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Movement-based Human-Machine Collaboration: a
Human-centred AI approach

Abstract: The context of this thesis is the collaboration between humans and
machines in various industrial real-world situations. I propose collaboration
mechanisms that are based on Human-centred Artificial Intelligence, which
I define as methods and concepts of machine learning and pattern recogni-
tion on signals recorded from the human body. I am interested in enabling
human-machine partnerships in which the machine can understand and an-
ticipate the human gestures and actions and react accordingly. Two scientific
and technological hypotheses have oriented my research in movement-based
Human-Machine Collaboration: 1. whether a machine can learn to recog-
nize kinematic parameters of situated expert and non-expert gestures; and 2.
whether gesture recognition can be used as an alternative to instrumental in-
teraction mechanisms. These hypotheses were confirmed through a number of
tests and experiments conducted on Human-Robot Collaboration, computer-
mediated sensori-motor human learning and Digital Musical Instruments.

Keywords: machine, collaboration, action, gesture, movement, machine learn-
ing, interaction, partner, stochastics, robotics, sensori-motor learning, Digital Mu-
sical Instrument (DMI), Artificial Intelligence (AI)
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1.3.3 Vocational Training . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Other industrial sectors . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Human-centred Artificial Intelligence

AI was founded as an academic discipline in 1958, but it is only in recent years
that we have been able to use and take advantage of it, in its various forms, in
business and industrial sectors and in our everyday lives. Even so, it has to be
said that the advances in human sensing and AI over the past 20 years have not
always been matched by equivalent advances in natural interaction and collaboration
with machines. Fractured interfaces have been developed around closed systems
(e.g. robotics, vehicles, Internet of Things (IoT)s etc.). In most cases, they are
organised through physical instrumental interactions that make use of intermediary
mechanisms (i.e. buttons etc.).

By introducing gestures as a modality for interaction, the digital world has
taken a step forward towards less ‘rigid’ machines. Nevertheless, machines still lack
the necessary layers of perception that would permit them to understand situated
human movements and adapt their behaviour accordingly and thus enable them
to collaborate as real partners. For example, a lot of progress has been made in
collaborative robotics, especially in the training phase of the robot (e.g. learning
by demonstration) but smooth Human-Robot Collaboration, which would allow for
complementarity of skills, nevertheless remains a challenge.
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I define as Human-centred Artificial Intelligence (HAI) concepts and meth-
ods of machine learning and pattern recognition on signals recorded from the human
body. In this thesis, I focus, in particular, on HAI paradigms, that are relevant to
situations where humans collaborate with intelligent machines. Throughout my
various research projects, I have always been interested in how intelligent machines
can understand human body movements, collaborate with them and adapt their
behaviour accordingly. Having worked on a wide range of HAI research projects, I
have had the opportunity to study human movement in a variety of real-life situa-
tions: professional gestures and body actions in manufacturing, workers’ collabora-
tion with robots, traditional craftsmanship for human learning of movement skills,
musical gestures for developing digital musical instruments, as well as contactless
hand and finger interactions with intelligent and automated vehicles.

1.2 Scientific and technological hypotheses

Situated cognition is a theory that posits that knowing is inseparable from doing by
arguing that all knowledge is situated in activity bound to social, cultural and phys-
ical contexts [Anderson et al. 1996]. The elaboration, structuring and performance
of gestures is naturally connected with their specific context and thus their extrac-
tion from the situated environment might seriously impact the gestural phenomenon
itself.

In my research, I use a human-centred interactive model to represent situ-
ated body actions, where the human is both a trigger and transmitter connecting the
perception (mind/environment interaction), the knowledge (understanding of a pro-
cess) and the gesture (movement skills), as shown in Figure 1.1. For example, in the
professional context of pottery-throwing, the human has the theoretical knowledge
of the properties of clay, she perceives the fact that her clay is revolving, together
with the round plate, and she successfully performs micro-adjustments over time in
order to centre the clay on the plate, by applying the appropriate finger motions.

Machines are ‘systems of intelligence’ that, in most cases, use human sens-
ing technologies, whether embedded in them or external to them, in order to perceive
the human presence and/or motion. In the human-centred interactive model, ma-
chines can constitute the goal, i.e. movement-based interaction between the driver
and the dashboard, or the means for interaction, i.e. computer-mediated human
learning of movement skills.

By way of leveraging out the above conclusions, I have oriented my research
towards the development of a methodology that allows for movement-based Human-
Machine Collaboration. Consequently, a number of scientific questions have emerged
naturally and have driven my research:
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Q1: Can machines learn to recognize kinematic parameters of situated expert and
non-expert gestures?

In order to confirm or refute this scientific question, a number of tests were conducted
through various experiments, derived from different scenarios, to check whether ma-
chine learning and dynamic pattern recognition are able to recognize the stochas-
ticity and variability of gestures over time.

Figure 1.1: A human-centered model for movement-based collaboration with sys-

tems of interaction

Q2: Can gesture recognition be used as an alternative to instrumental interaction
mechanisms?

To answer this scientific question, a number of tests were conducted in order to
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check whether gestures, once recognized by machines, can be used as an alternative
modality to intermediary instrumental mechanisms that can achieve a more natural
collaboration.

The above scientific and technological questions are split into other sub-
questions that depend on the specificities of each type of gesture as well as the
situation of their execution and the use-case in general.

1.3 Industry-oriented research

Following the strategic model of the Centre for Robotics and MINES ParisTech
(Ecole des Mines de Paris), an Engineering School of PSL Université Paris, I had
the opportunity to perform experiments and develop technological prototypes that
were derived from industry-oriented research. The close links of MINES Paris-
Tech with industry, but also the opportunity to participate in European collabora-
tive research and innovation projects, generated favourable conditions for studying
Human-Machine Collaboration extensively.

From a social point of view, ‘gestures are everywhere’ in our life. This
is also valid in our professional environments, whether industrial or not. Living
in an ‘Ubiquitech’ era where, on the one hand, technology is becoming embedded
everywhere and in everything, yet on the other hand, the Fourth Industrial Revo-
lution (Industry 4.0) ‘has yet to grab hold on a grand scale’ (the Stall Zone within
an S-Curve), industry faces big challenges concerning how humans can cooperate
efficiently with the ‘new intelligent machines’ [Frank et al. 2017].

For this reason, the main methodological framework, the technological pro-
totypes, together with the scientific questions that I have worked on, have been
motivated and driven by the above conclusions. This means that my major contri-
butions address mainly scientific and technological challenges in the three sectors of
Factory of the Future (FoF), Creative and Cultural Industries (CCI) and Vocational
Training.

1.3.1 Factory of the Future

The main scientific axes of my contributions in this field are summarized in:

- professional gesture recognition for Human-Robot Collaboration in automotive as-
sembly lines. The results have been published mainly in the scientific communities
of Autonomous Robots (Springer), Ro-Man (IEEE), AI and Robotics (Frontiers)
and Movement and Computing (MOCO).
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Figure 1.2: The S-Curve and the Stall Zone [Frank et al. 2017]

- monitoring of the ergonomic performance of the operators (ongoing work). The
results have been published mainly in the scientific communities of Human Factors in
Applied Ergonomics (Elsevier) and Ambient Intelligence and Humanized Computing
(Springer).

The research I have conducted has been funded for the main part by the Industrial
Chair ‘PSA Peugeot Citroën: Robotics and Virtual Reality’ as well as the ongoing
Horizon 2020 ‘Collaborate’ project.

1.3.2 Creative and Cultural Industries

The main scientific axis of my contributions in this field can be found, in summary,
in:

- musical gesture recognition for developing a Digital Musical Instrument. The re-
sults have been published for the most part in the NIME (New Interfaces for Musical
Expression) and MOCO scientific communities and have contributed to the creation
of the ‘Embodme’ Company, SpinOff MINES ParisTech.

The research I conducted was financially supported by the FP7 ‘i-Treasures’ project
and the Greek national ‘ArtiMuse’ project of ‘Research Excellence’.
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1.3.3 Vocational Training

The main scientific axis of my contributions in this field can be found in:

- movement skills transmission in manual professions and the Intangible Cultural
Heritage. The results are published in the scientific communities of Computing and
Cultural Heritage (ACM), Technology Enhanced Learning and Intelligent Systems
(IEEE).

The research I conducted was funded mainly by the FP7 ‘i-Treasures’ project,
the Greek national ‘ArtiMuse’ project of ‘Research Excellence’ and the Carnot
M.I.N.E.S. project ‘SMART’.

1.3.4 Other industrial sectors

In addition to the above domains, I have also made peripheral contributions to the
industrial sectors of Intelligent Vehicles as well as to Defence and Security that are
summarized below and are very briefly presented in Chapter 6:

- vision-based contactless driver-vehicle interaction for infotainment. The results
have been published for the most part within the Computer Vision community.

The research I conducted was funded mainly through a direct contract with the
PSA Group, as a PhD supervision.

- hand and finger gestural control of a Unmanned Aerial Vehicle (UAV). The results
have been published mainly in Human Factors in Applied Ergonomics (Elsevier) and
the Human Factors in Computing Systems (ACM CHI).

The research I conducted was funded mainly through a direct contract with the
SAFRAN Group, as a PhD supervision.

1.4 Structure of the thesis

The goal of Chapter 2 is to present a generic methodology for gestures and ac-
tions recognition that is based on a stochastic-biomechanic modelling of the spatio-
temporal dynamics of the human body. The proposed algorithm is validated through
various datasets of human performances. It demonstrates the feasibility of recog-
nizing situated professional gestures from various industries. In the following chap-
ters, I demonstrate the feasibility of converting a machine to a partner through
movement-based interactions and HAI-driven methodologies for a robot (Chapter



1.4. Structure of the thesis 7

3), a computer (Chapter 4) and a DMI (Chapter 5), at the same time pursuing the
research questions that I presented in Section 1.2. In Chapter 3, I present a number
of experiments in recognizing professional gestures of operators when collaborating
with robots in the assembly lines of the automotive industry (FoF), in which the
robot is approached as a partner of the operator instead of a tool. In Chapter 4, a
methodology for training the computer to assist the human in sensori-motor learn-
ing of movement skills in craftsmanship is presented (vocational training). Chapter
5 presents a prototype of a DMI which is able to capture the motions of the whole
upper-body and translate them into music following various sonification strategies.
In Chapter 6, a number of other past scientific contributions (3D pose estimation, a
Silent Speech Interface (SSI) etc.) or ongoing work (ergonomy of operators, egocen-
tric computer vision for action recognition in Human-Robot Collaboration (HRC)
etc.) are presented, together with a summary of my achievements, my perspectives
and what I regard as my current and future research challenges.
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2.12 Summary of contributions . . . . . . . . . . . . . . . . . . . . 34

2.1 The Big Picture

The main contribution to Movement-based Human Machine Collaboration has been
the development of a HAI-based perception layer, external to the machines. This
layer is able to recognize human gestures early and continuously and communicate
the recognition results to the machines in order for them to adapt their behaviour in
accordance with human behaviour. This chapter proposes an in-depth presentation
of the two fundamental steps, which are: representation and modelling (step 4) and
recognition (step 5), of the whole six-step generic methodology that has been built
for testing cross-application scientific questions (Figure 2.1). The first three steps
and the sixth step depend on the application, the requirements and the machine.
Thus, they will be presented in the chapters that follow.

The six steps of the methodology start with motion capturing where two
categories of motion sensors are used: the wearables and the vision-based motion
sensors. When computer vision is used, the scene is captured as a sequence of im-
ages and signal analysis is applied in order to segment the foreground from the
background. Then, when the feature extraction step takes place, mostly the motion
descriptors, but also the object descriptors, are exported. Thereafter, the repre-
sentation and modelling step implies the static or dynamic representation of the
phenomenon of gestural evolution over time. The recognition of motion patterns
can be executed either in offline mode, where it can test the accuracy of the method
or analyze the human performance, or in online mode, to facilitate collaboration
with the machine. Thus, collaboration with machines is a natural interaction with
machines, whether it is explicit, as commands, or implicit.

In this chapter, the main focus will be on the steps of representation and
modelling as well as on recognition through the presentation of the Gesture Oper-
ational Model (GOM). It makes use of biomechanical principles to describe how
body parts cooperate to perform a situated professional gesture, while taking into
account the stochasticity of the human movement. The model is built upon several
assumptions that determine both the dynamic relationship between the body entities
(biomechanics) and their evolution in time (stochastics) when executing a gesture.
It is based on SS representation, which provides us with a simultaneous equation
system for all the body entities that are composed of a set of first-order differential
equations. The coefficients of the equation system are estimated using the Maximum
Likelihood Estimation (MLE), and its dynamic simulation generates a dynamic tol-
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erance of the spatial variance of the movement over time. The scientific evidence of
the GOM is evaluated through its ability to recognize gestures in a motion-time se-
ries that is modelled using continuous Hidden Markov Models (HMMs). Moreover,
the system can be simulated through the solution of its equations and its forecast-
ing ability is evaluated by comparing the similarity between the real and simulated
motion data.

The scientific contribution presented in this chapter has been optimised by
supervising the research engineers Gavriela Senteri and Dimitris Makrygiannis and
has received funding from the Collaborate and Mingei H2020 projects.

Figure 2.1: Generic methodology for gesture recognition and collaboration

The scientific evidence for the proposed methodology was tested on four
industrial datasets that contain gestures and actions from a TV assembly line, from
the glassblowing industry, the gestural commands to Automated Guided Vehicles
(AGVs) as well as HRC in automotive assembly lines (more details in Chapter 3).
The hybrid approach, with SS and HMMs, outperforms standard HMMs and a 3D
CNN-based end-to-end Deep Learning (DL) architecture.

2.2 State-of-the-Art

Biomechanical, statistical, or hybrid models can describe parameters of the coordi-
nated mechanical interaction between bones, muscles, and joints within the mus-
culoskeletal system. Each of these models put forward a different aspect of human
motion; therefore, although biomechanical modelling operates on a frame-by-frame
level, whether from a kinematic or kinetic perspective, stochastics models the tem-
poral dynamics of systems that evolve over time.
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2.2.1 Biomechanical modelling

Human movement is caused by internal and external action forces that are most
efficiently described by biomechanical models. These models represent the human
body as a set of articulated links in a kinetic chain where movement and forces
in combination are calculated by using anthropometric and postural motion data
[Lu & Chang 2012]. This motion data is usually provided by Inertial Measurement
Units (IMUs) for kinematics (e.g. accelerations, velocities etc.) and force sensors
for kinetics (e.g. ground reaction forces from force plates). It is used as input
for biomechanical models [Muller et al. 2020], which quantify the mechanics of the
musculoskeletal system during the execution of a motor task.

A number of studies use biomechanical modelling to extract the kinematic
and kinetic contributions of the joints and investigate their mechanical loading and
response to ergonomic interventions. To analyze the ergonomic impact of different
postures on the human joints, Newton-Euler algorithms are applied for the compu-
tation of upper body joint torques [Menychtas et al. 2020]. The normalized integral
of joint angles and joint torques are then calculated to find the kinematic and kinetic
contribution for each posture. Variations of the above-described methods are found
in the spanned inverse dynamics models [Faber et al. 2016, Shojaei et al. 2016] and
musculoskeletal finite element-based models [Gholipour & Arjmand 2016].

