)) A (la(x) =42(y))). Each
region labeled in £; will then be processed independently.

For each label [ and associated area A;, we define its external border as
B, = (64;) — A;, §A; being the morphological dilation of A; of size 1. We list
all different models in Sy, (B;). We want to choose the model that creates the
largest consensus across adjacent regions separated to the current region by a
low gradient. For doing that, we create a list I, of all positions where g(B;) <
min(g(B;)) + t4, g being the gradient of the left image obtained following the
process explained in section ty is a threshold to be defined (we chose 10).
We affect to S, (A;) the model M that maximize the number of points p in [,
such as (M (p) = D(p)) < tq, tq being the threshold used in section

The labels are processed from the one that contain the lowest proportion of
undefined models in B; to the one that contain the highest.

Once Sy, and D are filled, we compute S/, and D’ using the same process
than for S, and D but by inverting the left and right images. We remove values
in D that are inconsistent according to the LRC check with threshold set to 1.
We also remove values at the same positions in S,,,. We then fill the values using
the same process as described earlier.

3 Results

We benchmarked our TDSR method using the well-known Middlebury dataset[23].
The dataset contains several stereo-images pairs with their associated disparity
map ground truth. An executable is also provided allowing to quantitatively
compare disparity maps to their ground truth according to various criteria. We
chose the following two commonly used criteria in the Middlebury compara-
tive table: “Bad 2.0”, which computes the percentage of disparity values farther
than 2.0 from their associated ground truth, and “Avg. error”, that computes
the average absolute difference between the disparity values and their associated
ground truth. These criteria have been separately computed on all values and



only on values where no occlusion is occurring. They were computed on full
resolution (F).

We compared the results of our TDSR method with three interpolations
techniques directly applied on the sparse disparity map: nearest, linear, and
cubic.

We also compared our results with the Weighted Least Squares disparity map
post filtering method of the OpenCV library [19]. This method uses the Fast
Global Smoothing [18] algorithm for diffusing high confidence disparity values
using an edge preserving scheme. However, this method is parametric, bring-
ing additional challenges to the comparison. There are three main parameters:
“depthDiscontinuityRadius” (or “depthDR”), defining the size of low-confidence
regions around depth discontinuities, “lambda”, defining the amount of regular-
ization, and “sigma”, defining how sensitive the filtering process is to the source
image edges. We computed three complete maps: one with the default param-
eters, one where the parameters have been optimized to minimize “Bad 2.0”,
and one where the parameters have been optimized to minimize “Avg. error”.
The parameters have been optimized using a grid search. Tested parameters are
shown in table 21

13 99 | €6 99
Parameter Tested Default Ba'd .2'0 AVg.' ) A
optimized| optimized
depthDR 1,3,5, 7,10 5 3 3
0,01, 03,005, 1, 2, 4,
lambda (x1000) 6 8 10, 12, 14, 16, 20 8 0.1 14
. 1, 2.5, 5, 7.5, 10,
sigma (/10) 12.5, 15, 17.5, 20, 30 10 10 12.5

Table 2: Tested parameters for FGS.

Produced disparity maps can be qualitatively compared on the “Adirondack”
pair of the Middlebury dataset in figure[3] They can be quantitatively compared
on the whole training set in table

Compared to other stereo methods in the Middlebury benchmark, on the
training set, using the “Avg. error” criterion on all pixels, our solution currently
ranks 8th over 55 compared to all other methods, and 1st over 13 compared
to methods operating on the same resolution (full resolution). The results are
therefore comparable with state of the art methods.

Interpolation methods are very sensitive to the noise in the sparse disparity
map and they don’t work well on occlusions. Depending on the chosen parame-
ters, the Fast Global Smoothing method can either produce a less noisy disparity
map but with the risk of having the disparity of some objects contaminated by
neighboring ones (high “lambda”, optimized for “Avg. error”), or more noise but
less contamination (low “lambda”, optimized for “Bad 2.0”). Default parameters
give a good tradeoff between both effects.

Qualitatively, compared to the interpolation and FGS methods, our approach
appears robust to noise and seems to globally manage occlusions. However, some
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(a) Left image (b) Ground truth

(c) Sparse disparity map (d) Nearest interpolation

(e) FGS with default parameters (f) TDSR

Fig.3: Image and disparity map produced for the Adirondack pair of
the Middlebury dataset.

Bad 2.0 |Avg. error|Bad 2.0|Avg. error
‘Method (no occ) (ngo occ) (all) %all)
Nearest interpolation 19.7 6.09 27.4 12.5
Linear interpolation 20.5 5.89 29.9 13.0
Cubic interpolation 20.5 5.98 29.8 12.8
FGS (Optimized on Bad 2.0) 20.0 5.87 26.7 11.8
FGS (Default) 254 5.62 31.4 9.22
FGS (Optimized on Avg. error) 31.3 5.4 37.2 8.69
TDSR 18.2 4.63 23.3 7.20
— Improvement to best interp. 8% 21% 15% 42%
— Improvement to best FGS 9% 14% 18% 17%

Fig.4: Quantitative comparison between interpolation, FGS, and our
proposed TDSR method. ali: Taking all points into account. no occ: Taking
only non-occluded points into account.
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occlusions, notably near the armrest in the foreground (see figure , are not
well evaluated due to lack of data. Some regions can also have their disparity
contaminated by nearby objects with similar color.

Quantitatively, compared to the interpolation and FGS methods, whether
we choose to only look at non occluded pixels or to look at all the pixels, our
method produces better results according to all chosen criteria. It is important to
note that our algorithm’s parameters were manually fixed and not optimized for
minimizing any of the two chosen criteria, though we optimized the parameters
of the FGS algorithm for each criterion and compared our algorithm’s results to
the best cases of the interpolation and FGS methods.

4 Conclusion

We have presented the Top Down Segmented Regression (TDSR) algorithm
that allowed us to densify noisy sparse disparity maps. Our method generated
promising results. TDSR is more robust to noise and better preserves the edges
than interpolation or diffusion algorithms. The quality of the produced complete
disparity map is comparable with state of the art methods.

Our approach is also completely independent from the sparse disparity map
generation, so it can be used in complement to any stereo matching algorithm
as a post-processing step.

In fact, TDSR could also be adapted to densify other sparse spatial data or to
refine dense but noisy data. Dense disparity maps refinement, depth map super-
resolution or semantic segmentation post-processing are potential applications
that would require very little changes on the proposed approach.
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