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Comparative Analysis of Covariance Matrix
Estimation for Anomaly Detection in
Hyperspectral Images

Santiago Velasco-Forero, Marcus Chen, Alvina Goh and Sze Kim Pang

Abstract

Covariance matrix estimation is fundamental for anomaly detection, especially for the Reed and Xiaoli Yu (RX) detector.
Anomaly detection is challenging in hyperspectral images because the data has a high correlation among dimensions,
heavy tailed distributions and multiple clusters. This paper comparatively evaluates modern techniques of covariance matrix
estimation based on the performance and volume the RX detector. To address the different challenges, experiments were
designed to systematically examine the robustness and effectiveness of various estimation techniques. In the experiments,
three factors were considered, namely, sample size, outlier size, and modification in the distribution of the sample.

+

1 INTRODUCTION

Hyperspectral (HS) imagery provides rich information both spatially and spectrally. Differing from the conventional RGB camera,
HS images measure scientifically the radiance received at fine divided bands across a continuous range of wavelengths. These images
enable grain-fine classification of materials otherwise undistinguishable in spectrally reduced sensors. Anomaly detection (AD) using
HS images is particularly promising in discovering the subtlest difference among a set of materials. AD is a target detection problem, in
which there is no prior knowledge about the spectra of the target of interest [1]. In other words, it aims to detect spectrally anomalous
targets. However, the definition of anomalies varies. Practically, HS anomalies are referred to as materials semantically different from
the background, such as a target in the homogeneous background [2]. Unfortunately, often the backgrounds are a lot more complex due
to presence of multiple materials, which could be spectrally mixed at pixel levels.

Many AD methods have been proposed, and a few literature reviews or tutorials have been thoroughly done [1]-[6]. Recently, the
tutorial by [5] gives a good overview of different AD methods in the literature. However, it does not give any experimental comparison.
Differing from these reviews, this paper comparatively surveys the existing AD methods via background modeling by covariance matrix
estimation techniques. In this manuscript, we analyze the AD in the context of optimal statistical detection, where the covariance matrix
of the background is required to be estimated. N

The aim of covariancg matrix estimation is to compute a matrix 3 that is “close” to the actual, but unknown, covariance 3. We
use “close” because that 32 should be an approximation that is useful for he given task at hand. The sample covariance matrix (SCM)
is the maximum likelihood estimator, but it tends to overfit the data when n does not greatly exceed d. Additionally, in the presence of
multiple clusters, this estimation fails to characterize correctly the background. For these reasons, a variety of regularization schemes
have been proposed [7], [8], as well as several robust estimation approaches [9]-[17]. In order to comparatively evaluate different
methods, a series of experiments have been conducted using synthetic data from distribution with covariance matrix ¥ from real
HS images. The rest of this manuscript is organized as follows: We study different techniques for covariance matrix estimation in
Section 2. Hereafter, in Section 3, we show simulations and real-life HS images to indicate the performance of considered approaches.
In Section 4, we discuss several important issues and concluding remarks are given.

2 ANOMALY DETECTOR IN HS: DESCRIPTION AND ESTIMATION METHODS

This section briefly describes the RX-detector before reviewing some covariance matrix estimation methods in the literature.
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2.1 The RX-detector

AD may be considered as a binary hypothesis testing problem at every pixel as follows:

Ho: T~ fono (%), )]
Hi: T~ fap, (%),

where fx\Hi( -) denotes the probability density function (PDF) conditioned on the hypothesis i, i.e., Ho when the target is absent
(background), and H1 when the target is present. Usually, For H, the background distribution f;|4, (x) is assumed to be a multivariate
Gaussian model (MGM) due to theoretical simplicity. The distribution in the presence of target can be assumed to have a multivariate
uniform PDF [18]. The well-known RX anomaly detector (Reed and Xiaoli Yu [19]) was based on these two assumptions, its test
statistics is as follows:
Slos(om) — L log 8] — 1 (x— ) B (x— ) E 0,
Ha
Ha
= ADpy(x,71) = (x — ) T2 H(x — ) 5 1, 2)
0
where |X| is the determinant of matrix 3, and 7( and 77 are thresholds, above which H is rejected in favor of ;. In other words,
the RX-detector is a threshold test on the Mahalanobis distance [20]. Thresholding the likelihood ratio provides the hypothesis test
that satisfies various optimality criteria including: maximum probability of detection for the given probability of false alarm, minimum
expected cost, and minimization of maximal expected cost [21]. However, in most of the cases, 33 is unknown and needs to be estimated.
It is well-known [22] that given n independent samples, X1, X2, ...,X, € R? from a d-variate Gaussian distribution with known mean
w1 € RY, the SCM defined by

2= pw)xi - w7, 3)
=1

is the maximum likelihood estimator (MLE) of 3.