The biomechanical analysis and modelling of human movement is often
approached as a multi-body kinematic optimisation problem for ergonomic, clinical
[Duprey et al. 2017], sports or physical rehabilitation purposes and is combined with
Newtonian mechanics [Zatsiorsky 2008].

2.2.2 Stochastic representation, modelling and recognition

Human motion is a stochastic process with high uncertainty. Stochastics is used to
mathematically describe time-varying random processes by providing a reasoning
over time through the use of internal states. Thus, it is an applied-on-time series of
motion data.

HMMs are widely used in various gesture-related domains, such as in ges-
ture recognition [Lee & Kim 1999, Mitra & Acharya 2007, Bevilacqua et al. 2009]
or in movement generation [Calinon et al. 2011, Tilmanne 2013]. They are based on
Markov chains and they assume that a hidden state sequence causes the observed
sequence following transition principles [Rabiner 1989]. In gesture recognition, the
Gesture Follower (GF) algorithm allows for continuous gesture recognition and, in
turn, between the reference gesture and the incoming gesture. It can learn a gesture
from a single example (one-shot learning) by associating each reference gesture to



2.2. State-of-the-Art 13

a single ‘state’ in the Markov chain. Time alignment occurs between the reference
and the incoming gesture using Dynamic Time Warping (DTW), which also offers
an estimation of the time progression of the gesture in real-time. GF recognizes
which gesture or action is currently performed, but not how (e.g. expressively) it is
performed.

Although the straightforward implementation of HMMs allows for state
transition, they do not fully support explicit transitions between movement seg-
ments (or/alternatively primitives), e.g. for ‘re-initializing’ the recognition to an
initial state when the gesture is completed. To overcome this, Hierarchical-HMMs
are implemented [Françoise 2015] and are articulated around two levels: one for
segmentation and one for recognition. In a way similar to GF, it adopts a one-shot
learning approach. Hierarchical-HMMs are trained with a single pre-segmented ges-
ture, which is manually annotated. Each segment is then associated with a high-level
segment state which generates the sub-models of the low-level (signal), which en-
codes the temporal evolution of the segment. Nevertheless, Hierarchical-HMMs still
only recognize which gesture or action is being performed, rather than how it is
performed.

State-Space (SS) modelling is widely used in control engineering (i.e. us-
ing the Kalman filter) to mathematically model dynamic systems as a set of in-
put, output and state variables related by first-order differential equations. In
gesture recognition, SS is implemented in the Gesture Variation Follower (GVF)
[Caramiaux et al. 2015], where speed, scaling and rotation of the gesture are con-
sidered as state variables. Particle Filtering is then used for gesture recognition
by updating the parameters of the SS models and extracting the likeliest template
of the input gesture, taking into consideration the varying motion characteristics.
GVF recognizes not only which gesture or action is performed, but also how it is
performed.

In all cases, whether GF, GVF, or Hierarchical-HMMs, the degree of ‘gen-
eralisation’ of the reference gesture (tolerance in GF, GVF and variance offset in
Hierarchical-HMMs) is predefined by the user. If this value is low, the algorithm
will be more precise in the recognition. If it is set high, the algorithm will be less
reliable, due to the fact that the model will be too general and it will lead to overlaps
between classes. However, the main drawback is that the value of this parameter
remains fixed during the recognition. This leads to the possibility that the system
might fail to recognize some variations within the gesture, because a higher or lower
value may be required for these particular parameters. Moreover, there is an im-
pact on the time alignment between the reference gesture and the incoming gesture,
which can vary significantly.
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2.2.3 Deep learning for pose estimation and action recognition

Deep learning architectures for human action recognition can be categorised into
two main strategies: pose or skeleton-based and appearance-based.

2.2.3.1 Pose-based action recognition

In this approach, two layers of DL are applied. The first layer consists of estimating
the human pose from a sequence of RGB-D images and extracting motion descrip-
tors, which in most cases are positions or rotations. RGB-D cameras, such as the Mi-
crosoft KINECT or the LeapMotion sensor, capture the human motion and provide
data streams to DL algorithms. Such algorithms are Openpose [Cao et al. 2019], Al-
phapose [Fang et al. 2017] and Densepose [Güler et al. 2018] and perform a 2D or
3D pose estimation to extract the positions of body (visual) joints that do not nec-
essarily correspond to the physical joints. Recovering a 3D pose from RGB images is
considered more difficult than for 2D pose estimation. A number of challenges which
need to be addressed and overcome in 3D pose estimation are lighting conditions,
body occlusions, skin colour, clothing or overloaded backgrounds.

Recurrent Neural Network (RNN)s can model the long-term temporal cor-
relation of the features for each body part [Shahroudy et al. 2016]. In another study,
where hand gestures are used to virtually interact with objects, a 2-stage architec-
ture is proposed. First, an Ego-Hand Mask Encoder Network is used for extracting
the feature maps. Then, the RNN temporally discerns the discriminating features
in RGB image sequences [Chalasani et al. 2018].

Spatial-Temporal Graph Convolutional Networks are applied in full body
or hand gesture recognition, using hand skeletons as input [Yan et al. 2018,
Li et al. 2019]. They learn both the spatial and temporal patterns from the mo-
tion data. Convolutional Neural Network (CNN)s have proved their efficiency in
pose-based action recognition. Parallel convolutions are used for recognizing be-
tween 14 - 28 hand gesture classes, with an accuracy varying between 84% - 91%
[Devineau et al. 2018].

2.2.3.2 Appearance-based action recognition

The second layer of DL is related to the visual cues, such as colour and edges, which
are considered during the training phase of appearance-based action recognition.
Various DL architectures can be considered for action recognition, such as those
with the use of 3D CNNs [Tran et al. 2015b], 2-stream fusion networks, which are
usually based on RGB and optical flow [Feichtenhofer et al. 2016], or 2-stream fusion
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networks with a 3D ConvNet for action recognition [Asadi-Aghbolaghi et al. 2017].

More recently, a 2-stream Inflated 3D ConvNet based on 2D ConvNet infla-
tion has been introduced [Carreira & Zisserman 2017], which has the advantage that
it can learn seamless spatio-temporal feature extractors from video while leveraging
successful ImageNet architecture designs and parameters.

There have been cases where pose-based and appearance-based recognition
have been considered simultaneously as a multi-stream network. Vision-based and
sensor-based motion data is used in [Song et al. 2016]. They extended a multi-
stream CNN to learn spatial and temporal features from egocentric videos, as well
as features from various sensors, such as an accelerometer, gyroscope etc.

Finally, an egocentric gesture recognition that combines CNNs spatiotem-
poral transformer modules to address issues of spontaneous head movements, while
the camera is in motion, is presented in [Cao et al. 2017]. The challenge in egocen-
tric computer vision is that both the background and the human body are moving
simultaneously, while the camera follows the motion of the head, which is not al-
ways aligned to that of the rest of the body. A spatio-temporal transformer module
transforms the 3D feature maps to a canonical view in both spatial and temporal
dimensions.

2.2.4 Motion trajectory forecasting and intention prediction

The three main strategies for human motion trajectories forecasting and intention
prediction use physical-based models, pattern-based models and planning-based mod-
els. Physical-based models are dynamic models that are explicitly defined and follow
Newton’s Law of Motion. Pattern-based models learn statistical behavioural pat-
terns that emerge on the observed motion trajectories. Planning-based models follow
reasoning about the intention behind the movement and the goal of the individual.

2.2.4.1 Physical-based models

Physical-based models are kinematic models that evolve over time and describe
the particular human motion. They are ‘time-domain’ models that forecast fu-
ture states of a dynamic system (human body), usually following an SS represen-
tation. The dynamic system evolves over time and parameters such as position,
orientation, velocity, or acceleration are the state variables. The motion is forecast
through the system’s static or dynamic simulation by solving a number of equa-
tions. Constant velocity [Fardi et al. 2005], acceleration [Binelli et al. 2005], and
coordinated turn [Schneider & Gavrila 2013] are commonly-used kinematic models
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for short-term forecasting of human motion with small uncertainty.

Kalman Filters are SS models that are used to forecast the positions of
pedestrians based on kinematic models [Barth & Franke 2008, Binelli et al. 2005],
which use velocity or acceleration as state variables. In another application, kine-
matic models are used to forecast the trajectories of cyclists by taking into con-
sideration the driving force and resisting force together with its acceleration re-
sistance, rolling resistance and air resistance components, all as state variables
[Zernetsch et al. 2016]. In order for the states of the system to be estimated, a
curve-fitting approach with motion profiles of cyclists is used, recorded by video
cameras and laser scanners at a public intersection.

In ‘time-domain’ problems, the domain can be described by a single model
or by multiple physical-based models. Such multi-models are used for forecasting
human motion with a high uncertainty. Different modes of motion (e.g. sudden
accelerations, linear movements, manoeuvres) represent complex behaviours (e.g.
pedestrian or vehicles in public areas), using a different dynamic model for each
motion mode [Kooij et al. 2019]. Such an approach is applied to predicting the
motion of cyclists, taking into consideration their motion strategies (e.g. go straight,
turn left or right at an angle of 45° or 90°) [Pool et al. 2017].

Physical-based approaches are appropriate when an explicit transition
function can be defined for modelling the motion dynamics through endogenous
and exogenous input variables. Nevertheless, they do not perform well for very
complex situations (e.g. public areas with multiple agents) and they are usually
used only for short-term forecasting.

2.2.4.2 Pattern-based models

Pattern-based strategies follow model-fitting approaches. Gaussian process dynamic
models are used to predict pedestrian trajectories [Mínguez et al. 2018]. Key points
on the pedestrian bodies are extracted and their 3D time-related information is
reduced into two observations that are also only used for prediction. The most
similar model from the multiple models of four activity types (e.g. walking, stopping,
starting, and standing) is then selected to estimate future pedestrian states. In
cases where the goal is to predict the motion of multiple persons, then mixtures
of Gaussian processes are used to model multiple distributions for speed and joint
orientation, whose flow is mapped in the prediction [Kucner et al. 2017].

Neural Networks are also used when time series are given as in-
put [Sun et al. 2018, Xue et al. 2018, Srikanth et al. 2019]. More precisely, Long
Short-Term Memory (LSTM) networks have proven the value of their perfor-
mance in predicting human [Sun et al. 2018, Xue et al. 2018] and vehicle motion
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[Srikanth et al. 2019]. For pedestrians, 2D position and orientations are usually
provided to one or more LSTMs (for example when information about the scene is
also taken into consideration) in order to learn human behavioural patterns from
different environments. For vehicles, a simple Encoder-Decoder model is connected
to a convolutional LSTM to learn vehicle temporal dynamics, including semantic
images, depth information, and other vehicles’ positions.

Pattern-based approaches can outperform physical-based models when a
large amount of data is available and unknown dynamics are involved in the process.
Both approaches can give interesting and robust results when context information is
provided through observations, such as the shape and structure of the environment,
external forces that the person or object is exposed to, or information about their
interaction with other agents (e.g. people, vehicles, or robots) [Rudenko et al. 2020].

2.2.4.3 Planning-based models

Planning-based models assume rationality on the part of humans and their long-
term motion goals. This approach computes path hypotheses that allow the agent
to reach their motion goals by considering the impact of current actions on future
motions. A predefined cost function takes into consideration the motion intention
while an inferred cost function takes into consideration the observed trajectories.
Multimodal hypotheses can be introduced to predict the trajectories and intended
goals of pedestrians using a Bayesian framework [Best & Fitch 2015]. Another strat-
egy is to approach the prediction as an optimization problem [Lee et al. 2017] by
proposing a deep stochastic RNN and an Encoder-Decoder framework for trajectory
prediction of multiple vehicles in complex scenes. Diverse hypothetical trajectories
are considered for the agent interactions and scene semantics through a reward func-
tion. The model captures the past trajectories and incorporates the information into
the inference process to improve the prediction accuracy.

Planning-based approaches consider an explicit definition of the goals of
the humans and other scene agents. They usually perform better for long-term
predictions than physical-based approaches and they are better able to manage
generalization challenges than pattern-based approaches. Nevertheless, the more
the complexity of the prediction increases (e.g. long-term predictions, multiple
agents, size of the environment), the more the training becomes heavy.
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2.3 Industrial datasets and pose estimation

Four industrial real-life datasets GVi∈[1,4] were collected from a household appliances
manufacturer, an AGV manufacturer, a glassblowing workshop and an automotive
industry and these are presented in Figure 2.2.

Figure 2.2: Gesture vocabularies of TV assembly, AGV commands, Glassblowing

and Human-robot collaboration

GV1 was recorded from within the household appliance factory of Arçelik
in Turkey. It includes four gestures where the operator takes the electronic card
from one box and then takes a wire from another, connects them, and places them
on the TV chassis. Although all the gestures are performed by a single user, there
are a lot of different positions of the operator within the workspace for each gesture.
This dataset is noisy and it provided an opportunity to examine the performance of
both the pose estimation and the recognition algorithm with such data.

GV2 is a joint dataset collection between engineers and operators of ASTI
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in Spain and researchers from the Centre for Robotics at MINES ParisTech. It
includes gestural commands for controlling an AGV, where the operator initiates the
communication with the AGV by shaking the palm (waving) and gives a command
for turning to the left or to the right by raising her respective arms. The user can
also speed up the AGV by raising the right hand three times or reduce speed by
rolling the right hand away from the hips. It is a multi-user dataset that contains
gestures that could also be considered to be ‘everyday gestures’.

GV3 was recorded at the European Centre for Research and Training in
the Glassworks of CERFAV, in France. It contains four gestures performed by a
glassblower when creating a water carafe. The craftsman puts the pipe on the
metallic structure and performs various manipulations of the glass by using tools,
such as pliers. He starts by shaping the neck of the carafe with the use of pliers,
then he tightens the neck to define the transition between the neck and the curved
vessel. In his right hand, he holds a specific paper and shapes the curves of the
blown part and finalizes the object and fixes the details by using a metallic stick. It
is a mono-user dataset that involves a high level of dexterity.

Finally, GV4 is related to a real-life human–robot collaboration scenario
that was recorded in the automotive assembly lines of PSA Peugeot Citroën (PSA
Group). It is presented in detail in Section 3.6.

For GV1, GV2 and GV3, each image sequence is imported to the OpenPose
framework, which detects body keypoints on the RGB image and extracts a skeletal
model together with the 2D positions of each body joint [Cao et al. 2018] (Figure
2.3). These joints are not necessarily physical joints. In most cases they correspond
to physical joint centres and the coordinates of each joint are derived by the width
and height of the camera. For GV4, 3D hand positions are extracted from top-
mounted depth imaging by detecting keypoints on the depth map, as is described
in Section 3.6.

