Bio-aerogels: new promising materials for thermal superinsulation - Mines Paris
Communication Dans Un Congrès Année : 2015

Bio-aerogels: new promising materials for thermal superinsulation

Résumé

Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“Aerocellulose” /1, 2, 3/) and pectin (“Aeropectin” /4/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong materials, with Young’s moduli from 1 to 30 MPa and plastic deformation without breakage up to 60-70% strain. The thermal conductivity of Aeropectin is around 0.015 – 0.020 W/(m.K) making it the first thermal super-insulating fully biomass-based aerogel reported. The thermal conductivity of Aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using cellulose functionalization and making polymer-silica interpenetrated aerogel network the specific surface area increases to 800-900 m2/g and thermal conductivity decreases below that of the air.
Fichier non déposé

Dates et versions

hal-01158588 , version 1 (01-06-2015)

Identifiants

  • HAL Id : hal-01158588 , version 1

Citer

Cyrielle Rudaz, Arnaud Demilecamps, Georg Pour, Margot Alves, Arnaud Rigacci, et al.. Bio-aerogels: new promising materials for thermal superinsulation. ICAE 2015, May 2015, Donostia San Sebastián, Spain. ⟨hal-01158588⟩
473 Consultations
0 Téléchargements

Partager

More