2.2 The RX-detector in High Dimensional Space

To help better understand the implication of high dimensionality in the RX-detector, we develop an alternative expression for (2) based
on the Singular Value Decomposition (SVD) of the covariance matrix 3, as follows:

Tyr—1A—1 M

ADgx(%,71) = (x—p)" U A7 U(x — 'M)E T1,
0

where 3 = UAU ! with A a diagonal matrix and U an orthogonal matrix. The eigenvalues {\; }¢_; in A correspond to the variances
along the individual eigenvectors and sum up to the total variance of the original data. Let the diagonal matrix 2 = {wii}le =
{1/« )\i}le, then Q2 = A1, Additionally, since U is a rotation matrix, i.e., U-! = U7, we can rewrite the RX-detector as
follows:

T T H
ADpx =(x — )" UQQU* (x — ) 2 7y
Ho
Hi
:\IQUT(X*M)H%E 7. )
0

As we can see from this decomposition, the RX-detector in (2) is equivalent to the weighted Euclidean norm by the eigenvalues
along the principal components. Note that as A; — 0, the detector ADgx (X, 71) — 00, VX, resulting in an unreasonable bias towards
preferring H; to Hg. This fact is well-known in the literature as bad conditioning, i.e., the condition number ! of cond(X) — oo.
Before looking at the possible solutions to the ill-conditioning issue, we would like to have a more detailed analysis of the eigenvalue
distribution of covariance matrices in the theory of random matrices [23]-[25]. Denoting the eigenvalues of 3 by A1, A, ..., A, with
A1 > Ao > ... > \,. The Marchenko-Pastur (M-P) law states that the distribution of the eigenvalues of empirical covariance matrix,
i.e., the empirical spectral density,

converges to the deterministic M-P distribution, when d, n — oo and % — ¢ [23][25]. In the case of x ~ N (0,1), the M-P law
describes the asymptotic behavior of f(\)
A=a)(b—2A)
fQ) =7
2me

where a = (1 — /)%, b = (1 + \/c)2. A simple analysis of previous equation illustrates that, when n does not greatly exceed d,
the SCM will have eigenvalues in the vicinity of zero. This is illustrated in Fig. 1 with two different % values. Additionally, one can

A 20, (©6)

1. The condition number of a real matrix 3 is the ratio of the largest singular value to the smallest singular value. A well-conditioned matrix means its inverse
can be computed with good accuracy.
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Fig. 1: Empirical distribution of eigenvalues of SCM 3 and the corresponding Marchenko-Pastur Distribution for two different values
of sample size n with d = 300.
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Fig. 2: Approximation of estimation accuracy of 3 by 3 from [27] (in blue) and probability of eigenvalues less than £ = 0.001 both
as function of ¢ = d/n (in green).

compute the integral of (6) between 0 and a small k as function of ¢ to understand the effect of the ratio n/d in (4). This is exactly
what Fig. 2 shows for £ = 0.001. It gives the intuition as soon c is close to one, the probability of having eigenvalues close to zeros
increases dramatically and then a malfunction of (4). Similarly, the analysis of the estimation accuracy of X elaborated in [26] and [27],
with the same distribution assumption, provides more clues about the relationship between ¢ and the performance of the RX-detector.
[27] concludes that the precision in the ¥ estimation by 3 can be approximated by %_C for large d. This simple expression shows
that if ¢ = % = 0.1, there are more 11% overestimation on average (depending on d). Thus, a value less than ¢ = 0.01 is needed to
achieve 1% estimation error on average. We have also include the results in Fig. 2 normalizing the scale to show are coherent and help
us to understand the malfunctioning of the RX-detector when c is going to one.



2.3 Robust Estimation in Non-Gaussian Assumptions

Presence of outliers can distort both mean and covariance estimates in computing Mahalanobis distance. In the following, we describe
two types of robust estimators for covariance matrix.

2.3.1 Me-estimators

In a Gaussian distribution, the SCM S in (3) is the MLE of 3. This can be extended to a larger family of distributions. Elliptical
distributions is a broad family of probability distributions that generalize the multivariate Gaussian distribution and inherit some of
its properties [22], [28]. The d-dimension random vector = has a multivariate elliptical distribution, written as x ~ Eg(u, 3, ), if
its characteristic function can be expressed as, ¢, = exp(it” )y (%tTEt) for some vector g, positive-definite matrix X, and for
some function v, which is called the characteristic generator. From x ~ E4(p, 3, 1)), it does not generally follow that « has a density
f(x), but, if it exists, it has the following form:

Cd 1 —
faxs 1, 300) = e | 5 (x = p) I x - ) @
where cq4 is the normalization constant and g4 is some non-negative function with (g — 1)-moment finite. In many applications,

including AD, one needs to find a robust estimator for data sets sampled from distributions with heavy tails or outliers. A commonly
used robust estimator of covariance is the Maronna’s M estimator [29], which is defined as the solution of the equation

