Dimension reduction in multivariate extreme value analysis - Mines Paris Accéder directement au contenu
Article Dans Une Revue Electronic Journal of Statistics Année : 2015

Dimension reduction in multivariate extreme value analysis

Emilie Chautru


Non-parametric assessment of extreme dependence structures between an arbitrary number of variables, though quite well-established in dimension 2 and recently extended to moderate dimensions such as 5, still represents a statistical challenge in larger dimensions. Here, we propose a novel approach that combines clustering techniques with angular/spectral measure analysis to find groups of variables (not necessarily disjoint) exhibiting asymptotic dependence, thereby reducing the dimension of the initial problem. A heuristic criterion is proposed to choose the threshold over which it is acceptable to consider observations as extreme and the appropriate number of clusters. When empirically evaluated through numerical experiments, the approach we promote here is found to be very efficient under some regularity constraints, even in dimension 20. For illustration purpose, we also carry out a case study in dietary risk assessment.
Fichier principal
Vignette du fichier
euclid.ejs.1426611768.pdf (4.89 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01256008 , version 1 (14-01-2016)




Emilie Chautru. Dimension reduction in multivariate extreme value analysis. Electronic Journal of Statistics , 2015, 9 (1), pp.383-418. ⟨10.1214/15-EJS1002⟩. ⟨hal-01256008⟩
196 Consultations
317 Téléchargements



Gmail Mastodon Facebook X LinkedIn More