A Separation Principle on Lie Groups - Mines Paris Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

A Separation Principle on Lie Groups


For linear time-invariant systems, a separation principle holds: stable observer and stable state feedback can be designed for the time-invariant system, and the combined observer and feedback will be stable. For non-linear systems, a local separation principle holds around steady-states, as the linearized system is time-invariant. This paper addresses the issue of a non-linear separation principle on Lie groups. For invariant systems on Lie groups, we prove there exists a large set of (time-varying) trajectories around which the linearized observer-controler system is time-invariant, as soon as a symmetry-preserving observer is used. Thus a separation principle holds around those trajectories. The theory is illustrated by a mobile robot example, and the developed ideas are then extended to a class of Lagrangian mechanical systems on Lie groups described by Euler-Poincare equations.
Fichier principal
Vignette du fichier
Separation_Principle.pdf (115.94 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00639006 , version 1 (07-11-2011)



Silvère Bonnabel, Philippe Martin, Pierre Rouchon, Erwan Salaün. A Separation Principle on Lie Groups. IFAC world congress 2011, Aug 2011, Milano, Italy. pp.8004-8009, ⟨10.3182/20110828-6-IT-1002.03353⟩. ⟨hal-00639006⟩
231 Consultations
207 Téléchargements



Gmail Facebook X LinkedIn More