S 1 & TS -1 T

v = " D ouli =) 27 (xi = ) (xi — ) (xi — )" ®)

i=1

where the function  u : (0,00) — [0, 00) determines a whole family of different estimators. In particular, a special case u(z) = ¢
is shown to be the most robust estimator of the covariance matrix of an elliptical distribution with form (7), in the sense of minimizing
the maximum asymptotic variance. This is the called Tyler’s method [10] which is given by

- d & x; — p)(x; — )7
Sty =— Y (s T)A(_; ) ) 9)
i (xi - u’) ETyler(Xi - l"’)
[10] established the conditions for the existence of a solution of the fixed point equation (9). Additionally, [10] shows that the estimator
is unique up to a positive scaling factor, i.e., that 3 solves (9) if and only if c¢X solves (9) for some positive scalar ¢ > 0. Another

interpretation to (9) can be found by considering normalized samples defined as {s; = ﬁ}?ﬂ Then, the PDF of s takes the
form [28]:
F(%) —L1 Ty—1.\52
fs(s) = —=Fdet(X)"2(s" X7 7s) 2,
27z

and the MLE of X can by obtained by minimizing the negative log-likelihood function:
d & Tl n
L(XE) = 3 Zlog(si Y7s) + 3 log det(32). (10)
i=1

If the optimal estimator 3> 0of (10) exist, it needs to satisfy the equation (9) [28]. When n > d, Tyler proposed the following
iterative algorithm based on {s; }:

=~ d < sisT -~ f]k
1= =) m o Tkl = = (11
s T T W)

It can be shown [10] that the iteration process in (11) converges and does not depend on the initial setting of f]o. Accordingly, the initial
Yo is usually set to be the identity matrix of size d. We have denoted the iteration limit 3, = Xy;. Note that the normalization
by the trace in the right side of (11) is not mandatory but it is often used in Tyler based estimation to make easier the comparison
and analysis of its spectral properties without any decrement in the detection performance. Recently, a similar M-P law to (6) for the
empirical eigenvalues of (11) has been shown in [30], [31].

2.3.2 Multivariate t-distribution Model

Firstly, we evoke a practical advice to perform AD in real-life HS images from [2]. They have indicated that the quality of the AD can be
improved by means of considering the correlation matrix R instead of the covariance matrix 3, also known as the R-RX-detector [32].
However, notice that writing the j-th coordinate of the vector z as z(;) = x(”a%/T’:g” we have z = (21,...,24) = o /?(x — ),
where o = diag(,/771,-..,04). Now, Z = [z1,...,2,] is zero-mean, and cov(Z) = o0~ /?To~1/2 = R, the correlation matrix of
X. Thus, the correlation matrix of x is the covariance matrix of Z, i.e., the standardization ensuring that all the variable in Z are on
the same scale. Additionally, note that [32] gives a characterization of the performance of the R-RX-detection. They conclude that the
performance of R-RX depends not only on the dimensionality d and the deviation from the anomaly to the background mean but also
on the squared magnitude of the background mean. That is an unfavorable point in the case that  needs to be estimated. At this point,

we are interested in characterizing the MLE solution of the correlation matrix R by means of t-distribution. A d-dimensional random
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vector X is said to have the d-variate t—distribution with degrees of freedom v, mean vector p, and correlation matrix R (and with 32
denoting the corresponding covariance matrix) if its joint PDF is given by:

fm(x»li, 2,@)
v+d —-1/2
_ D4R, | )

(m0)sT(5) [L+ 2(x — WTR I (x — )] *

where the degree of freedom parameter v is also referred to as the shape parameter, because the peakedness of (12) may be diminished
or increased by varying v. Note that if d = 1, 4 = 0, and R = 1, then (12) is the PDF of the univariate Student’s t distribution with
degrees of freedom v. The limiting form of (12) as v — oo is the joint PDF on the d-variate normal distribution with mean vector g
and covariance matrix 3. Hence, (12) can be viewed as a generalization of the multivariate normal distribution. The particular case of
(12) for p = 0 and R = I is a normal density with zero means and covariance matrix vI; in the scale parameter v. However, the
MLE does not have closed form and it should be found through expectation-maximization algorithm (EM) [33][34]. The EM algorithm
takes the form of iterative updates, using the current estimates of p and R to generate the weights. The iterations take the form:

~ Z?—l WX
Hiy1 = =5 — 5 and (13)
Dim1 W
—~ 1 ) N N T
Ri1 = D (wh(xi = fy) (xi = Bern) ™), (14)
=1

v+d
. C vGa—Ak) TR (xi—B) .
implementations. In our case, of known zero mean, this approach becomes:

~ v+ d & x;x7
R = - 15
k41 - ; o xR, (15)

where uﬂk 41 = For more details of this algorithm, interested readers may refer to [34], and [35] for faster

For the case of unknown v, [36] showed how to use EM to find the joint MLEs of all parameters (i, R, v). However, our preliminary
work [37] shows that the estimation of v does not give any improvement in AD task. Therefore, we limited ourselves to the case of
t-distribution with known value of degrees of freedom v.

