Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images - Mines Paris
Article Dans Une Revue IEEE Journal of Selected Topics in Signal Processing Année : 2015

Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images

Résumé

Covariance matrix estimation is fundamental for anomaly detection, especially for the Reed and Xiaoli Yu (RX) detector. Anomaly detection is challenging in hyperspectral images because the data has a high correlation among dimensions, heavy tailed distributions and multiple clusters. This paper comparatively evaluates modern techniques of covariance matrix estimation based on the performance and volume the RX detector. To address the different challenges, experiments were designed to systematically examine the robustness and effectiveness of various estimation techniques. In the experiments, three factors were considered, namely, sample size, outlier size, and modification in the distribution of the sample. !
Fichier principal
Vignette du fichier
AD_JSTSP_2015.pdf (6.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01159878 , version 1 (04-06-2015)

Identifiants

Citer

Santiago Velasco-Forero, Marcus Chen, Alvina Goh, Sze Kim Pang. Comparative Analysis of Covariance Matrix Estimation for Anomaly Detection in Hyperspectral Images. IEEE Journal of Selected Topics in Signal Processing, 2015, pp.1-11. ⟨10.1109/JSTSP.2015.2442213⟩. ⟨hal-01159878⟩
377 Consultations
1382 Téléchargements

Altmetric

Partager

More