Radiopaque acrylic Bone cements with bromine-containing monomer - Mines Paris Accéder directement au contenu
Article Dans Une Revue Journal of Applied Polymer Science Année : 2009

Radiopaque acrylic Bone cements with bromine-containing monomer


One important issue for the acrylic bone cements concerns the radiopacity, which may be achieved by different ways. In this work, a new bromine-containing acrylic monomer, the 2-(2-bromopropionyloxy) propyl methacrylate (BPPM), was synthesized and proposed to be used for providing radiopaque bone cements. Different acrylic bone cements were realized by partially replacing the methyl methacrylate (MMA) monomer phase with 5-20% w/w of BPPM-comonomer. The effect of this comonomer on the curing parameters of acrylic bone cements, on their thermal and rheological properties, water absorption, density, contact angle, compression tests, and radiopacity was studied. It appears that the presence of BPPM does provide radiopacity, improves the curing parameters by decreasing the Maximum curing temperature and increasing the Setting time. The new BPPM-acrylic bone cements exhibit lower glass transition temperature and better thermal stability when compared with the classical radiolucent acrylic cements. Rheological measurements have shown that 10-20% w/w of BPPM in the liquid phase of acrylic bone cement formulations increase its flexibility, and may also induce a slight crosslinking reaction during the Curing phase. BPPM-modified acrylic bone cements present lower polymerization shrinkage and higher compression strength, and similar water uptake, porosity, and water contact angle as the radiolucent PMMA-cements.



Dates et versions

hal-00509805 , version 1 (16-08-2010)



Marius Ciprian Rusu, Constanta Ibanescu, Ionut Cameliu Ichim, Gérard Riess, Marcel Popa, et al.. Radiopaque acrylic Bone cements with bromine-containing monomer. Journal of Applied Polymer Science, 2009, 111 (5), pp.Pages 2493-2506. ⟨10.1002/app.29253⟩. ⟨hal-00509805⟩
130 Consultations
0 Téléchargements



Gmail Facebook X LinkedIn More