2.4 The Gesture Operational Model

When a skilled individual performs a professional situated gesture, the whole body
is involved, thus combining theoretical knowledge with practical motor skills. Effec-
tive and accompanying body movements are harmonically coordinated to execute a
given action. The expertise in the execution of professional gestures is character-
ized by precision and repeatability, while the body is continuously shifting from one
phase to another, for example, from specific postures (small tolerance for spatial
variance) to ample movements (high tolerance for spatial variance). For each phase
of the movement, each body entity, for example, articulation or segment, moves in a
multidimensional space over time. When considering the 2D motion descriptors of
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the movement, two mutually dependent variables represent the entity, for example,
X and Y positions. Each of these variables is associated with the other, thus creating
a bidirectional relationship between them. Furthermore, they also depend on their
history, whereas some entities might ‘work together’ to execute an effective gesture,
for example, when an operator assembles two parts. However, a unidirectional de-
pendency might be observed when one entity influences the other entity and not
vice versa, as well as a bidirectional dependency when both entities influence each
other, for example, when a potter shapes the clay with both hands.

The above observations on situated body movements can be translated into
a functional model, which we define here as the GOM, which describes how the body
or skeletal entities of a skilled individual are organized to deliver a specific result
(Figure 2.3). It can be hypothesised that each of the assumptions of ‘intrajoint as-
sociation’, ‘transitioning’, ‘intralimb synergies’ and ‘intralimb mediation’ contribute
at a certain level to the production of a gesture. As far as intralimb mediation is
concerned, it can be broken down to ‘interjoint serial mediation’ and ‘interjoint
non-serial mediation’ assumptions. The proposed model works perfectly for all three
dimensions (X, Y, and Z), but for reasons of simplicity, it will here be presented
only for the two dimensions of X and Y. In addition, in this work, only positions
are used, but the model is designed to be able to receive joint angles as input as well.

H1: Intra-joint association
It is hypothesized that the movement of each body part (e.g. the right hand) is
described through positions from the Cartesian coordinate system. Consequently,
the motion trajectory of each body part P is broken down into x and y coordinates,
which generate two mutually dependent variables: Px and Py. It is assumed
that there is a bidirectional relationship between Px and Py that is defined as an
intra-joint assumption.

H2: Inter-limb synergies
It is assumed that some body parts work together to achieve certain motion
trajectories, e.g. P and P ′, which is defined here as inter-limb synergies. For
example, when hands cooperate to assemble two parts.

H3.1: Inter-joint serial mediation
It is assumed that a body part P may depend on a neighboring part P ′′ to which
it is directly connected. In cases where this assumption is statistically significant,
there is an inter-joint serial mediation. For example, a glassblower, while using the
pipe, moves his/her wrists along with his/her shoulders and elbows.

H3.2: Inter-joint non-serial mediation
It is assumed that the movement of a body part P depends also on a non-
neighbouring part P ′′′ of the same limb; for example, the movement of the wrist
may depend on the movement of the elbow and shoulder. In cases where this
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assumption is statistically significant, there is an inter-joint non-serial mediation.
Thus, it is highly likely that both direct and indirect dependencies simultaneously
occur in the same gesture.

H4: Transitioning
It is also assumed that each variable depends on its own history, also called
inertia effect. This means that the current value of each variable depends on the
values of previous times, also called lag or dynamic effect, which is defined here as
transitioning.

Thus, an example of the representation of those assumptions for the x-axis
of the body part P with an inertia effect of one previous time would be as follows:

Px(t) = Py(t− 1) + P ′x(t− 1) + P ′′x (t− 1) + P ′′′x (t− 1) + Px(t− 1) (2.1)

where, Px(t) is the variable of the x coordinate of P that is to be estimated, Py(t−1)
is the variable for the movement of P on y-axis in the previous time stamp and is
linked with the dependency between the movement on y at t− 1 and on x at t (H1:
intra-joint assumption), P ′x(t − 1) is the variable on x for the part P ′, which is on
a different limb from P ′, and is linked with the dependency between the movement
of P at t and of P ′ at t− 1 (H2: inter-limb synergies), P ′′ is a neighbour of P while
P ′′′ is not and all three belong to the same limb and both variables P ′′x (t − 1) and
P ′′′x (t− 1) are linked with the dependencies between the movement of P at t and of
P ′′ at t − 1 (H3.1: inter-joint serial mediation) as well as of P at t and of P ′′′ at
t−1 (H3.2: inter-joint non-serial mediation). Finally, the variable Px(t−1) is linked
with the dependency between the movement of P at t and t−1 (H4: transitioning).

The Equation (2.1) describes a first-order auto-regressive model, whose
order generally depends on the data characteristics and the specificities of the ex-
periment. By using a second-order auto-regressive model a better forecasting ability
may be obtained. Thus, when the transitioning of the GOM depends on two previous
times, the Equation (2.1) is re-written as follows:

Px(t) = Py(t− 1)+P ′x(t− 1)+P ′′x (t− 1)+P ′′′x (t− 1)+Px(t− 1)+Px(t− 2) (2.2)

2.5 State-Space Representation

N first-order differential equations are generated by concatenating the dynamics
of the GOM, which is an N -order system, where N = space dimension ×
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Figure 2.3: The Gesture Operational Model for the upper-body part in 3D space

with its four assumptions: H1: Intra-joint association (black arrows), H2: Inter-limb

synergies (blue arrows), H3.1 Intra-limb serial mediation and H3.2 Intra-limb non-

serial mediation (green arrows for torso, red for right arm and dark red arrows for left

arm) and H4: Transitioning (dotted arrows). The numbers on the GOM correspond

to the joint representation from the OpenPose framework (left skeleton).

number of body parts. Finally, the steps which are followed are the estimation
of the model, including the verification of its structure and of its forecasting and
simulation ability.

According to the theory of State-Space (SS) modelling, there is the possi-
bility of the coefficients dynamically changing over time. With SS modelling, the
way the dynamic system is changing is a function of its current state. For example,
in GOM, the way the x position of a body part P is changing, is a function of the
previous positions of P at x; thus Px(t− 1) is a lagged endogenous variable. More-
over, there are a number of exogenous variables that also influence the system, which
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in the case of GOM are the previous position of P at y, but also of the previous
positions on the same axis of a part P ′ (different limb) as well as of its neighbour
P ′′ and non-neighbour P ′′′ parts (same limb). The endogenous variables constitute
for it the minimum set of variables that fully describe it, which means that there
is enough information about the changing part of the gesture and that its future
behaviour can be forecast.

An SS model consists of: a. one measurement or observation equa-
tion relating an n−dimensional vector of observed variables y(t) (output), to an
m−dimensional vector of unobserved endogenous variables s(t) (Markovian states),
given the excitation input u(t) and b. one transition or state equation that describes
the evolution of the state vector over time. The observation equation is the signal
through which the hidden state is observed and it shows the relationship between
the system’s state, the excitation input from exogenous parameters, and the output
signal. Therefore, SS is defined as follows:

y(t) = Cs(t) +Du(t) (2.3)

s(t) = As(t− 1) + w(t) (2.4)

where Equation (2.3) is the observation equation and Equation (2.4) is the transition
equation. In (2.3), C is the output matrix that describes how the states are combined
to get the output signal and D is the feed-through matrix that is used to allow
the exogenous variables to bypass the system altogether and feed-forward to the
output. In (2.4), A is the transition matrix that describes how all the internal
states are connected to each other and underline the dynamics of the system and
w(t) is a white noise vector. Based on a number of experiments, it was observed
that Gaussian disturbances (white noise) from the signal of the motion sensors do
not affect the estimation results, and thus will not be taken into consideration.

In practice, the output matrix C is equal to [1 1] indicating that all the
lagged endogenous variables are kept, while the feed-through matrix D consists
of the coefficients for the exogenous variables of the input vector u(t). Thus,
Equations (2.3) and (2.4) are re-written as follows:

s(t) = A ∗ s(t− 1) =

[
a1 0

0 a2

] [
Px(t− 1)

−Px(t− 2)

]
=

[
a1Px(t− 1)

−a2Px(t− 2)

]
(2.5)
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Px(t) =
[
1 1

]
s(t) +

[
a3 a4 a5 a6

]



Py(t− 1)

P ′x(t− 1)

P ′′x (t− 1)

P ′′′x (t− 1)


⇒

Px(t) =
[
1 1

] [ a1Px(t− 1)

−a2Px(t− 2)

]
+
[
a3 a4 a5 a6

]



Py(t− 1)

P ′x(t− 1)

P ′′x (t− 1)

P ′′′x (t− 1)




(2.6)

By solving the Equations (2.5) and (2.6), we obtained the following general SS
representation for the part P :

Px(t) = a1Px(t− 1)− a2Px(t− 2)︸ ︷︷ ︸
H4

+

+ a3Py(t− 1)︸ ︷︷ ︸
H1

+ a4P
′
x(t− 1)︸ ︷︷ ︸
H2

+ a5P
′′
x (t− 1)︸ ︷︷ ︸
H3.1

+ a6P
′′′
x (t− 1)︸ ︷︷ ︸
H3.2

(2.7)

where a1 to a6 are the coefficients that quantify the contribution of each assumption
related to the gesture.

In order to compute the coefficients of the Equation (2.7), the Kalman
filter was used. The Kalman filter minimizes the mean square error of the estimated
parameters. It is a recursive method since new measurements are processed as they
arrive and it consists of two recursive steps: the prediction and the update. Below,
the two steps using the Kalman filter are presented.

Prediction

• Predicted state estimate: ŝ(t | t− 1) = Aŝ(t− 1 | t− 1)

• Predicted error covariance: Pec(t | t − 1) = APec(t − 1 | t − 1) + AT + G(t),
where G(t) is Gaussian disturbance.

Update

• Measurement pre-fit residual: ỹ(t) = Px(t)− Cŝ(t | t− 1)

• Pre-fit residual covariance: S(t) = CPec(t | t− 1)CT +G(t)

• Optimal Kalman gain: K(t) = Pec(t− 1)CTS−1(t)

• Update state estimate: Ŝ(t | t) = Ŝ(t | t− 1) +K(t)ỹ(t)

• Update estimated covariance: Pec(t | t) = I −K(t)CPec(t | t− 1)
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• Measurement post-fit residual: ŷ(t | t) = Px(t)− Cŝ(t | t)

The steps described above are recursive and applied at each state until the optimal
estimates are computed.

2.6 Learning with Hidden Markov Models

Hidden Markov Models follow the principles of Markov chains that describe stochas-
tic processes. They are commonly used to model and recognize human gestures and
are structured using two different types of probabilities, the transition probabil-
ity from one state to another and the probability for a state to generate specific
observations on the signal [Bakis 1976]. In our case, each professional gesture is
associated with an HMM, whereas the intermediate phases of the gesture constitute
internal states of the HMM. According to our four datasets, these gestures define
one Gesture Vocabulary per dataset: GVi∈[1,4] = {Gj}j∈N .

Let us consider a hidden sequence of states q = {q1, q2. . . , qk}k∈N , corre-
sponding to all the intermediate phases of a professional gesture. The transition
probability aij between the states qi and qj is provided by the transition matrix
Q = [a11, ..., aij , ..., akk]k∈N . The sequence q is supposed to generate a sequence
of observation vectors O = {o1, o2. . . , ok}k∈N . We assume that the vectors ok de-
pend only on the state qk. From now on, the likelihood that the observation o is
generated by the state q will be defined as L(o|q). It is important to outline that
in our modelling structure, each internal state of the model depends only on its
previous state (first-order Markov property). Consequently, the set of the mod-
els for all gestures for every gesture vocabulary is GVi∈[1,4] = {HMMi}i∈N , where
{HMMi} = (%i, Qi,Li) are the parameters of the model and %i is the initial state
probability. Thus, the recognition becomes an issue of solving three specific prob-
lems: evaluation, recognition, and learning (Dymarski, 2011). Each one of those
problems was solved with the use of the algorithms Viterbi [Rabiner 1989], Baum’s
’forward’ [Baum et al. 1972], and Baum–Welch, respectively [Dempster et al. 1977].

2.7 Gesture recognition

In the recognition phase, the main goal is to recall, with high precision, the hidden
sequence of internal states q that correspond to the sequences of the observation
vectors. Thus, let us consider the observation of motion data O, which need to be
recognized. Every HMMiλ∈[1,j] of a given GVi∈[1,4] that contains j gestures generate
the likelihood L(O|HMMiλ). If there is a HMMiλ∈[1,j] that generates L ≥ 0.55,



26
Chapter 2. Modelling the spatiotemporal dynamics of the human body

for human action recognition and forecasting

then it is considered that O is generated by Gi,λ. Otherwise, the following quantity
is computed for every SSiξ of GVi (confidence control):

SSscoreiξ =
1

1 + d(O,Osiξ)
(2.8)

where d is the minimum distance between the simulated values Osiξ from the model
SSiξ and the original observations O. Then, for every SSiξ of GVi the likelihood
L(O|HMMSS

iξ ) is computed as follows:

L′(O|HMMSS
iξ ) = L(O|HMMiξ)× SSscoreiξ (2.9)

and we arrive at the final formula providing the way the algorithm recognizes the
observation of motion data O,

RGVi(O) =

{
maxjλ(L(O|HMMiλ), max(L(O|HMMiλ)) ≥ 0.55

maxjξ(L′(O|HMMSS
iξ ), max(L(O|HMMiλ)) < 0.55

(2.10)

Figure 2.4: Methodological overview

2.8 Statistical significance and simulation of the models

By investigating the significance level of the coefficients for each variable (p-value),
an in-depth understanding of the gesture can be obtained. More precisely, answers
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can be provided to a number of questions, such as:
- which assumptions are meaningful for this gesture?
- which body parts contribute more to the gesture?
- is a body part moving more on a single axis than in 2D/3D space ?
- is there any fast or slow speed of change for a body part?

In addition, interesting uses of the coefficients of the GOM can also be
considered, such as:
- selecting the appropriate feature with the aim of recognising the gesture
- analysing the body dexterity of a professional expert
- analysing ergonomic risks related with the gesture itself etc.

A number of examples can demonstrate the potential of GOM. In the
Equation (2.11), the SS model of G2,1 for the right wrist RWRISTx(t) is presented.
G2,1 is a ‘hello’ waving gestural command to an AGV where the right wrist is moving
across the x-axis and the left wrist remains still. No important intra-limb mediation
was expected and neither H3.1 nor H3.2 is taken into consideration for the structure
of this model. According to the p-values for RWRISTx(t) and the coefficients of
the predetermined variables, there is an intra-joint association (H1) between x and y
axes (p = 0.03 < 0.05) but also a small value for the coefficient of RWRISTy(t−1),
which means that the movement over the y-axis is small. Moreover, the transitioning
assumption is meaningful. Nevertheless, the very small value of the coefficient for
RWRISTx(t− 2) could be interpreted as a possibility to use only a 1st-order auto-
regressive model. The assumption for an inter-limb synergy (H2) is not meaningful
for this gesture (p = 0.44 > 0.05) and it confirms the initial observation where
the right wrist is moving while the left is not. Leveraging on the analysis of the
various p-values and coefficients from the Equation (2.11), there is not any important
exogenous impact (e.g. from body parts other than the right wrist) on the way the
individual is performing the specific gestural command, which means that it is more
a ‘routine’ rather than a ‘dexterous’ gesture.