2.4 Estimators in High Dimensional Space

The SCM X in (3), offers the advantages of easy computation and being an unbiased estimator, i.e., its expected value is equal to the
covariance matrix. However, as illustrated in Section 2.2, in high dimensions the eigenvalues of the SCM are poor estimates for the true
eigenvalues. The sample eigenvalues spread over the positive real numbers. That is, the smallest eigenvalues will tend to zero, while
the largest tend toward infinity [38], [39]. Accordingly, SCM is unsatisfactory for large covariance matrix estimation problems.

2.4.1 Shrinkage Estimator

To overcome this drawback; it is common to regularize the estimator S with a highly structured estimator T via a linear combination
aX + (1 — )T, where a € [0, 1]. This technique is called regularization or shrinkage, since X is “shrunk” towards the structured
estimator. The shrinkage helps to condition the estimator and avoid the problems of ill-conditioning in (4). The notion of shrinkage
is based on the intuition that a linear combination of an over-fit sample covariance with some under-fit approximation will lead to
an intermediate approximation that is “just-right” [13]. A desired property of shrinkage is to maintain eigenvectors of the original
estimator while conditioning on the eigenvalues. This is called rotationally-invariant estimators [40]. Typically, T is set to pI, where
I is the identity matrix for some p > 0 and p is set by p = Zle 04;/d. In this case, the same shrinkage intensity is applied to all
sample eigenvalue, regardless of their position. To illustrate the eigenvalues behavior after shrinkage, let us consider the case of linear
shrinkage intensity equal to 1/4, 1/2 and 3/4. Fig. 3 illustrates this case. As it was shown in [41], in the case of o = 1/2, every sample
eigenvalue is moved half-way towards the grand mean of all sample eigenvalues. Similarly, for « = 1/4 eigenvalues are moved a
quarter towards the mean of all sample eigenvalues. An alternative is the non-rotationally invariant shrinkage method, proposed by
Hoffbeck and Landgrebe [9], uses the diagonal matrix D = diag(X) which agrees with the SCM the diagonal entries, but shrinks the
off-diagonal entries toward zero: N N N

Y3 = (1 — )X + adiag(X) (16)

diag —
However, in the experiments, we use a normalized version of (16), considering the dimension of the data, i.e.,
22 =(1—a)+ald(2) (17)

where 1d(X) = tr(?l. This is sometimes called ridge regularization.
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Fig. 3: CCN truncates extreme sample eigenvalues and leaves the moderate ones unchanged and CERNN gives the contrary effect.
Linear and geodesic shrinkages moves eigenvalues towards the grand mean of all sample eigenvalues. However, the effect of geodesic
shrinkage is more attenuated for extreme eigenvectors than in linear case. The effect of BD-correction depends on the eigenvalues sets
defined by t.

2.4.2 Regularized Tyler-estimator

Similarly, shrinkage can be applied to other estimators such as the robust estimator in (11). The idea was proposed in [7], [42], [43].
Wiesel [43] gives the fixed point condition to compute a robust and well-conditioned estimator of 32 by

d i: (xi —p)(xi — )" . dT

St = . -
k+1 n(l + Ol) P (Xi _ ”’)Tzlzl(xi _ H’) 1+ OZtr(E’;lT)

S Bit1

b = — 18
i tr(2k+1) ( )

This estimator is a trade-off between the intrinsic robustness from M-estimators in (11) and the well-conditioning of shrinkage
based estimators in section 2.4.1. The existence and uniqueness of this approach has been shown in [17]. Nevertheless, the optimal
value of shrinkage parameter « in (18) is still an open question.

2.4.3 Geodesic Interpolation in Riemannian Manifold

The shrinkage methods discussed so far involve the linear interpolation between two matrices, namely, a covariance matrix estimator
and a target matrix. It can be extended to other types of interpolations, i.e., other space of representation for 32 and T different to the
Euclidean space. A well-known approach is the Riemannian manifold of covariance matrices, i.e. the space of symmetric matrices with
positive eigenvalues [44]. In general, Riemannian manifold are analytical manifolds endowed with a distance measure which allows
the measurement of similarity or dissimilarity (closeness or distance) of points. In this representation, the distance, called geodesic
distance, is the minimum length of the curvature path that connects two points [45], and it can be computed by

Distaeo(A, B) := \/tr(log?(A~1/2BA~1/2)). (19)

This nonlinear interpolation, here called a geodesic path from A to B at time ¢, is defined by Geo; (A, B) := A'/Z exp(tM)A'/2,
where M = log(A~'/?BA~'/2) and exp and log are matrix exponential and logarithmic functions respectively. A complete analysis
of (19) and the geodesic path via its representation as ellipsoids have been presented in [46]. Additionally, [46] shows that the volume of
the geodesic interpolation is smaller than linear interpolation and thus it can increase detection performance in HSI detection problems.
Thus, we have included a Geodesic Stein estimation with the same intuition behind equation (17) as follows,

geo-Stein = Geoq (Ev Id(z))v (20)
where « € [0, 1] determines the trade-off between the original estimation 3> and the well-conditioning Id(f)).

