Low-rank numerical approximations for high-dimensional Lindblad equations
Résumé
A systematic numerical approach to approximate high-dimensional Lindblad equations is described. It is based on a deterministic rank m approximation of the density operator, the rank m being the only parameter to adjust. From a known initial density operator, this rank m approximation gives at each time step an estimate of its largest m eigenvalues with their associated eigenvectors. A numerical integration scheme is also proposed. Its numerical efficiency in the case of a rank m=12 approximation is demonstrated for oscillation revivals of 50 atoms interacting resonantly with a slightly damped coherent quantized field of 200 photons.