RWRISTx(t) = (−0.06)RWRISTy(t− 1)︸ ︷︷ ︸
H1: p = 0.03

+(1.34)RWRISTx(t− 1)︸ ︷︷ ︸
H4: p = 0.00

−

− (−0.04)RWRISTx(t− 2)︸ ︷︷ ︸
H4: p = 0.00

+(−0.67)LWRISTx(t− 1)︸ ︷︷ ︸
H2: p = 0.44

(2.11)

Another example of a GOM is the ‘tighten the base of glass’ gesture G3,2

from the glass-blowing vocabulary. In G3,2, the expert glass-blower first uses the
left arm to rotate the pipe and afterwards he shapes the transition between the neck
and the curved vessel with his right hand. The left wrist is performing rotational
movements, exclusively over the y-axis (on a plane perpendicular to the camera), in
order to revolve the pipe, but these movements also involve his left shoulder, which
is confirmed by the p = 0.00 < 0.05 for LSHy(t − 1) (Equation 2.13). The right
wrist is performing micro-movements in order to adjust the transition part; thus,
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his right shoulder remains still, which is also confirmed by the p = 0.56 > 0.05

for RSHy(t − 1). As a result, the non-serial mediation assumption (H3.2) is not
meaningful for RWRISTy(t) (Equation 2.12). Nevertheless, in the Equation 2.13, a
p = 0.12 > 0.05 is obtained for the LWRISTy(t− 2), which means that a 1st-order
auto-regressive model can be used for LWRISTy(t). The right wrist RWRISTy(t)

is moving synergistically with the left wrist LWRISTy(t−1), which initially defines
the exact position of the whole neck to permit the RWRISTy(t) to shape the object.
This unidirectional relationship is confirmed by the fact that the intra-limb synergy
(H2) is meaningful for RWRISTy(t), but not for LWRISTy(t). Furthermore,
the intra-joint association (H1) is meaningful for RWRISTy(t), while it is not for
LWRISTy(t), because the left wrist is not moving over the x-axis.

RWRISTy(t) = (0.29)RSHy(t− 1)︸ ︷︷ ︸
H3.2: p = 0.56

+(0.37)RELBOWy(t− 1)︸ ︷︷ ︸
H3.1: p = 0.00

+

+(−1.09)RWRISTx(t− 1)︸ ︷︷ ︸
H1: p = 0.00

+(−0.16)LWRISTy(t− 1)︸ ︷︷ ︸
H2: p = 0.04

+

+(1.13)RWRISTy(t− 1)︸ ︷︷ ︸
H4: p = 0.00

− (−0.17)RWRISTy(t− 2)︸ ︷︷ ︸
H4: p = 0.00

(2.12)

LWRISTy(t) = (0.93)LSHy(t− 1)︸ ︷︷ ︸
H3.2: p = 0.00

+(0.41)LELBOWy(t− 1)︸ ︷︷ ︸
H3.1: p = 0.01

+

+(0.11)LWRISTx(t− 1)︸ ︷︷ ︸
H1: p = 0.27

+(0.01)RWRISTy(t− 1)︸ ︷︷ ︸
H2: p = 0.36

+

+(1.05)LWRISTy(t− 1)︸ ︷︷ ︸
H4: p = 0.00

− (−0.11)LWRISTy(t− 2)︸ ︷︷ ︸
H4: p = 0.12

(2.13)

The simulation of the models is based on the solution of their simultaneous
equations system. An example of a static forecast (one-step-ahead) is presented in
Figure(2.5) where there are both the real observations and the simulated values from
the SS model for the right wrist. The behaviour of the models is quite satisfactory
since both curves are very close.

2.9 Classification assessment and comparison with an

end-to-end 3DCNN

The standard metrics of average (or mean) precision P and precision Pi for gesture
i, average recall P and recall Ri for gesture i, and F-score F , as well as the accuracy
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Figure 2.5: Examples of real motion observations (blue) and simulated values (or-

ange) from the RHANDx(t) SS model of the gestures G3,1 (left) and G3,4 (right).

were used to assess the recognition accuracy of the algorithm

P =
# of True Max Likelihoods

# of True Max Likelihoods+# of False Max Likelihoods

where # of True Max Likelihoods is the number of test sequences for which the
relevant model (or template) of the performed gesture gave maximum likelihood,
while # of False Max Likelihoods is the number of test sequences where a non-
relevant model gave maximum likelihood. Thus, P is the total number of relevant
gestures that are correctly recognised, divided by the number of true and false
positives for all the gestures, while Pi is only for gesture i.

R =
# of True Max Likelihoods

# of True Max Likelihoods+# of False Non_Max Likelihoods

where # of False Non_Max Likelihoods is the number of test sequences for which
no maximum likelihood is given by the relevant model (or template) for the per-
formed gesture. Thus, R is the total number of relevant gestures that are correctly
recognised, divided by the number of true positives and false non positives for all
the gestures, while Ri is only for gesture i.

F = 2
P ×R
P +R
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where F is the harmonic mean of average precision and recall and provides a global
recognition performance index.

Accuracy =
# of Correct Classifications

Total # of Classifications

which is the proportion of correctly recognised gestures.

In order to compare the results of this approach with other classification
techniques, an end-to-end 3DCNN was used to classify the gestures of the first
three vocabularies described in Industrial Datasets and Gesture Vocabularies. More
precisely, a 3DCNN was initially trained on spatiotemporal features from a medium-
sized UCF-101 video dataset [Soomro et al. 2012], and the pretrained weights were
used to fine-tune the model on small-sized datasets, which included images of oper-
ators performing customized gestures in industrial environments. The architecture
of the network was based on four convolution and two pooling layers, one fully con-
nected layer and a softmax loss layer to predict action labels [Tran et al. 2015a]. It
was trained from scratch on the UCF-101 video dataset, using a batch size of 32
clips and an Adam optimizer [Kingma & Ba 2014] for 100 epochs, within a Keras
framework [Chollet et al. 2015]. The entire network was frozen, and only the last
four layers were fine-tuned on customized datasets by means of backpropagation.

GV1 contained 4 classes, with 44 - 48 repetitions for each. Four hidden
states were used for the training of the HMMs, while a simplified GOM with only
x and x positions for the two wrists were used for training and recognition. HMMs
provided a recall superior to 90% in three out of four gestures of GV1. When the
confidence control was applied through the SS representation, in most cases there
was a further significant improvement in the recall, such as with +15.91% between
HMMSS

1,3 and HMM1,3. This improvement in the recall of G1,3 can be justified
by the various optional locations inside the workplace that the operator can have
for connecting the wire with a very small card outside. The precision of G1,3 was
also positively impacted by the confidence control of the SS representation, thus
improving it by +7.47%. This conclusion confirms the initial claim that combining
HMMs with the confidence control of SS representation can potentially give better
results for gestures where the human needs to obtain specific positions e.g. when
manipulating objects. The 3DCNN improved the recall of G1,3 by +2.1% compared
with both the HMMs and the SS representation. However, in total, the HMMSS

outperformed both the HMM and the 3DCNN , with a total accuracy and F -score
of approximately 96.2% (Figure 2.6).

GV2 contained 5 classes, with 16 repetitions of each gesture and between
1 - 11 hidden states, which optimized the performance of the models. Positions for
the wrist, elbow, and shoulder joints for each arm, along with the neck, were used
for training. The performance of HMM2,1, HMM2,4 and HMM2,5 was optimised
when they were built using an ergodic topology, since they all had a part of the
gesture in common. HMM2,2, HMM2,3 were built using a left-to-right topology.
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By adding the SS representation, precision in recognising all the gestures was im-
proved, while recall was decreased for G2,2 and G2,5. With regard to the 3DCNN ,
both precision and recall for the network was 100% for both G2,2 and G2,3 but for
G2,5 the precision was 66.66%, which is extremely low compared with the 100%
of precision for HMM and HMMSS . According to what is presented in Figure
2.6, the HMMSS outperforms the 3DCNN with a total accuracy of approximately
+3.3%, while the F -score is +1.57%, compared with the 3DCNN .

GV3 consisted of 4 different gestures, with 35, 34, 21, and 27 repetitions
respectively. A significant variability in the number of hidden states (between 5
- 20), that optimised the performance of the models, was observed. Positions for
the wrist, elbow, and shoulder joints for each arm, along with the neck, were used
for training. When applying the confidence control of the SS representation on
the HMMs, precision increased for all gestures, except for G3,4, while the recall
remained stable for all gestures except for G3,3, which increased by 4%. HMMSS

outperformed both HMM models and the 3DCNN architecture, as shown also in
Figure 2.6, with a total accuracy of approximately +4% and an F -score of +1.5%,
compared to the 3DCNN .

GV4 consisted of 5 different gestures. The models were trained with 25 clus-
ters and 12 hidden states. HMMSS outperformed continuous HMM models with
+0.19% for the F -score and +1.44% for accuracy and discrete k-Means+HMM ,
with +12.29% for the F -score and +11.94% for accuracy, as presented in Figure 2.6.

2.10 Forecasting ability for motion trajectories

To evaluate the capability of the four SS models to provide representation of move-
ment that can be used to explain the assumptions of the two-part GOM, Theil’s in-
equality coefficient U was computed together with the breakdown of its components
into the inequality of bias proportion UB, variance proportion UV and covariance
proportion UC . While UB examines the relationship between the means of the ac-
tual values and the forecasts, UV considers the ability of the forecast to match the
variation in the actual series and UC captures the residual unsystematic element
of the forecast errors [Makridakis et al. 2008]. Thus, UB + UV + UC = 1. The
Theil inequality coefficient measures how close the simulated variables are to the
real variables, and it is therefore able to capture values between 0 to 1. The closer
to 0 the value of this factor is, the better the forecasting of the variable. Also, the
forecasting ability of the model is better when UB and UV are close to 0 and UC is
close to 1. The computed coefficients are presented in Figure 2.7 and have resulted
in a sufficiently accurate forecasting of the performance in the simulated model.
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Figure 2.6: Comparison of HMM , HMMSS with 3DCNN for GV1, GV2 and GV3

and with k-Means+HMM for GV4

Figure 2.7: Theil inequality coefficient and root mean squared error for one example

of RWRISTxt
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Figure 2.8 presents an example of trajectory forecasting for G2,4. More
specifically, using all the SS models of GV2, it is asked to forecast their variable
RWRISTx(t), when original motion values from G2,4 are provided for initialisation.
The plotting of the similarity or distance metric from the DTW is shown in Figure
2.8, taking as input for every time t: 1) the simulated values of the RWRISTx(t)

from the models of GV2 when providing it with 2 real observation values, and 2)
the real observations between t and the end of the sequence. The distance metric
becomes minimal, resulting in high similarity, from the very beginning for the SS
model of G2,4.

Figure 2.8: Similarity comparison on forecasted values provided by all the models

of GV2 for RWRISTx(t)

2.11 Sensitivity analysis

As mentioned previously, the GOM depicts all the dynamic relationships that occur
during the process of the execution of a gesture. The sensitivity analysis of the
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simulated GOM follows two steps. During the first step, all the simulated values of
the model are recorded after an artificial shock is provoked for the first two frames.
During the second step, all the simulated values that occurred after the disturbance
are compared with the simulated values that occurred before it (baseline). For
example, in Figure 2.9, the simulated values of RWRISTx(t) are depicted before
the disturbance on the values of RWRISTy(t − 1) of 80%(in red) and after the
disturbance on the values of RWRISTy(t−1) of 80%(in blue). The disturbance on
the simulated variables of RWRISTx(t) is observed for 10 frames in total i.e. for
8 more frames and therefore 80% greater duration than the initial shock. A similar
behaviour is also observed for RWRISTy(t). The models adapt quickly after the
application of the artificial shock, thus confirming their low sensitivity to external
disturbances.

Figure 2.9: Left: Diagram of the simulated forecasted values of RWRISTx(t) before

the disturbance (red), and simulated forecasted values of RWRISTx(t) after the

shock (blue), for two frames, on the values of RWRISTy(t − 1) for 80% . Right:

Diagram of the simulated forecasted values of RWRISTy(t) before the disturbance

(red) and simulated forecasted values of RWRISTy(t) after the shock, for two

frames, on the values of RWRISTx(t− 1) for 80% .

2.12 Summary of contributions

In this chapter, a generic methodology for professional gesture recognition is pro-
posed, that uses multivariate time series as input. It is used to test cross-application
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scientific questions which are evaluated through various industrial scenarios.

In summary, the major scientific contribution of this chapter is the propo-
sition of the GOM which represents human motion as the dynamic relationship of
body entities (biomechanics) and their evolution in time (stochastics). Its statistical
transcription into a simultaneous equation system facilitates multifarious possibili-
ties for analysing body kinematic dexterity, increasing recognition accuracy and for
forecasting motion trajectories.
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3.1 The Big Picture

A collaborative robot is an autonomous machine that is able to share workspace with
the worker(s), without physical barriers, while still adhering to prescribed health and
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safety standards. Collaborative robotics has created the appropriate conditions for
designing an HRC that can link human intelligence with the power of the robot by
following one simple criterion: the complementarity of skills.

Following the principle of developing an external AI-based perception layer
for collaborative robotics, the main contribution to HRC is the creation of a multi-
user professional gesture recognition methodology. The recognition output is con-
tinuously communicated to the robot in order for it to adapt its behaviour according
to the professional gestures and rhythm of the operator(s).

Here, two use-cases are considered from real-life situations, which were
provided by the automotive assembly lines of the PSA Group: 1. that of door-
assembly, which follows a co-presence scenario, and 2. that of motor-hose assembly,
which follows a collaborative scenario.

From an algorithmic perspective, IMUs were used in the process of door-
assembly in order to extract motion descriptors that were then used to train a hybrid
HMM – DTW recognition engine. In the motor-hose assembly scenario, the body of
the operator(s) is captured by a top-mounted depth sensor, then motion descriptors
are extracted by applying geodesic distances on depth imaging and, in turn, motion
time series are generated and provided as input to discrete HMMs for recognition of
motion patterns (Figure 3.1). The performance of the AI-based perception layer was
evaluated based on data gathered from multiple operators and by using additional
information on gestures and actions that was provided by smart tools that were used
by the operators. The gesture recognition algorithm was found to perform well also
when a new operator joined the assembly line, by providing to the models only a
few examples of his/her gestures.

The scientific contribution presented in this chapter was conducted by su-
pervising the PhD of Eva Coupeté on ‘Gestures and Actions Recognition for Human-
Robot Collaboration in Assembly Lines’ [Coupeté 2016], and received funding from
the PSA Group of companies. A number of figures of this chapter are extracted
from her thesis.