2.4.4 Constrained MLE

As we have shown in Section 2.2, even when n > d, the eigenstructure tends to be systematically distorted unless d/n is extremely
small, resulting in ill-conditioned estimators for 3. Recently, several works have proposed regularizing the SCM by explicitly imposing
a constraint on the condition number. [16] proposes to solve the following constrained MLE problem:

maximize £(32) subject to cond(X) < & (21)
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where £(X) stands for the log-likelihood function in the Gaussian distributions. This problem is hard to solve in general. How-
ever, [16] proves that in the case of rotationally-invariant estimators, (21) reduces to an unconstrained univariate optimization problem.
Furthermore, the solution of (21) is a nonlinear function of the sample eigenvalues given by:

-~

n, Ai(Z) <n
A = )\2(2)7 n < )\1(2) <Nk (22)
K], )\L(E) > K

for some 7) depending on ~ and )\(fl) We refer this methodology as Condition Number-Constrained (CCN) estimation.

2.4.5 Covariance Estimate Regularized by Nuclear Norms
Instead of constrain the MLE problem in (21), [47] propose to penalize the MLE as follows,

maximize £(X) + %[aHEH* + (1 —a)||=71.] (23)

where the nuclear norm of a matrix X, is denoted by ||E| «» is the sum of the eigenvalues of 3, \ is a positive strength constant,
and a € (0,1) is a mixture constant. We refer this approach by the acronym CERNN (Covariance Estimate Regularized by Nuclear
Norms).

2.4.6 Ben-David and Davidson correction

Given zero-mean” data with normal probability density x ~ N (0, X), its sampled covariance matrix s = ﬁ Sy x;x} follows
a central Wishart distribution with n degrees of freedom. The study of covariance estimators in Wishart distribution where the sample
size (n) is small in comparison to the dimension (d) is also an active research topic [48]-[50]. Firstly, Efron and Morris proposed
a rotationally-invariant estimator of ¥ by replacing the sampled eigenvalues with an improved estimation [51]. Their approach is
supported by the observation that for any Wishart matrix, the sampled eigenvalues tend to be more spread out than population
eigenvalues, in consequence, smaller sampled eigenvalues are underestimated and large sampled eigenvalues are overestimated [49].
Accordingly, they find the best estimator of inverse of the covariance matrix of the form aX~! + bI/tr(3) which is achieved by:

tr(3X2)

It is worth mentioning that other estimations have been developed following the idea behind Wishart modeling and assuming a simple
model for the eigenvalue structure in the covariance matrix (usually two phases model). Recently, Ben-David and Davidson [49] have
introduced a new approach for covariance estimation in HSI, called here BD-correction. From the SVD of 3 = UAEUT, they
proposed a rotationally-invariant estimator by correcting the eigenvalues by means of two diagonal matrices,

f313D =UAppU”, with App = A g AMode MEnergy- (25)

-1
S BN d(d+1)—2
2Efron—Morris = ((ﬂ —d— 1)271 + w:[) . (24)

They firstly estimate the apparent multiplicity p; of the i-th sample eigenvalue as p; = Z?Zl cardla(j) < b(i) < b(j)], where
a(i) = Ag(i)(1 — /) and b(i) = Ag(i)(1 + /c)?. One can interpret the concept of “apparent multiplicity” as the number of
distinct eigenvalues that are “close” together and thus represent nearly the same eigenvalue [49]. Secondly, BD-correction affects the

i-th sample eigenvalue via its apparent multiplicity p; as Appqe (i) = % and as

g (i) = {22_1 A (0)/ Sy (A (1) Avtoe ()
T S A () T (A () v (D)

for a value ¢ € [1, min(n, d)] indicating the transition between large and small eigenvalues. Finally, reader can see [49] for an optimal
selection of ¢. A comparison of correction in the eigenvalues by CCN, CERNN, the linear shrinkage in (17), the geodesic Stein in (20)
and the BD-correction is illustrated in Fig. 3 for three values of regulation parameter. We can see that CCN truncates extreme sample
eigenvalues and leaves the moderate ones unchanged. Compared to the linear estimator, both (21) and (23) pull the larger eigenvalues
down more aggressively and pull the smaller eigenvalues up less aggressively.

