Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes Access content directly
Journal Articles International Journal of Computational Fluid Dynamics Year : 2019

Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels

Abstract

The paper presents a study on four adaptive sampling methods of a multi-fidelity (MF) metamodel, based on stochastic radial basis functions (RBF), for global design optimisation based on expensive CFD computer simulations and adaptive grid refinement. The MF metamodel is built as the sum of a low-fidelity-trained metamodel and an error metamodel, based on the difference between high- and low-fidelity simulations. The MF metamodel is adaptively refined using dynamic sampling criteria, based on the prediction uncertainty in combination with the objective optimum and the computational cost of high- and low-fidelity evaluations. The adaptive sampling methods are demonstrated by four analytical benchmark and two design optimisation problems, pertaining to the resistance reduction of a NACA hydrofoil and a destroyer-type vessel. The performance of the adaptive sampling methods is assessed via objective function convergence.
Fichier principal
Vignette du fichier
Serani2019.pdf (1.77 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02391342 , version 1 (28-11-2023)

Identifiers

Cite

Andrea Serani, Riccardo Pellegrini, Jeroen Wackers, Charles-Edouard Jeanson, Patrick Queutey, et al.. Adaptive multi-fidelity sampling for CFD-based optimisation via radial basis function metamodels. International Journal of Computational Fluid Dynamics, 2019, 33 (6-7), pp.1-19. ⟨10.1080/10618562.2019.1683164⟩. ⟨hal-02391342⟩
40 View
39 Download

Altmetric

Share

Gmail Facebook X LinkedIn More