3.2 State-of-the-art

Industry 3.0 has rapidly transformed the assembly or production lines in business
and industrial enterprises within only a few decades, thus enabling the switch from
manual work to full automation. The manual work of the operators allowed them to
make decisions and develop dexterous skills, thus also providing flexibility on pro-
duction and processing lines. Nevertheless, standard industrial robots offered the
possibility of massive automation, enabling work to be done in bulk with efficiency,
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Figure 3.1: Methodology for professional gesture recognition in collaboration with

a robot

speed and precision. However, this rapid conversion also introduced important con-
straints. Of these, the lack of flexibility to change the line is one of the most
important i.e. the re-programming of the robot from scratch is very costly.

This industrial evolution also brought about an in-depth evolution in the
use of the body of the operator(s). This evolution started from the human’s profes-
sional gesture as a job initiator, passed through to the abundance of the traditional
toolbox that machines could offer, until finally arriving at the complete replacement
of the operators by the robots. Therefore, the human body as a tool, on the one
hand, and the non-intelligent industrial robots, on the other hand, where there is
no human in the loop, constitute two extreme situations (Figure 3.2).

With Industry 4.0, decision-makers realised that the deployment of robots
that can work ‘with’ and not ‘instead of’ the humans would be beneficial for both
the industry and the operators. Therefore, collaborative robotics began to open
up new pathways for sharing the same space with the humans, while the robots
could also be easily trained through only a few examples, thus generating important
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financial and economic gains. It is strange that despite these possible benefits and
despite the very strong contributions from the scientific community and examples
of deployments in industry, which consider the collaborative robot as a tool, only
a few prototypes that consider the collaborative robot as a full partner with the
operator have been reported.

Figure 3.2: From manual work (body as a tool) to full automation then to semi-

automation (collaborative robot as a tool)

3.2.1 Co-presence, cooperation and collaboration

Humans have the flexibility and the intelligence to be able to consider different
approaches to solving problems, while robots can be more precise and consistent
in performing repetitive and ergonomically risky tasks. Nowadays, mixed environ-
ments can be created which combine the cognitive skills of humans (intelligence,
flexibility etc.) with the advantages of robots (high precision, repeatability etc.).
In [El Zaatari et al. 2019] and [Kopp et al. 2020], the interaction between a human
and a collaborative robot is distinguished according to the physical working space,
whether separated or shared, to the working time, whether sequential or simulta-
neous, and to the goal, whether common or different, for the robot and the human
operator respectively. Physical contact can also be considered as a criterion to char-
acterise the interaction between the two in industrial robotics [Hentout et al. 2019a].

In manufacturing, various types of applications that involve robots,
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whether standard or collaborative, can be deployed. Standard non-intelligent in-
dustrial robots are put at the lowest level, where human and robot do not share
their workspace and do not have any common task. The robot stops its task when
a human presence is detected inside the cage.

Three types of interaction between a human and a collaborative robot
are generally deployed in industry: co-presence, cooperation and collaboration
[Schmidtler et al. 2015] (Figure 3.3). In a co-presence situation, human and col-
laborative robot share a part of the workspace, but do not work at the same task
and physical contact is authorised only when the robot is stopped. The human
operator adapts his/her rhythm and movements to the robot, whose velocity and
trajectory are pre-defined.

In recent years, human and collaborative robots sequentially cooperate (also
called sequential HRC), by fully sharing their workspace and working on the same
task. Very often, the operator activates the task of the collaborative robot by
pressing a button (Figure 3.4). Despite the sharing of the workspace, the human
operator must adapt his/her behavior to the pre-defined temporal and spatial profile
of the robot. From an industrial point of view, this cooperation between human and
collaborative robots can be considered as the current baseline.

Finally, in a typical HRC situation, the collaborative robot should be re-
sponsive. It can be distinguished in physical Human-Robot Collaboration (pHRC)
and touchless Human-Robot Collaboration (tHRC). In pHRC, there are operations
which were intended to be without contact and instinctively the operator touches
the robot, as well as operations where the operator touches the robot on purpose and
the robot reacts in a particular way, depending on the direction and the force of the
contact. In the first case, the robot reduces its velocity or stops its motion to avoid
a collision [Michalos et al. 2015]. In the second case, the robot can either be used as
a tool which extends the capabilities of the human operator (strength, preciseness
etc.) or can be taught by demonstration in order to automatise a certain task. In
tHRC, human and robot collaborate as colleagues or, alternatively, the robot assists
the operator in his/her tasks, by combining HAI and motion sensors. Human action
recognition is used to achieve contactless communication between the robot and the
human operator. Therefore, the professional gestures are recognized by the robot,
which adapts its behaviour accordingly. Nevertheless, this configuration is still very
rare in the industry, mainly because only a few laboratory prototypes have been
proposed.

3.2.2 Movement-based implicit and explicit adaptive interaction

Humans can interact with a collaborative robot through gestures either in an explicit
way (e.g. to give a command) or implicitly (e.g. through an action that represents



42 Chapter 3. Human-Robot Collaboration

Shared time

and workspace

Common goal Coordination

Co-presence X - -

Cooperation X X -

Collaboration X X X

Figure 3.3: Three types of interaction between a collaborative robot and an operator

a message for the robot) [Gildert et al. 2018, Hentout et al. 2019b]. Both types of
interaction can generate a spatio-temporal adaptation of the robot according to the
human’s behaviour.

Explicit interaction for temporal adaptation can be achieved by pressing
a button [Michalos et al. 2018] or by using a smartwatch as in the smart factory
of BMW 1. In this way, the operator informs the robot that a given task has been
executed and this type of interaction can be categorised as a cooperation scenario.
Force feedback and pointing gestures can also be used as a means for interaction
[Cherubini et al. 2016].

Collision avoidance is ultimately the most frequent case scenario of spatial
adaptation found today [Mohammed et al. 2017, Safeea et al. 2019]. Various use-
cases of adaptation are also presented in the domain of assisting robotics. There-
fore, robots can readjust their trajectories online and handle unpredictable incidents
[Canal et al. 2018]. The robot adapts its behaviour both spatially and temporally,
according to the anthropometrics and the rhythm of a human operator.

3.2.3 Professional gesture recognition for Human-Robot Collabo-

ration

Gesture and action recognition can be used to improve the perception layer
of the robot when collaborating with humans. Both Machine Learning
(ML) [Liu & Hao 2019, Sharkawy et al. 2020a, Sharkawy et al. 2020b] and DL
[El Dine et al. 2018, Heo et al. 2019] approaches have been implemented for colli-
sion avoidance or continuous gesture recognition [Tao & Liu 2013].

1https://roboticsandautomationnews.com/2017/03/04/bmw-shows-off-its-smart-factory-

technologies-at-its-plants-worldwide/11696/



3.2. State-of-the-art 43

Figure 3.4: Most common examples of collaborative workspaces in industry. Co-

presence: safe parallel work on different workbenches. Cooperation: sequential

operation using an illuminated button. Green for robot’s turn and orange for hu-

man’s turn. By pressing the button we switch the turn. Collaboration: Only a few

prototypes. Not yet exploited on a large scale in industry.

Reinforcement learning is used to minimize the risks of an incident in
HRC. It encodes all task and safety requirements of the scenario into the settings of
reinforcement learning, also taking into account components such as the behaviour
of the human operator [El-Shamouty et al. 2020]. Interactive reinforcement learning
is also used for programming the complete collaborative assembly process with the
aim of reducing the effort needed by an expert engineer [Akkaladevi et al. 2018].

CNNs are also implemented for a multimodal HRC [Liu & Hao 2019], us-
ing LeapMotion for hand motion capturing, together with voice recognition. Hu-
man action recognition and tactile perception are used to distinguish intentional
and incidental interactions when an incident involving physical contact occurs
[Mohammadi Amin et al. 2020]. In this study, a 3D-CNN is used for action recog-
nition, and a 1D-CNN for tactile detection with a Panda robot.

Discrete time Markov Chains are proposed to compute the probability
that an incident may occur [Asaula et al. 2010], while the possible trajectories that
a robot can follow, starting from a given position, can be predicted. Moreover,
partially observed Markov decision processes are used to compute trust in the robot’s
decision-making [Chen et al. 2020]. Human trust is considered as a latent variable
in a dynamic system that describes an effective HRC.

Most of the methods presented above are focused on specific factors in
managing the shared workspace, without considering all the potential of the human
as a partner of the robot. Safety and accident prevention are the most common
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goals in extracting information from the human.

3.3 Objectives beyond SoA

Leveraging on the above SoA, three objectives have been defined:

O1: Development of a professional gesture recognition methodology

Development of a methodology for online and continuous recognition of the situated
professional gestures of the operator in automotive assembly lines.

O2: Contactless collaboration between human and robot

Development of an external perception layer for the robot that enables contactless
collaboration.

O3: Adaptability and dynamic cycle in collaborative cells

Adaptability of the system when new operators join the cell and dynamic temporal
collaboration depending on the rhythm of the operator.

The methodology developed for O1 contributes to the answering of Q1 (posed in
Chapter 1, Section 1.2), by selecting the appropriate sensors, or the Internet of
Things, and kinematic motion parameters that can be used for the accurate recog-
nition of situated expert gestures, given the strong industrial constraints of the
automotive assembly lines.

O2 aims to answer Q2 (posed in Chapter 1, Section 1.2) by exploring the possi-
bility of replacing the current instrumental methods for collaboration (i.e. discrete
commands by pressing a button) with a ‘gesture-following’ one.

O3 contributes to the answering of both Q1 and Q2 (posed in Chapter 1, Section
1.2). With regards to Q1, it further studies whether the same kinematic motion
parameters can be used for adapting the machine learning models when a new
operator joins the assembly line. As far as Q2 is concerned, the main contribution
concerns testing whether the system of intelligence can be adapted to the rhythm
of the operator and can distinguish the real professional gestures from unexpected
movements e.g. looking at their phone etc.
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3.4 Pose estimation

In the motor-hose assembly use-case, the depth sensor was mounted at the top of the
scene to capture the actions of the operator, thus avoiding self or scene occultations.
The main goal was to segment the scene, estimate the pose of the arms and localize
his/her hands in real-time (Figure 3.5). The suggested approach is an extension of
the work proposed in [Schwarz et al. 2012].

The first step of the scene segmentation is the exportation of body pixels
from the depth image and the head localization. Since the operator is working in
a limited workspace by using mainly his/her hands, we concluded that only the
upper-part of the body would be sufficient for efficiently detecting his/her gestures.
To achieve this goal, the head was detected by assuming that it was the closest to
the camera object or body part. Following a number of anatomic considerations,
the centre of the top of the head was estimated using the 10% of the highest body
pixels, starting from the pixel closest to the camera (Figure 3.5). Moreover, pixels
that were below the workbench of the operator were removed and the shoulders were
localized on the depth map. Torso orientation is then calculated as the horizontal
angle of the line connecting the shoulders.

It was therefore assumed that the hands are the farthest body parts from
the head in the image. The geodesic distances were calculated between the top
of the head and all the points of the upper body. A weighted graph was created
using all the body pixels as nodes, by connecting each pixel with its neighbouring
pixels. A weight was attributed to each pair of pixels, that is equal to the absolute
difference of values between them, which can be considered to be approximately
their difference in height, given the top-mounted depth camera. In order to avoid
non-anatomic ‘jumps’ on the geodesic distances e.g. from the arm to the torso,
connections with a very high depth difference were automatically dropped.

3.5 Feature extraction

As far as the motor-hose assembly use-case is concerned, the depth-processing algo-
rithm provides the following features as output:

– 3D location of the top of the head;

– 3D locations for both hands;

– 3D geodesically shortest paths between head and hands.

Five different feature sets were tested, as presented in Figure 3.6, which
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Figure 3.5: Basic steps for hand localization and upper-body pose detection. (1)

depth-map from the top-view camera; (2) head localization; (3) torso exportation;

(4) 2D graph of distances; (5) visualization of geodesic distance for each pixel of the

upper-body

contain combinations between 3D locations for both hands and relevant upper-body
postural information [Coupeté et al. 2019].

With regard to the door-assembly use-case, the IMU Animazoo IGS 120+
suit was used for the capturing of the human motions (Figure 3.7). This provided
us with the angle of the segments of the body that followed a hierarchical model,
where each angle was computed using as a reference point the angle of the previous
body part. Thus, all of them used the sensor on the hips as the root.

3.6 Datasets and machine learning on time series

As was explained above, two different use-cases were studied: 1. door-assembly,
which follows a co-presence scenario; and 2. motor-hose assembly, which follows a
collaborative scenario. As a result, two datasets were created, one for each use-case,
which contained the gestures that are presented in Figure 3.8.

In the door-assembly use-case, the duration of the gestures varied between
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Figure 3.6: (1) 15 samples of each shortest path + 3D head and hands locations,

(2) 7 samples of each shortest path + 3D head and hands locations, (3) 3 samples of

each shortest path + 3D head and hands locations, (4) 3D head and hands locations

and (5) 3D hands locations

8 - 10 seconds. Each worker performed 5 repetitions for each gesture, while each
dataset contained observations of all the co-articulated gestures, without interrup-
tion. In the motor-hose assembly use-case, 2 female and 11 male ’naïve’ operators
were recorded, each with an average age of 47 years. Each of them executed between
20 - 25 assembly repetitions with 7 - 8 and 8 successive gestures respectively for each
motion.

3.7 Template-based learning

It is a fact that the speed of the movement, together with other motion descriptors,
can vary significantly from one repetition to another. For learning and recognition,
we therefore used a DTW-based technique, known through its implementation in the
‘Gesture Follower’ tool [Bevilacqua et al. 2009]. This template-based method allows
for one-shot learning while the online time-alignment between the template and the
input gesture provided us with good recognition accuracy, even when there were
only some minor variations in the performance of the same user. This approach was
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Figure 3.7: Operator wearing the Animazoo IGS120+ suit and dimension of the

sensor

therefore deemed most suitable for implementation in the door-assembly use-case.

3.8 Model-based learning

Discrete HMMs were used to model the professional gestures of the motor-hose
assembly due to these tasks being mainly action-driven, irregardless of the way
the operator moves to execute them e.g. to obtain a specific position posture for
taking a part from the robot. The continuous 3D locations provided by the geodesic
distances between the head and the hands are then quantized to obtain discrete
observations, through K-Means clustering. It involves partitioning observations into
a fixed number K of clusters, where each observation belongs to the cluster with
the nearest centroid, as described in [Coupeté et al. 2015, Coupeté et al. 2016]. In
practice, each cluster corresponds to an approximate top-viewed posture. A gesture
is therefore represented as a temporal sequence of cluster IDs, and thus as a sequence
of approximate postures.

The cluster IDs are then used to train one discrete HMM per gesture class.
Every feature vector that is extracted from a depth-image is quantized through
the K-Means and the labels obtained are given to the discrete HMMs. A gesture
is recognized when its associated HMM gives the highest probability for having
generated the observations. The HMMs are trained with the Baum-Welch algorithm
while the Forward algorithm is used for recognition. They are both implemented in
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Figure 3.8: Gesture vocabularies for door-assembly (left) and motor-hose assembly

(right)

the GRT2 open library. Figure 3.9 illustrates our methodology.