(26)

2.4.7 Sparse Matrix Transform
Recently, [13], [52] inAtroduced the sparse matrix transform (SMT). The idea behind is the estimation of the SVD from a series of
Givens rotations, i.e., Ssyr = VAV L, where Vi, = G1Gy - - - Gy, is a product of k Givens rotation defined by G = 1+ ©(i, j, 0)

where
cos(0) —1, ifr=s=aorr=s=0b

O(a, b, 0) = sin(6), ifr=aands=>
T —sin(h), ifr=bands=a
0, otherwise

2. Or p known, in which case, one might subtract 1 from the data.
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where each step i € {1,...,k} of the SMT is designed to find the single Givens rotation that minimize diag(ViTZA]Vi) the most. The
details of this transformation are given in [52], [53]. The number of rotations k is a parameter and it can be estimated from heuristic
Wishart estimator as in [13]. However, in the numerical experiments, this method of estimating % tended to over-estimate. As such,
SMT is compared with k as function of d in our experiments. Table 1 summarizes the different covariance matrix estimators considered
in the experiments.

TABLE 1. Covariance matrix estimators considered in this paper

Name Notation Formula
SCM R - iy (xi — ) (i — )"
Stein Shrinkage [38] Xin (1—- )X+ ald(X2)
S S . _dxn (=) (x=p) T
Tyler 1101 e P = w2 T i)
. S S _ 1 d T 4T
Tyler Shrinkage [8] S er B4 = e n iet x?%;l& + ﬁm
Sparse Matrix Transform (SMT) [13] 3sMmT G1G2 - GLA(G1G2 - -+ Gk)T
istributi > S _1swn (== T
t distribution[36] ) 3 Y= i) D v:\"(xi_il‘)Tf:]’_l(xi_“‘)
Geodesic Stein X Geo-stein Geo, (X, 1d(X))
Constrained condition number[16] 3ceN 22)
Covariance Estimate Regularized by Nuclear Norms[47] SICERNN 23)
Efron-Morris Correction [51] X Efron-Morris (24
Ben-Davidson Correction [49] 38D 25)

3 EXPERIMENTAL RESULTS

In this section, we conduct a few experiments to compare the performance of the different methods of covariance matrix estimation.
Experiments were carried out using simulation by considering 3 from some well-known HS images. Moreover, they were evaluated for
AD. All the covariance matrix estimations are normalized (trace equal to d) to have comparable “size”. Note that we are not interested
in the joint estimation of p and 3 in this manuscript, then mean vector g is assumed known throughout the experiments, i.e. the
data matrix is centered by p. Readers interested in joint estimation of the pair (g, 33) might find [54] helpful. The experiments were
designed to address the following three issues in the covariance estimation methods:

1) The effect of covariance ill-conditioning due to limited data and high dimension (c close to one).
2) The effect of contamination due to anomalous data being included in the covariance computation.
3) The effect of changes in the distribution such as deviation from Gaussian distributions.

3.1 Performance Evaluation

There are a few performance measures for anomaly detectors. First, we consider the probability of detection (PD) and the false alarm
(FA) rate. This view yields a quantitative evaluation in terms of Receiver Operating Characteristics (ROC) curves [55]. A detector is
good if it has a PD and a low FA rate, i.e., if the curve is closer to the upper left corner. One may reduce the ROC curve to a single
value using the Area under the ROC curve (AUC). The AUC is estimated by summing trapezoidal areas formed by successive points
on the ROC curve. A detector with a greater AUC is said to be “better” than a detector with a smaller AUC. The AUC value depicts
the general behavior of the detector and characterizes how near it is to perfect detection (AUC equal to one) or to the worst case (AUC
equal to 1/2) [55].

Besides AUC, another measure is to find the one with better data fitting. That is the intuition behind the approach proposed by
[18]. It is a proxy that measures the volume inside an anomaly detection surface for a large set of false alarm rates. Since in practical
applications, the AD is usually calibrated to a given false alarm rate, one can construct a coverage log-volume versus log-false alarm
rate to compare detector performances [56], [57]. Accordingly, for a given threshold radius 7, the volume of the ellipsoid contained
within x” X~ 1x < 7?2 is given by

/2

Volume(3,n) = T+ dj2)

Given an FA rate, a smaller Volume (3, 1) indicates a better fit of real structure of the background and thus is preferred. In this paper,
we compute the logarithm of (27) to reduce the effect of numerical issues in the computation.

DR @7

3.2 Simulations on Elliptical Distribution

We start on experiments in the case of multivariate ¢ distribution in (12) with v degrees of freedom. It can be interpreted as generalization
of the Gaussian distribution (or conversely, the Gaussian as special case of the t-distribution when the degree of freedom tends to
infinity). As 3, we have used the covariance matrix of one homogeneous zone in Pavia University HSI (pixels in rows 555 to 590 and
columns 195 to 240) [58] in 90 bands (from 11 to 100). 32 is normalized to have trace equal to one. Its condition number is large,
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2.7616 x 10°. Anomalies in this example are generated by the same distribution but using an identity matrix of trace equal to one as
parameter of the distribution. We perform estimations varying three components:

1) The degrees of freedom of the distribution from where the multivariate sample is generated.
2) The size of the sample to calculate covariance matrix estimators in Table 1.
3) The number of anomalies included in the sample to compute covariance matrix estimators in Table 1.

