Differentially Private Bayesian Programming - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

Differentially Private Bayesian Programming


We present PrivInfer, an expressive framework for writing and verifying differentially private Bayesian machine learning algorithms. Programs in PrivInfer are written in a rich functional probabilistic programming language with constructs for performing Bayesian inference. Then, differential privacy of programs is established using a relational refinement type system, in which refinements on probability types are indexed by a metric on distributions. Our framework leverages recent developments in Bayesian inference, probabilistic programming languages, and in relational refinement types. We demonstrate the expressiveness of PrivInfer by verifying privacy for several examples of private Bayesian inference.
Fichier principal
Vignette du fichier
A-656.pdf (449.77 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01446970 , version 1 (26-01-2017)



Gilles Barthe, Gian Pietro Farina, Marco Gaboardi, Emilio Jesús Gallego Arias, Andy Gordon, et al.. Differentially Private Bayesian Programming. The 23rd ACM Conference on Computer and Communications Security, Oct 2016, Vienne, Austria. pp.68-79 ⟨10.1145/2976749.2978371⟩. ⟨hal-01446970⟩
84 Consultations
257 Téléchargements



Gmail Facebook X LinkedIn More