Stability and asymptotic observers of binary distillation processes described by nonlinear convection/diffusion models - Mines Paris
Communication Dans Un Congrès Année : 2012

Stability and asymptotic observers of binary distillation processes described by nonlinear convection/diffusion models

Stéphane Dudret
  • Fonction : Auteur
  • PersonId : 930965
Karine Beauchard
  • Fonction : Auteur
  • PersonId : 961400
Fouad Ammouri
  • Fonction : Auteur
  • PersonId : 930966
Pierre Rouchon

Résumé

Distillation column monitoring requires shortcut nonlinear dynamic models. On the basis of a classical wave-model and time-scale reduction techniques, we derive a one-dimensional partial differential equation describing the composition dynamics where convection and diffusion terms depend non-linearly on the internal compositions and the inputs. The Cauchy problem is well posed for any positive time and we prove that it admits, for any relevant constant inputs, a unique stationary solution. We exhibit a Lyapunov function to prove the local exponential stability around the stationary solution. For a boundary measure, we propose a family of asymptotic observers and prove their local exponential convergence. Numerical simulations indicate that these convergence properties seem to be more than local.
Fichier non déposé

Dates et versions

hal-00738684 , version 1 (04-10-2012)

Identifiants

  • HAL Id : hal-00738684 , version 1

Citer

Stéphane Dudret, Karine Beauchard, Fouad Ammouri, Pierre Rouchon. Stability and asymptotic observers of binary distillation processes described by nonlinear convection/diffusion models. American Control Conference 2012, Jun 2012, Montreal, Canada. pp.3352 - 3358. ⟨hal-00738684⟩
163 Consultations
0 Téléchargements

Partager

More