3.8.1 Instrumenting the tools

Instrumenting the tools of the worker can be beneficial for obtaining a greater recog-
nition accuracy through leveraging the data generated from their online and con-
nected behaviours. From the surroundings of the human body, additional infor-
mation is obtained by placing inertial sensors on the screwing-gun of the operator.
Then, a ‘late-fusion’ of this data is used and acts as an elimination criterion for
gestures where the algorithm ‘hesitates’ e.g. between ‘screwing’ and ‘assembling’
(Figure 3.9). The screwing-gun is therefore only supposed to move when the worker
is using it to screw together two parts of the motor hose.

In practice, by instrumenting the screwing-gun, two types of conflict can be
resolved: a. when the algorithm outputs a screwing gesture while the screwing-gun
is not moving, if the likelihood of the HMM for ‘screwing’ is above a threshold then
this gesture is recognized, otherwise the output is 0; and b. when the algorithm
outputs a non-screwing gesture while the screwing-gun is moving, if the likelihood
of the HMM for ‘screwing’ is above a threshold then ‘screwing’ is recognized instead

2https://github.com/nickgillian/grt
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Figure 3.9: Gesture recognition pipeline: input gesture (left) is a temporal sequence

of feature vectors of the same dimension F; each continuous-valued feature vector is

quantized by K-means into a discrete-valued ‘approximate posture’ label (middle);

the temporal sequence of successive posture labels obtained are fed one after the

other into G discrete HMM (1 per gesture class); for each time-step, our system

outputs the most probable current gesture class, by selecting the HMM which has

current maximum likelihood.

of ‘non-screwing’, otherwise a ‘non-screwing’ gesture is recognized.

3.9 Classification and recognition assessment

The tests that are used for the evaluation of the performance of the algorithm
are a. the jackknife and b. the 80%-20%. Jackknifing consists of systematically
recomputing the statistical estimate, leaving out all the data of one operator, for
testing, and using the data of all the remaining operators for training (one operator
per iteration), in this way doing all the possible combinations. Therefore, in each
iteration, one operator is considered as ‘unknown’ by the algorithm. The 80%-
20% test, on the other hand, consists of randomly separating the whole dataset
into two separate datasets, where the one for training contains 80% of the initial
dataset, while the one for testing contains the remaining 20%. Thus, it estimates
the performance of the algorithm, while it is trained on at least some data from all
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the operators.

3.9.1 Classification of isolated motion patterns

3.9.1.1 Door-assembly use-case

To estimate the accuracy of the DTW-based approach to classifying isolated motion
patterns, the ‘jackknife method’ was used. In practice, this means that one of the
five datasets is left out and used for training for each iteration, until all the datasets
have been used once, while the remaining datasets are used for testing.

If we analyse the results according to the Figure 3.10, G3 (‘pre-sticking the
waterproofing-sheet’) is recognized perfectly, while the accuracy for G4 (‘to fit the
window sealing strip’) is the lowest, with only 85% of recall. The excellent results
of G3 can be explained by the fact that the operator makes circular movements
without walking at all, in contrast with the other 3 gestures where s/he uses the
whole workspace. Moreover, G3 has very low intra-class variability. With regard to
precision, G2 (‘to fit the waterproofing-sheet on door’) has the lowest performance,
with only 87%. As far as G2 and G4 are concerned, they both have similar postures
that generated confusion in their HMMs.

Figure 3.10: Precision and Recall for isolated motion patterns (use-case: door-

assembly; sensor: IMUs; method: DTW)

3.9.1.2 Motor-hose assembly use-case

The performance of each feature set was evaluated using jackknifing, as shown in
Figure 3.11. The best recognition was given by the feature set of 3D hand locations.
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The results can be explained through a simple observation: the more we add infor-
mation that is not related to body parts that contribute to the effective gestures,
the more the recognition rate decreases.

Figure 3.11: Gesture recognition rate per set of features (use-case: motor-hose

assembly; sensor: depth; method: HMMs - K-Means)

Then, the parameters of the HMMs and K-Means were optimised by us-
ing the two hands 3D locations as feature sets. Different combination parameters,
mainly K for the number of clusters of K-Means and S for the hidden states of the
HMMs, were tested by using the jackknife as a criterion for measuring their perfor-
mance. According to the Figure 3.12, the more K increases, the more the description
of the human motion is detailed and the better the accuracy is, until K gets values
between 20 and 25. For K=25 and S=12 the recognition rate is optimised.

Figure 3.12: Clusters for K-Means vs states for HMMs (use-case: motor-hose as-

sembly; sensor: IMUs)
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3.9.2 Early and continuous real-time recognition of gestures

3.9.2.1 Door-assembly use-case

For the door-assembly use-case, the DTW method was used, as described in Section
3.7. According to Figure 3.13, there is almost always a template that generates a
maximum probability that is usually near 1. Nevertheless, there are fluctuations in
the transition phase between gestures due to a co-articulation phenomenon (blue
curve at the bottom of Figure 3.13). Thus, there are cases where for a short time
period there are false maximum probabilities from a non-relevant template, that
could justify the assumption that the algorithm might need more data as input
before being ‘aligned’ with the relevant gesture. More precisely, the fluctuations are
longer for G4 mainly because the beginning of G4 and G2 is quite similar, while only
in the end does G4 differentiate from G2. To address the issue of false recognition,
a sliding window, with a length equal to 1/3 of the duration of the shortest gesture
(1.64 seconds), was implemented.

Within the window, only probabilities above 0.7 are taken into consider-
ation and the algorithm returns the template that gave the most maximum prob-
abilities for at least 75% of the timestamps. Otherwise, the algorithm returns ‘0’,
meaning that no gesture is recognized with enough confidence. In this way, most
cases of false recognition are eliminated. According to Figure 3.13, we see that the
algorithm returns ‘0’ at the beginning of both G2 and G3, as well as in the middle
of G3. Nevertheless, the error with G4 is not eliminated. Finally, the average delay
for a gesture to be recognized by the algorithm is 3.4 seconds.

3.9.2.2 Motor-hose assembly use-case

For the motor-hose assembly use-case, hybrid HMMs - K-means were used, as is
described in Section 3.8. In early and continuous gesture recognition, accuracy
depends also on the length of the temporal sliding window and whether or not the
tools of the operator are instrumentalised with motion sensors.

However, which lengths for the temporal sliding window optimise P and R
and how much are they improved when instrumenting the screwing-gun? Several
comparisons of various lengths (from 0.5 to 2 seconds), were made using both the
jackknife and the 80%-20% tests. In the jackknife test, for a temporal window with
a length of 1 second while the screwing-gun is instrumentalised, the metrics are
optimised for P=84% and R=77%, compared to P=76% and R=74% without any
instrumentalisation of the screwing-gun. Thus, by instrumenting the tool, the values
of the metrics are improved by +8% for P and +3% for R, which, in conclusion,
means that the algorithm becomes much more precise and accurate. In the 80%-20%
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Figure 3.13: Top: Output of probabilities in real-time without sliding window. Bot-

tom: Maximum probabilities only (blue), recognition after the sliding window (red),

and the ground truth (black). G1 (in blue background), G2 (in pink background),

G3 (in green background) and G4 (in yellow background) are sequentially executed

(use-case: door-assembly; sensor: IMUs; method: DTW)

test, when instrumenting the screwing-gun, P=82% is optimised for a length of 1.5
seconds, while R=85% for both lengths of 1 and 1.5 seconds. Thus, medium-sized
temporal sliding windows optimize P and R metrics, while the R is better using
the 80%-20% test mainly because of the fact that the operator is ‘ ’known’ to the
algorithm.

According to Figure 3.14, we see the algorithm is able to recognize the
gesture before its end. The delay in recognition is between 1 and 1.5 seconds for
the duration of gestures that vary between 1.5 and 3 seconds. For G3 and G4
specifically, recognition occurs at 0.9 and 0.6 seconds respectively, before the end of
each gesture.

In industry, having a new operator join the assembly line is a routine task;
however, the accurate recognition of his/her professional gestures, without applying
major modifications to the dataset, can prove to be a research challenge. A partial
answer to the question of how to address this challenge is given through the tests
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Figure 3.14: Two examples of early and continuous gesture recognition. Top: Max-

imum probabilities in real-time. Bottom: Maximum probabilities and ’0’ outputs

when probabilities are below 0.7. Blue line and colors on the background: ground

truth; Red line: algorithm output. (use-case: motor-hose assembly; sensor: depth;

method: HMMs - K-Means)

that were performed to assess the accuracy of the algorithm: Jackknife vs 80%-20%.
That is because this comparison taught us that when the algorithm ‘knows’ the
operator, the accuracy becomes higher.

Nevertheless, there remains the question of how much motion data from the
new operator would maximise this accuracy? To provide an answer to this question,
a set of gestures were progressively added while P , R and F were computed for
every set added, with a temporal sliding window equal to 1 second. Among all the
experiments executed, the metrics were maximised for 15 datasets (P=89%, R=89%
and F=89%), where a +5% is obtained for all P , R and F compared to their values
when only 1 set of gestures is added, as well as +5% for P and +12% for R when
absolutely no data from the worker are used for training (P=84% and R=77% from
the jackknife test previously mentioned), or +13% for P and +15% for R without
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instrumenting the screwing-gun.

However, would a significant improvement be possible when fewer gesture
sets are added? In factories, the deployment of an algorithm that involves a large
number of human recordings is usually limited. According to the top-right plot in
Figure 3.15, a small addition of gesture sets e.g. less than 5, can improve P and R by
up to +9% and +3% respectively. When more than 5 sets of gestures are added, the
impact on accuracy converges at approximately 1%, which is a significantly lower
value than when there are up to 5 sets (top-right of Figure 3.15).

In order to measure the performance of the algorithm on mono-user
datasets as well, a number of experiments were conducted, while an increasing num-
ber of examples were added to the training dataset, together with a constant testing
dataset. It was found that the more the number of additional gesture sets grew, the
better the recognition performance was, such as in the case of 1 to 7 sets, where r
increases from 80% to 89%, thus by +9%. However, the improvement becomes much
slower when more than 7 sets are added. According to the plots at the bottom of
Figure 3.15, R values from mono-user datasets are generally better than those of the
multi-user datasets, while they become similar for 15 newly added sets of gestures.
Nevertheless, P values from both multi- and mono-user datasets are globally close,
while above 10 sets, P values from the multi-user adapted training are better than
those with the mono-user dataset. This would seem to indicate that the training
of the algorithm using a multi-user adapted training has the potential to be more
robust than a mono-user training.

3.10 Summary of contributions

In this chapter, a tHRC methodology was developed and implemented for two indus-
trial use-cases, that of door-assembly (co-presence) and that of motor-hose assembly
(collaboration) scenarios.

In summary, three major scientific contributions are presented. The first
contribution is the development of a vision-based methodology for recognising the
situated professional gestures of operators. The algorithm receives depth imaging as
input and continuously outputs the actions of the operators online. The second sci-
entific contribution is the ‘on-the-fly’ temporal adaptation of the robot’s behaviour,
according to the operator’s behaviour, which opens a broad pathway for considering
the robot as a partner instead of a tool. Finally, it has been proved through this
study that building external HAI-based perception layers onto the robot, gradually
increases its understanding of the actions of its partner, thus contributing towards
a more natural collaboration.
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Figure 3.15: Training adaptation when a new operator joins the assembly line.

Top: P , R and F values (left) and their improvement (%) (right) as a function of

progressively added sets of gestures for a multi-user training. Bottom: Comparison

of P (right) and R (left) values when additional gestures sets are put in the multi-

user (with red lines) and mono-user (with blue lines) training datasets. (use-case:

motor-hose assembly; sensor: depth; method: HMMs - K-Means)

Figure 3.16 illustrates my scientific contributions to tHRC. The more
human-centric the information that is extracted, the more the perception of the
robot is enriched. The more its perception is enriched, the more it can anticipate the
human’s behaviour and accordingly adapt its own, thus rendering the collaboration
more natural. In other words, in order for the robot to become a partner of the
human, it needs to be able to understand not only its task but also its colleague.
The introduction of collaborative robots into industry (level 0) is the baseline (fast
easy training but no adaptation during collaboration) and still the most frequent case
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scenario found today. However, the button that activates the process of the robot
can be replaced by the detection of the position of the operator’s hand when s/he is
ready to receive a part from the robot (level 1). Both spatial and temporal profiles
remain constant and predefined. Moreover, human action and gesture recognition
enable the temporal adaptation of the robot according to the rhythm of the operator
(level 2). I am currently working on the development of dynamic spatio-temporal
profiles that receive the positions and actions of the operator as input parameters,
as well as on the extraction of movement analytics that will permit the monitoring
of the operator (level 3).

Figure 3.16: Overview of scientific contributions (in blue) for a natural Human-

Robot Collaboration and ongoing work (in green). ’0’ stands for the current baseline

in the industry.
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4.1 The Big Picture

This chapter describes my scientific contribution to the in-person transmission of
expert movement skills to apprentices. An HAI-driven methodology was developed,
in which the computer acts as mediator in sensori-motor human learning. The
methodology proposes a performance mode for capturing and modelling the expert
know-how, as well as a learning mode for its transmission to the apprentice (Figure
4.1).

In the performance mode, the motions of the expert are captured using
vision-based sensors. Motion descriptors are extracted from the signal and stochastic
learning is used to model kinematic elements of his/her expertise and to recognize
them on a unknown signal. In learning mode, the apprentice imitates the expert
gestures and motion descriptors are extracted from his/her signal and compared
with the expert descriptors in real-time. When the apprentice deviates from the
expert gesture, both sonic and optical sensori-motor feedback is generated by the
computer in order for him/her to adjust the gesture according to that of the expert.
The deployment of the methodology is articulated around three scientific hypotheses
concerning the contribution of HAI and motion capturing in: 1. extracting expert
knowledge from the recordings; 2. the self-training of the apprentice after having
received an in-person training session from the expert and 3. generating sensori-
motor feedback to assist with human learning.

The performance of the approach is evaluated in the use-case of the wheel-
throwing art of pottery. For this purpose, two expert craftsmen were recorded: one
from Vallauris (considered to be France’s clay capital) and Mr Thodoris Galigalidis
from the Ceramic School of the Therapeutic Centre KETHA ITHAKI in Thessa-
loniki, Greece.

The scientific contributions presented in this chapter were conducted by
supervising the PhD of Alina Glushkova on ‘Gesture recognition technologies in
managing movement skills. Sensori-motor feedback as a gamification mechanism’
[Glushkova 2016], funded by the i-Treasures FP7 project. A number of figures of
this chapter are extracted from her thesis.
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Figure 4.1: Methodology for capturing, modeling and recognition of expert gestures

with the aim of computer-mediated human learning

4.2 State-of-the-Art

Movement-based interactive systems for sensori-motor learning generate augmented
feedback which supports human learning. These systems are based on a feedback
mechanism that collects motion data as input and computes the deviation/variance
between the reference gesture (in this case, the expert gesture) and the incoming
gesture (in this case, the apprentice gesture). Such systems are being used in various
application domains, such as in rehabilitation [Kitago & Krakauer 2013] or in voca-
tional training, but particularly in contexts where the transmission of skills occurs
in person [Dimitropoulos et al. 2018].
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4.2.1 Sensori-motor human learning principles

The learning of motor skills was studied quite thoroughly and extensively by psy-
chologists, physiologists and ethnologists in the 20th century and continues to be so.
Newell divides the motor skills into perceptual, cognitive, communicative and other
categories [Newell 1991]. Humans develop a sensori-motor intelligence that allows
for motor control, coordination, and action.

