Morphological PDE and dilation/erosion semigroups on length spaces - Mines Paris
Communication Dans Un Congrès Année : 2015

Morphological PDE and dilation/erosion semigroups on length spaces

Jesus Angulo

Résumé

This paper gives a survey of recent research on Hamilton-Jacobi partial dierential equations (PDE) on length spaces. This theory provides the background to formulate morphological PDEs for processing data and images supported on a length space, without the need of a Riemmanian structure. We first introduce the most general pair of dilation/erosion semigroups on a length space, whose basic ingredients are the metric distance and a convex shape function. The second objective is to show under which conditions the solution of a morphological PDE in the length space framework is equal to the dilation/erosion semigroups.
Fichier principal
Vignette du fichier
HamiltonJacobiSemigroupMetricSpaces_angulo_v2.pdf (345.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01108145 , version 1 (22-01-2015)
hal-01108145 , version 2 (21-03-2015)
hal-01108145 , version 3 (17-01-2016)

Identifiants

Citer

Jesus Angulo. Morphological PDE and dilation/erosion semigroups on length spaces. 12th International Symposium on Mathematical Morphology, May 2015, Reykjavik, Iceland. pp.509-521, ⟨10.1007/978-3-319-18720-4_43⟩. ⟨hal-01108145v2⟩
671 Consultations
594 Téléchargements

Altmetric

Partager

More