With that in mind, we have generated 4000 random vectors (half of them anomalies) and we have set the parameters in each estimator
by minimizing the volume calculated in the threshold corresponding to a false alarm rate of 0.001. Different volumes by varying
parameters in the estimation can be compared in (b,d,f,h,j,1) of Fig. 4, 5 and 6 in all the explored cases. In the experiments, the number
of rotations in ESMT is fixed to 7 times the dimension d, for ETyler, the regularization parameter « is i, for ey the regularization
parameter is 21 in ECERNN and EStem the value « = /20, and for EBD the value ¢ is equal to ¢ + 1. Different values of ¢ from
1 to 20 are shown in x-axis. We highlight that the estimators yield detectors with AUC close to one. Additionally, to compare the
general performance from the “best estimation” in each approach, we have plot the coverage log-volume versus log-false alarm rate in

(a,c,e,g,i,k) of Fig. 4, 5 and 6. The interpretation of these figures can be done in three directions:

o From left to right, we provide the evolution of the performance by varying the degrees of freedom v. Note, that the limiting form
of (12) as v — oo is the joint pdf of the d-variate normal distribution with covariance matrix 3. Hence, we use a large value
of degrees of freedom, v = 1000, to generate the Gaussian case. In v = 1, is the case of multivariate Cauchy distributions.
Note that Cauchy distributions look similar to Gaussian distributions. However, they have much heavier tails. Thus, it is a good
indicator of how sensitive the estimators are to heavy-tail departures from normality.

o From up to down, we illustrate the effect of the relative value ¢ = d / n in the performance of the estimation. We have used, in
the first row, five times the number of sample than the dimension, i.e. ¢ = 0.2, and in the second row, only 100 samples which
correspond to a difficult scenario where ¢ = 0.9.

e From Fig. 4 to Fig. 6, we show the consequence of including anomalies in the sample where the estimation is performed. Three
cases are considered: Fig. 4 is a free noise case, Fig. 5 includes a low level of contamination (1%), and Fig. 6 shows a level of
noisy samples equal to 10%.

At this stage, we can have some conclusion about the performance of studied estimators:

o In the more “classical” scenario, i.e., Gaussian distribution, no contamination and much more samples than dimensions (¢ = 0.2
in Fig. 4), the approaches EBD and EEfmn Moris Dased on correction of eigenvalues (section 2.4.6) performed slightly better than
the other alternatives. However, as soon as the sample size was reduced, the data was contaminated or the distribution of data
was “less” Gaussian, their performances seemed to be drastically affected.

o In Gaussian cases with contaminated samples and ¢ = 0.2, the robust approaches, Et and 29 performed better than other

Tyler
approaches. However, 2[ was unquestionably affected by the nocuous decreasing of the sample size in the case of ¢ = 0.9,
producing detector with huge volumes.

. In the scenario of Gaussian data and ¢ = 0.9, ESMT did the best job followed by the shrinkage approaches, i.e., EStem, i%yler and
Geo-stein- Another important point to note is that by smt Was more affected by the contamination in the data than shrinkage-based

methods.

e In the case of Cauchy distributions, S was in general less affected by heavy tails than other approaches. Addltlonally,

Tyler
geodesic interpolation (EGeo swein) clearly outperformed linear interpolations (E

ECCN were robust in this difficult case of heavy tails with contaminated data.

Stein) 1N these heavy-tails scenarios. ECERNN and

Finally, to summarize, the best three performances according to the coverage log-volume versus log-false alarm curve in each scenario
are included in Table 2. Now, we move forward along the difficulty of the studied problems by including simulations on a more complex
scenario.

3.3 Simulations on Dirichlet Distributions

In HS images, spectral diversity can be considered in a set of proportions, called abundances [59]. In this type of data, called
compositional data [60], the Dirichlet family of distributions is usually the first candidate employed for modeling the data. The
rationale behind this choice is the following [61]:

1) The Dirichlet density automatically enforces the non-negativity and sum-to-one constraint, which is natural in the linear
mixture model.

2) Mixtures of density allow one to model complex distributions in which the mass probability is scattered over a number of
clusters inside the simplex [61].