According to Piaget, embodied intelligence is acquired through the senses,
through experiences and consequent ambient reactions [Piaget 1976], where a map-
ping between motor and sensory parameters is created [Wolpert et al. 2011]. For ex-
ample, the contextual cueing phenomenon occurs during the learning process where
visual features of objects, tasks, or the environment are associated with kinematics
[Makovski 2018]. Failure in learning enriches sensori-motor mapping, according to
Roger Schank, a cognitive psychologist and AI-theorist [Schank 1997].

Sensori-motor feedback aims to support the process in which the human
learns to anticipate his/her environment and to eliminate kinematic errors. It is
based on a priori modelling of human movements [Manitsaris et al. 2014a]. Mo-
tor skill acquisition constitutes a fundamental phase in the learning process where
a new motion pattern is transmitted to the apprentice. It is a dynamic process
where the apprentice learns both how to select single movement elements and
combine them fast and accurately [Diedrichsen & Kornysheva 2015]. Shmuelof de-
fines motor skill acquisition as an improved trade-off between speed and accuracy
[Shmuelof et al. 2012]. Another fundamental phase in the human learning process
is motor adaptation. Wolpert defines it as the process by which the motor system
adapts to perturbations in the environment [Wolpert et al. 2011].

The body mechanisms that are activated in the two sensori-motor learning
phases vary significantly. Changes of a high amplitude occur in the way human
movement is executed during the skill acquisition phase, while micro kinematic and
kinetic adjustments occur in the adaptation phase.

4.2.2 Machine learning supporting sensori-motor human learning

Various machine and deep learning techniques can be applied in sensori-motor hu-
man learning. Recently, Caramiaux published a short review on adaptation capabil-
ities of machine learning for human movement modelling [Caramiaux et al. 2020],
focusing on parameters adaptation on probabilistic models, and transfer or meta-
learning or adaptation through reinforcement learning. Nevertheless, template-
based methods have also proved their scientific value with evidence, when the learn-
ing occurs in-person (e.g. expert/apprentice), providing an online characterisation
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of the temporal evolution of the incoming gesture by rescaling the reference gesture.

4.2.2.1 Probabilistic models

Nowadays, stochastic and probabilistic approaches, such as HMMs, Gaussian Mix-
ture Model (GMM)s or SS, are considered as ‘classic methods’ for gesture recognition
or generation, as previously described in Section 2.2.2.

GMMs are widely used in robotics for teaching the robot to adapt its
movement parameters when new target parameters are set [Calinon 2016]; they are
also used in gesture control of sound by teaching the parameters of a new user with
a single example. HMMs are applied when it is important to take into account the
internal states of a gesture, whether for recognition [Françoise & Bevilacqua 2018] or
generation of stylistic walking movements [Tilmanne 2013]. SS is used to model the
spatiotemporal dynamics of the human body by updating the state parameters of
the GOM and ‘specifying’ the HMM-based recognition using the confidence bounds
of an expert performance [Manitsaris et al. 2020] (presented in Chapter 2). It is also
used to model movement variations, such as speed, scale and rotation, as presented
in [Caramiaux et al. 2014].

Therefore, parametric adaptation of probabilistic models allows for micro-
kinematic adaptation to tolerated movement variations, when restricting them, using
either a single example or a few examples.

4.2.2.2 Transfer and meta-learning with Deep Neural Networks

In transfer learning, an initially trained neural network that learns movement fea-
tures (or embeddings) on a source domain is adapted to a new or similar knowledge
domain, thus providing it with good features.

Temporal convolutions are used for transfer learning, whether for improv-
ing the classification accuracy when both the source and target domains consist of
motion data from the same users, in different periods [Rad & Furlanello 2016], or
for automatically synthesizing character movements from given trajectories, by map-
ping low level human motion to high level parameters that are easily configurable
by the new user [Holden et al. 2016]. Spatio-temporal convolutions are also used
for transfer learning, whether for gesture recognition, when only a few examples
per class are available [Kikui et al. 2018], or for improving classification accuracy
[Côté-Allard et al. 2019]. An RNN is trained offline on the human motion tran-
sitions and then online using recursive least square errors for adapting the robot
behaviour to that of the human gestures [Cheng et al. 2019].
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According to Caramiaux, there are still research challenges concerning how
the size of the training datasets affects transfer learning and whether a catastrophic
‘forgetting’ could occur after successive transfers [Caramiaux et al. 2020].

In meta-learning, or learning-to-learn, the goal is to improve the learn-
ing algorithm given the experience obtained through various learning episodes
[Hospedales et al. 2020].

Meta-learning is applied in teaching a collaborative robot to perform a
set of actions using one-shot imitation learning with a regressor against the output
actions, resulting in an equal performance between seen and unseen demonstra-
tions [Duan et al. 2017]. Moreover, a model-agnostic meta-learning approach that
is compatible with any model trained with gradient descent is introduced by Finn
[Finn et al. 2017] and extended by Yu to cover one-shot imitation learning by a
robotic arm [Yu et al. 2018]. Finally, similar approaches are also applied to hu-
man motion forecasting for unseen tasks when big annotated datasets are available
[Gui et al. 2018].

4.2.2.3 Deep reinforcement learning

Deep reinforcement learning assumes that machines can learn from their actions,
similar to the way humans learn from experience, using trial-and-error interactions
with their environment.

Many strategies for training a reinforcement learning algorithm are pro-
posed. One strategy is to initialise the reinforcement learning network us-
ing imitation learning [Kober et al. 2013]. Another strategy consists of invers-
ing the reinforcement learning by deriving cost functions from demonstrations
[Finn et al. 2016].

Furthermore, learning a movement from expert performances constitutes
a major challenge for the in-person transmission of motor skills. Generative Adver-
sarial Imitation Learning (GAIL) can go some way towards overcoming the prob-
lems by discriminating between expert motion trajectories and artificially generated
ones [Ho & Ermon 2016] and completes the process through reinforcement learning
where the acceptable trajectories are defined by previous successful performances
[Guo et al. 2018]. When GAIL and reinforcement learning are simultaneously com-
bined, the algorithm learns both faster and more accurately [Zhu et al. 2018].

Nevertheless, the training of a reinforcement learning architecture is often
very slow and may generate unnatural motion trajectories [Caramiaux et al. 2020].
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4.2.2.4 Similarity measurement using temporal rescaling

Although a pair of time series might appear to produce shape and amplitude similar-
ity (e.g. expert and learner motion data), they can be considered to be out-of-phase,
and, in such cases, classical distance measurement fails.

By temporally warping the motion time series, similarity measurement
functions can be applied to characterize the distance between the sequences by
contemplating temporal elastic shifting [Folgado et al. 2018]. DTW and Longest
Common Subsequence (LCSS) are applied to compensate for non-linear distortions
and measure the similarity between the time-series. Nevertheless, there are a number
of challenges related to this approach such as in cases where an improper x-axis
warping occurs (phenomena of ‘singularities’) trying to express amplitude variability
in the y-axis [Keogh & Pazzani 2001]. A number of variants of the DTW have
been developed to address this issue, such as Derivative Dynamic Time Warping
(DDTW) or Weighted Dynamic Time Warping (WDTW), but they still depend
strongly on the nature of the data (e.g. whether or not the signal has a higher
degree of information on its first derivative). The implementation of the DTW over a
sliding window, as with the approach of [Gillian et al. 2011] or [Folgado et al. 2018],
can overcome the alignment challenges of the DTW by reflecting a feature-to-feature
or window-to-window similarity. A distance metric, such as the Euclidean or the
Mahalanobis, can then be applied to the two motion time-series, over 3D motion
data, or as a standard deviation over the axis.

Time-warping related approaches are usually based on one-shot learning
since they consider the first data sequence as reference and the second as incoming
gesture. Although they suffer from a quadratic time and space complexity, they have
proven their applicability in the human motion analysis domain, such as in music
and dance [Gillian et al. 2011, Ferguson et al. 2014], rehabilitation [Jégo et al. 2013]
and sensori-motor learning of professional gestures [Glushkova & Manitsaris 2015].

4.2.3 Augmented feedback in situation-based sensori-motor hu-

man learning

Humans make use of various types of information during motor control [Adams 1971,
Rigal 2003], which is linked to their proprioception. In situation-based learning,
the augmented or extrinsic feedback is information that is provided to the learner,
through the use of an external source, whether that is via the expert/teacher or is
computer-mediated [Astill & Utley 2008, Schmidt & Wrisberg 2008]. The types of
augmented feedback are analytically described in Figure 4.2

According to [Sigrist et al. 2013], concurrent augmented feedback usually



66 Chapter 4. Computer-mediated sensori-motor human learning

helps the novice to quickly understand the structure of the gesture, without having
any cognitive overload. It also helps experts/teachers in the sense that teaching
specific details of the movement can be a complex task, especially when the expert
also has to monitor and provide the learner with feedback concerning automated
but incorrect movement. Furthermore, the more the performance of the learner
improves, the more the frequency of the concurrent feedback should be reduced, or
simply switched to terminal feedback. According to the multiple resource theory of
Wickens [Wickens 2008], audiovisual feedback enhances the perception level of the
learner. The distribution of the information to the 2 modalities is appropriate since
vision is usually highly loaded (e.g. when manipulating tools or objects). Moreover,
when the goal of the task is to learn a specific trajectory, visuohaptic feedback is
reported to be beneficial (e.g. in reducing spatial errors) [Ruffaldi et al. 2009].

Finally, general conclusions purporting that sonic feedback is systemati-
cally better than visual feedback are not consistent, especially if the sound is not
properly designed [Sigrist et al. 2013]. Multimodal feedback seems to be beneficial
for the learning of complex tasks. Nevertheless, because of the great technical effort
required to organise scientific studies for a large number of real-life situations, there
is a lack of systematic evaluation of the efficiency of the feedback, given the gesture
categories [Wolpert et al. 2011].

4.3 Objectives beyond SoA

The purpose of this research was to study whether computer-mediated sensori-motor
feedback can have a positive influence on the process of human learning motor skills.
Thus, three research hypotheses were proposed (Figure 4.1):

H1 - Knowledge extraction: A machine can learn to recognize the kinematic param-
eters of expert technical gestures

To confirm or refute this hypothesis, a number of experiments were implemented to
test whether a machine is able to recognize expert gestures with high accuracy after
having had training on a number of gesture examples. The relationship established
between the expert and the learner during the in-person transmission, as well as the
difficulties the learner faces during self-training have been taken into consideration.

H2 - In-person transmission and self-training: Machine learning and gesture recog-
nition can contribute to the evaluation of the gestural performance of a learner in a
self-training situation without providing any feedback

To confirm or refute this hypothesis, a number of metrics that evaluate the learning
progress are defined, these being based on both the spatial and temporal parameters
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Figure 4.2: Feedback categorisation for experimentally confirmed (solid) or hypoth-

esized (dashed) effectiveness to enhance motor learning depending on functional

task complexity, according to [Sigrist et al. 2013], the broader the shape, the more

effective the strategy is.

of the gestures. The experiments were implemented after in-person transmission and
without the presence of the expert.

H3 - Impact of computer-mediated sensori-motor feedback on human learning The
computer-mediated sensori-motor feedback has a positive impact on human self-
training.

To confirm or refute this hypothesis, the metrics from H2 were used to evaluate
whether the gesture performance of the learner improved when computer-mediated
sensori-motor feedback was provided.

4.4 A methodology for training the computer to assist

the human learning of movement skills

The identification of the embodied knowledge was based on the implementation of
semi-conductive interviews with the experts in order to collaboratively define the
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scenario and its specifications as well as the vocabulary of gestures (Figure 4.1). The
type of motion sensors that were compatible with the scenario were also defined and
used for recording the expert performing a sufficient number of repetitions for all the
gestures of the vocabulary. Then, the motion data, whether positions or rotations
for a number of body joints or segments, were pre-processed and normalized for use
as a dataset for training machine learning models.

In the second methodological layer, Human-centred Artificial Intelli-
gence (HAI) methods and techniques were used to build a perception layer
for the computer that would allow it to recognize the gestures of the vo-
cabulary when an unknown example was given to it [Manitsaris et al. 2014b,
Glushkova & Manitsaris 2015]. More precisely, machine learning models were
trained on the motion data of experts. The ability of the computer to recognize un-
known examples of the gesture vocabulary e.g. from an apprentice, is derived from
the ability to successfully mathematise the kinematic parameters of the expert ges-
tures (Hypothesis H1). In order for the computer to be able to continuously under-
stand whether the learner is correctly performing the gesture or not, the intra-expert
tolerance per gesture had to be calculated. The goal was to evaluate the degree of
repeatability for the expert and to explicitly define the confidence bounds, beyond
which the gesture e.g. of an apprentice, is considered as bad, according to the expert
data (see Chapter 2). To do so, one option was to use the average or maximum of
the standard deviation of the expert repetitions. In this research work, the one-shot-
learning approach introduced by [Bevilacqua et al. 2009, Bevilacqua et al. 2007] was
used to test the hypotheses. It consists of a hybrid approach between DTW and
HMMs that is based on template-based learning and allows the use of a single gesture
to define a gesture class. Nevertheless, an HMM formalism was used to compute, in
real-time, measures between the template and the incoming data stream.

In the third methodological layer, there was a 3-step procedure where: A.
the relationship between the expert and the learner during the in-person transmis-
sion was studied (expert and learner working together); B. the mechanism for evalu-
ating the learner was defined and C. once the in-person transmission was completed,
the self-trained performance of the learner was evaluated (learner alone), during
which no assistance was provided to him/her. In order for the digital learning-
by-doing experience to be as natural as possible, the observations from Step A
were taken into consideration in designing the sensori-motor feedback mechanism
[Piaget 1976]. The various steps in this methodological layer contributed to the
testing of Hypothesis H2.

In the fourth and final methodological layer, the learner experienced real-
time gamification in a self-training situation. The computer received as input the
gesture of the learner and recognized it (using HMMs for the pilot pottery use-
case). Then, it temporally aligned and compared it (using DTW for the pilot pot-
tery use-case) with the reference gesture of the expert. During the alignment, the
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evaluation mechanism was activated to verify whether the kinematic parameters of
the learner’s gestural parameters were within the confidence bounds that were de-
fined by the expert performance. When the performance of the learner was outside
the confidence bounds, the sensori-motor feedback mechanism was activated by the
computer, during which implicit or explicit sonic/optical indications were commu-
nicated to the learner in order for him/her to apply micro-movement adjustments
and correct his/her gestures ’on-the-fly’. The self-trained performance of the learner
(learner alone), while receiving online sensori-motor feedback, was evaluated again
(Hypothesis H3).

