Structure Tensor Image Filtering using Riemannian L_1 and L_∞ Center-of-Mass - Mines Paris
Article Dans Une Revue Image Analysis & Stereology Année : 2014

Structure Tensor Image Filtering using Riemannian L_1 and L_∞ Center-of-Mass

Jesus Angulo

Résumé

Structure tensor images are obtained by a Gaussian smoothing of the dyadic product of gradient image. These images give at each pixel a n×n symmetric positive definite matrix SPD(n), representing the local orientation and the edge information. Processing such images requires appropriate algorithms working on the Riemannian manifold on the SPD(n) matrices. This contribution deals with structure tensor image filtering based on Lp geometric averaging. In particular, L1 center-of-mass (Riemannian median or Fermat-Weber point) and L∞ center-of-mass (Riemannian circumcenter) can be obtained for structure tensors using recently proposed algorithms. Our contribution in this paper is to study the interest of L1 and L∞ Riemannian estimators for structure tensor image processing. In particular, we compare both for two image analysis tasks: (i) structure tensor image denoising; (ii) anomaly detection in structure tensor images.
Fichier principal
Vignette du fichier
StructureTensorRiemannianFiltering_angulo_IASjournal.pdf (3.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00877193 , version 1 (27-10-2013)
hal-00877193 , version 2 (21-01-2015)

Identifiants

Citer

Jesus Angulo. Structure Tensor Image Filtering using Riemannian L_1 and L_∞ Center-of-Mass. Image Analysis & Stereology, 2014, 33 (2), pp.95-105. ⟨10.5566/ias.v33.p95-105⟩. ⟨hal-00877193v1⟩
321 Consultations
644 Téléchargements

Altmetric

Partager

More