Filtering, segmentation and region classification by hyperspectral mathematical morphology of DCE-MRI series for angiogenesis imaging - Mines Paris
Communication Dans Un Congrès Année : 2008

Filtering, segmentation and region classification by hyperspectral mathematical morphology of DCE-MRI series for angiogenesis imaging

Résumé

Segmenting dynamic contrast enhanced-MRI series of small animal, which are intrinsically noisy and low contrasted images with low resolution, is the aim of this paper. To do this, a segmentation method taking into account the temporal (spectral) and spatial information is presented on several series. The idea is to start from a temporal classification, and to build a probability density function of contours conditionally to this classification. Then, this function is segmented to find potentially tumorous areas. The method is presented on several series after a range normalization histogram in order to compare the series.
Fichier principal
Vignette du fichier
NoyelAnguloJeulinBalvayCuenod_ISBI2008_final.pdf (865.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00834030 , version 1 (13-03-2017)
hal-00834030 , version 2 (23-05-2017)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Guillaume Noyel, Jesus Angulo, Dominique Jeulin, D. Balvay, C. A. Cuénod. Filtering, segmentation and region classification by hyperspectral mathematical morphology of DCE-MRI series for angiogenesis imaging. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2008), May 2008, Paris, France. pp.1517-1520, ⟨10.1109/ISBI.2008.4541297⟩. ⟨hal-00834030v2⟩
402 Consultations
319 Téléchargements

Altmetric

Partager

More