A d-dimensional vector p = (p1,p2,...,Pq) is said to have the Dirichlet distribution with parameter vector p = (p1, pa2, ..., Pd)s
pi > 0, if it has the joint density

d
f)=Bp) [[r ", (28)
=1
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where B(p) = %L:Fl(i)) pi > 0, Z?:l p; = 1. We write p ~ D(p). A complex experiment is carried out by selecting fifteen
endmembers from a real HS image (World Trade Center) by means of Vertex Component Analysis (VCA)[62]. After that, we use (28)
to generate an abundance matrix and then spectral information by using a linear mixture model [63] with a random Gaussian noise. Our
motivation is to have a realistic low-rank covariance matrix, which appears often in many HS images [21]. In this case, the population
covariance matrix 3 is not a parameter in the simulation. We generate two millions of vectors by the same abundance matrix and we
consider its covariance matrix as X. Its condition number is equal to 2.7202 x 10°. We have generated 4000 random vectors from
three Dirichlet distributions D1 ([9, ..., 9]), D2([3,9,1,...,1]) and D3([1,1,3,9,9,1,...,1,1]). In this experiment, the covariance
matrix is estimated only with vector from D; in two sample sizes (n = 215 and n = 970). Results of the detection in the 4000
vectors from the three classes (considering 500 vectors from each Do and D3 as anomalies) are illustrated in Fig. 7. We can see that
some techniques fail to correctly detect the anomalies. Among the estimators with AUC close to one, the best performance according to
volume is clearly given by the 3gyr. After that, ¥ gp and E%yler performed better than other approaches. From this point, we would like
to analyze the behavior of the estimator in the presence of contaminated samples. Accordingly, we substitute 10% of the sample with
vectors from Ds. Thus, the AUC and the volume vs false alarm rate for the studied estimators are illustrated in Fig. 7 (c) and (e) with
10% and two sample sizes (215 and 970). We can see, that the idea of constrain the estimation of covariance matrix by the condition
number provides detectors (Xccn), which outperformed all the other methods in the particular task of AD for Dirichlet distributions
even if we reduce the sample size from 970 to 215. Finally, to summarize, the best performances according to the coverage log-volume
versus log-false alarm curve in each scenario have been included in Table 2 to make easier the comparison with the result of previous

sections.

4 CONCLUSIONS AND FUTURE WORK

This article presents a comparison of many covariance matrix estimators for anomaly detection in HS image processing. We have shown
that due to high dimensionality in HS data, classical estimation techniques could fail in AD problem. We evaluated the performance of
covariance matrix estimators in the AD problem with three considerations: ratio between sample size and dimension, contamination in
the sample, and modification in the distributions of the sample (Gaussian, Cauchy and linear mixing model from Dirichlet distribution).
In the Gaussian case with no contamination and much more samples than dimensions, Xgp outperformed the other alternatives.
However, its performance decreased when the samples contained some contaminated data, or there were insufficient the samples. In
Gaussian scenarios with a small contamination rate, 3; could obtain satisfactory Jgerformance, but its behavior declined with a decrease
the sample size in a fixed dimension. Additionally, Geodesic interpolations (3G, .giy) performed better than linear interpolations

(X§iein) in most of the cases, especially in heavy-tails distributions. Overall, 3y, and Xgyr showed the best performance in most of



TABLE 2. Top-3 performances in different analyzed scenarios

Distribution Contamination | € = % Top three performances
Gaussian No 0.2 s kfron-Morris | S Geo-Stein
Gaussian 1% 0.2 %t g%yler -
Gaussian 10% 0.2 3 S ter _
Gaussian No 0.9 {JSMT §S°§ein §%yle,
Gaussian 1% 0.9 EDSMT §§ein AE%IH
Gaussian 10% 0.9 E% ler 2gtlein 2gten-SIein

Cauchy No 0.2 E%ler 32 G0-Stein poA

Cauchy 1% 0.2 g%le, flé“eﬁ.swin EA]CERNN

Cauchy 10% 02 2:'(1'1 ler 3 z:gen-SIein

Cauchy No 0.9 Egeo-Stein E%yler ECERNN

Cauchy 1% 0.9 f]%yle, ﬁgeo_swm SCERNN

Cauchy 10% 0.9 9 52 e Scen
Dirichlet No 0.2 EDSMT 3BD Zter
Dirichlet 10% 0.2 3ceN — —
Dirichlet No 0.9 EJSMT 8D S er
Dirichlet 10% 0.9 cen — —

the explored cases. However, note that EAJSMT was more affected by the contamination than shrinkage-based methods. In contrast, ZA]SMT
could adapt better to the data samples generated from linear mixture models. Finally, the recent approach by constraining the condition
number (Xccn) performed exceptionally well in the difficult case of heavy tails distributions with contaminated data, in addition to
all the explored cases in Dirichlet simulations. Future work includes the addition of other techniques of AD based on nonparametric
estimation, random subspaces and machine learning techniques. Additionally, we are planning to explore automatic selection of the
parameter «v for regularized estimators by considering ideas from [41], [64] and [65]. Finally, similar analysis can be done in other
important aspects of HS analysis, for instance, target detection, band selection, and so on.
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