Classification of hyperspectral images by tensor modeling and additive morphological decomposition - Mines Paris Accéder directement au contenu
Article Dans Une Revue Pattern Recognition Année : 2013

Classification of hyperspectral images by tensor modeling and additive morphological decomposition

Jesus Angulo

Résumé

Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modeled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other well-known techniques.
Fichier principal
Vignette du fichier
Additive_Tensor_decomposition.pdf (1.94 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00751338 , version 1 (13-11-2012)

Identifiants

Citer

Santiago Velasco-Forero, Jesus Angulo. Classification of hyperspectral images by tensor modeling and additive morphological decomposition. Pattern Recognition, 2013, 46 (2), pp.566-577. ⟨10.1016/j.patcog.2012.08.011⟩. ⟨hal-00751338⟩
269 Consultations
1020 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More