4.5 Capturing the motion of expert craftsmen: the

wheel-throwing pottery use-case

In order to study if expert gestures in wheel-throwing pottery could be captured,
analysed, and modelled through motion sensors and HAI, we conducted an exper-
iment with the initial participation of two potters, as described in a previously
published paper [Manitsaris et al. 2014b]. The scenario selected was the creation of
a simple bowl (18/23 cm diameter), which was completed through 4 phases, each
of them containing 4 or 6 gestures, depending on the object size and the quantity
of clay (Figure 4.3). The object of the first potter is smaller (18-20 cm in diame-
ter, 10 cm in height, using approximately 1.3 kg of clay) and his 4 main gestures
correspond to the 4 phases. The object of the second potter is bigger (20-23 cm in
diameter, 13 cm in height, using 1.75 kg of clay). Thus, the second potter has more
clay to manage and he is paying more attention to shape refining. Each gesture was
executed 5 times and recorded with the use of IMUs.

IMUs provide data about the rotations of body segments, which are mainly
Euler angles. From a cognitive point of view, it is difficult for humans to interpret
angles as a form of feedback for controlling their gestures. For example, informing
the learner that his/her hand should be rotated by 32 degrees cannot be easily
assimilated from a pedagogical point of view. For this reason, a third expert potter
was recorded on the same gesture vocabulary with a Microsoft KINECT sensor,
which provides the joint positions in 3D space.
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Figure 4.3: Main phases and gestures for the creation of a ceramic bowl

4.6 From in-person transmission to computer-mediated

sensori-motor human learning

4.6.1 Analysing in-person transmission and self-training: the role

of vision, hearing and touch senses

In the beginning, a mirroring system (‘me-to-you’ observation system) was estab-
lished, with the expert having an active role and the learner having a passive role
(vision is the main sense). The expert performs the gestures in real conditions,
with clay. The learner interprets the visual information and virtually imitates the 4
gestures introduced by the expert, with the same rhythm and speed. Then the roles
are flipped. The expert observes the learner performing the gestures and assists
him/her with oral and sometimes visual instructions (vision and hearing are the
main senses). Finally, the learner starts performing the gesture in real conditions.
Examples of oral instructions are: "push the clay higher", "press the clay to cen-
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tre it", "close your hands to get a smaller object diameter". The expert also uses
physical contact to adjust the movement of the learner in the case of errors (vision
and hearing and touch are the main senses). During the in-person transmission, the
learner is continuously assisted and evaluated by the expert potter.

Once the in-person transmission is completed, the learner practises alone.
In pottery, as well as in other manual arts and professions, the movement skills
are acquired only through practice and experience. In this self-training step, 11
beginner-learners (average age 26.2 years old; 10 right-handed and 1 left-handed; 6
women and 5 men; with a high degree of familiarity with technological devices such
as computers and smartphones, but no previous experience in using movement-based
interactive systems) participated in the experiment. Their gestures were recorded
using the Microsoft KINECT sensor.

4.6.2 Designing computer-mediated sensori-motor learning

The expert instructions can be categorized according to 2 criteria: A. their function,
that is often linked to the moment they intervene and B. the senses that the learner
should activate. Moreover, the instructions can be explicit, thus giving a clear
message (e.g. "open your hands"), or implicit, that require interpretation by the
learner.

The design of the computer-mediated feedback is based on the expert in-
struction typology (Figure 4.4) and the analysis of expert/learner relations during
the in-person transmission. Particular focus is placed on the correction and evalu-
ation instructions during the natural in-person transmission and their transfer into
the computer-mediated sensori-motor learning. Both implicit and explicit optical
computer-mediated feedback is designed and activated by the evaluation mechanism
when there is a significant deviation in the learner’s hand distance. The implicit
visualization consists of curves/waves that vary depending on the deviation value, so
that the greater the deviation is, the longer the curve. The goal of the learner is to
have a thin deviation line, equating with zero. For example, when the wave concern-
ing horizontal distance deviation appears on the right, it means that the learner’s
hand distance is greater than that tolerated and she or he must ‘close’ their hands
to reduce the distance. Also, explicit optical instructions are provided, showing the
general distance trajectories within which movements are to be performed (Figure
4.5).

Acoustic feedback is also provided when the deviation is not tolerated,
using the sound of a bell to attract the learner’s attention. Finally, at the end of the
gesture, evaluation feedback is also given to the learner, to provide him/her with
a global picture of his/her performance, in order to reinforce his/her motivation.
This takes the form of a global score that is given to the learner based on his or her
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temporal success percentage (100% minus percentage of temporal failure).

anticipation correction evaluation

acoustic optical acoustic acoustic

explicit implicit explicit

implicit

Figure 4.4: Expert instruction typology

Figure 4.5: The four indications used as explicit optical feedback

4.7 Modelling kinematic parameters of expert gestures

To evaluate the performance of the algorithm, the metrics introduced in Section
2.9 were also used to test the hypothesis on knowledge extraction (H1). They were
generated following the jackknife procedure. The performance of the algorithm was
excellent for Potter 1, P=100% and R=100% (3D Euler angles for body segments),
almost excellent for Potter 2, P=96% and R=97,5% (3D Euler angles for body
segments) and very good for Potter 3 P=93,5% and R=93,7% 3D joint positions).
Thus, H1 is confirmed since the algorithm was able to recognize kinematic parame-
ters of expert skills when an unknown example was presented to it (i.e. jackknife).

Measuring the repeatability for every expert potter is an important step be-
fore defining how much the algorithm should tolerate the performance of the learner
when imitating this specific expert. Thus, in order to identify which body parts con-
tributed most to the execution of the effective gestures, a Principal Component Anal-
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ysis (PCA) was applied, based on previous work presented in [Volioti et al. 2014].
In addition to the 3D positions of the 9 articulations of the body, the distance of
the hands/wrists was also tested. According to the Principal Component Anal-
ysis (PCA), hand distances constituted the principal component in the dataset.
Then, the standard deviation of the distance was computed after having temporally
aligned all the repetitions of the same gestures using the DTW. Standard deviation
was computed for each frame and coordinate axis and the maximum value for each
axis was taken as a tolerance threshold (λ). For example, Potter 3 had a very high
level of repeatability since while executing G2 twice, he might permit himself to
have a difference of only 1.02 cm on the x-axis. The z-axis has the most important
deviation from one repetition to the other, because the potter was moving his chair
or changing his position in front of the camera. Thus, the z-axis was not used for
the evaluation of the learning process.

4.8 A mechanism for evaluating the learner and activat-

ing the feedback

After the modelling of the expert kinematic parameters, the learner was invited
to use the same sensors and algorithm as the expert in order to do self-training.
Then, the algorithm presented in real-time with a recognition probability using the
learner’s gesture as input and the expert gestures as reference. The higher the
probability, the better the performance of the learner is.

During the recognition process, both time series, from the expert and the
learner, were temporally aligned. Then, spatio-temporal deviation measurement
was applied. As far as the temporal deviation is concerned, its duration should
be as close as possible to that of the expert. According to the expert, the learner
should assimilate the speed and rhythm of each gesture and the acceptable temporal
deviation is that of 5 seconds.

As far as the spatial deviation is concerned, the tolerance threshold λ is
added to the expert Euclidean hand distance DE. Every time the learner’s hand
distance DL exceeded the greatest tolerated distance DE + λ, or was less than the
least tolerated distance DE − λ, his/her performance went beyond the confidence
bounds and was thus considered to have deviated from the expert model. Thus, the
following controls were considered:
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if DLx < (DEx − λ) then (DLx − (DEx − λ))
if DLy < (DEy − λ) then (DLy − (DEy − λ))
if DLx < (DEx + λ) then (DLx − (DEx + λ))

if DLy < (DEy + λ) then (DLy − (DEy + λ))

(4.1)

The total deviation of a gesture is the addition of instant deviations, thus giving a
final score per axis.

4.8.1 Temporal deviation with and without computer assistance

To evaluate the temporal deviation and learning progress of the apprentice, the
difference between the average expert DurLi and learner DurExi duration per
gesture i for all of the 11 learners was computed:

11∑

i=0

(DurLi −DurExi) (4.2)

According to Figure 4.6, for G2 and G3, by indicating on the computer
monitor the current and desirable duration of the gestures, the learners were able to
better approach the temporal goal. The gesture with the biggest deviation was G4,
mainly because it contained an important number of movements of great amplitude
(taking a wire, removing the object from the wheel etc.) which required experience.

Figure 4.6: Sum of average temporal deviations with and without the time feedback

According to Figure 4.7, the number of learners who had important de-
viations from the experts’ average was reduced for three of the four gestures. G4
was an exception because the learning of the articulation of the different movements
inside G4 required additional time for practice.

The expert stated that it is important for the learner to have temporal
homogeneity while repeating the same gesture. However,the learner may perform the
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Figure 4.7: Number of learners with DurLi − DurExi > 5 sec with and without

time feedback

same gesture with a very different duration (from 25 - 45 seconds, or even 50 seconds
for G2 etc.). According to Figure 4.8, the use of sensori-motor feedback significantly
reduced temporal variation among the gestural performance of the learners for three
of the four gestures. In particular, for G1 and G2, all the learners had a temporal
deviation per gesture of <5 sec. Thus, by providing sensori-motor feedback of the
time counter, the learners reached a better perception of the desirable duration.

Figure 4.8: Number of learners with a temporal variability higher than 5 sec

4.8.2 Spatial deviation with and without computer assistance

By comparing the average deviations of the hand distances of the 11 pottery learn-
ers (with and without computer assistance) with the expert hand distances, we
concluded that the learner’s kinematic performance improved with the use of sensori-
motor feedback (Figure 4.9). Three of the four total gestures improved, while the
interpretation of visual and sonic feedback seemed to have helped students to un-
derstand the correct gesture trajectories.
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Figure 4.9: Average spatial deviation in centimetres on x and y axes compared to

the expert, with and without feedback

4.8.3 Recognition accuracy as a criterion for evaluating the learn-

ing curve

Leveraging on the results presented so far, we can assume that any improvement in
the recognition accuracy of the learner’s gestures during the computer-mediated
sensori-motor feedback would mean an improvement in his/her gestural perfor-
mance. The computer’s greater ability to recognize unknown gestural performances
from a learner would seem to indicate that they are closer to the expert perfor-
mances.

Figure 4.10 presents the confusion matrices of learner gesture recognition
performed with and without computer-mediated feedback (11 learners and 5 repe-
titions, thus 55 instances). When no feedback was provided, the gesture with the
lowest recall was the G3 because 17 repetitions of it were assigned to G2. This
may be due to the fact that both G2 and G3 were performed within the same very
limited spatial workspace (wheel-throwing diameter). The total precision and recall
reached was 80%. Interestingly, when feedback was provided, there was a +11% in
precision and +9% in recall. More precisely, the recall of G2 and the precision for
G3 improved respectively from 67% and 77% to 100%. This improvement could be
linked with the better spatial performance of gestures, as explained in the previous
section. Most importantly, total precision and recall increased by approximately
10%, reaching approximately 90% for both metrics.

The analysis of learner’s gestures, performed without feedback, permit-
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Figure 4.10: Confusion matrix without (top) and with (bottom) feedback

ted the identification of temporal and spatial deviation in comparison to expert
gestures. Motion capture, machine learning and gesture recognition allowed the
similarity measurement of the learner’s performance with the expert’s, thus pro-
viding confirmation of the second hypothesis (H2). The reduction in temporal and
spatial deviation of gestures performed with computer-mediated feedback assistance
and the improvement of their recognition accuracy, validated the third and final hy-
pothesis that sensori-motor feedback assists with self-training and contributes to
improving a learner’s performance.

4.9 Summary of contributions

In this chapter, a methodology for considering the computer as a partner in sensori-
motor human learning was proposed and the concept was proved for the transmission
of movement skills in the wheel-throw art of pottery.

In summary, three scientific contributions that justify the role of an HAI-



78 Chapter 4. Computer-mediated sensori-motor human learning

driven computer as a partner in learning expert gestures were considered. The
first contribution was the development perception layer for the computer that is
able to recognize kinematic expert skills. The second contribution consisted of
extending this perception layer in recognizing gestures executed by apprentices from
a vocabulary of expert performances and measuring the distance between them.
Finally, the third contribution offered validation of the hypothesis that computer-
mediated sensori-motor feedback has a positive impact on the human self-training
process.
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5.1 The Big Picture

A musical instrument is a physical interface that can be considered as a means of
musical expression and performance. The acoustic piano (pianoforte) is undoubt-
edly one of the most successful of human creations as it articulates intermediary
mechanisms to trigger organised sounds. DMIs, and, in particular, MIDI keyboard
instruments, are financially affordable, come in smaller sizes and offer great flexibil-
ity in terms of being able to select the synthesised sound. Although they are strongly
inspired by the original sound-producing piano finger gestures, it is nevertheless a
fact that they neither replace pianos nor use the whole potential of New Interfaces
for Musical Expression (NIME). Mastery of both acoustic pianos and DMIs requires
years of training, practice, and apprenticeship before players are able to perform.
Thus, ‘learning’ musical gestures and ‘performing’ music are usually perceived as
separate concepts and experiences, simply because there is no quick transition from
novice to expert.

This chapter describes my scientific contribution to CCIs and more specif-
ically to DMIs. Initially motivated by the research perspectives of my PhD in
computer vision-based recognition of finger musical gestures [Manitsaris 2010], an
HAI-driven DMI was designed and developed to address both learning and perform-
ing needs. The motion of the upper-body part occurring inside 2 bounding volumes
above a tabletop is captured and sonified using explicit and implicit mapping strate-
gies (Figure 5.1). In learning mode, the learner can investigate various piano-like
fingerings to explicitly generate notes and sounds or implicitly modulate an audio
excerpt from an expert performer through his/her gestures. In performance mode,
finger and hand-based explicit instrumental mappings are proposed that make use of
physically-based piano models and synthesize stringed or plucked-instrument char-
acteristics. Moreover, accompanist gestures are also captured and used to control
reverberation, stereo-panning and other sound morphologies.

The main motivation for this work was to investigate a new form of part-
nership between the human and the DMI, where the musical instrument would be
much more than an interface, having as a unique goal the unidirectional control
by the human over the sound [Chadabe 2002]. Motion sensing and HAI opened up
completely new pathways in understanding the meaning of the musical gestures,
thus proposing various forms of collaboration, mainly in performing and learning
music. This collaborative process may unfold for years before a performance, or
it may also happen to novices, making the creative process a co-discovery journey
between the partners [Fiebrink 2017].

The scientific contribution presented in this chapter was conducted by su-
pervising the PhD of Edgar Hemery on ’Modeling, recognition of finger gestures
and upper-body movements for musical interaction design’ [Hemery 2017] and of
Christina Volioti on ’Machine learning in sonification of expressive gesture with the
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use of stochastic models’ [Volioti 2016], both funded by the i-Treasures FP7 project.
A number of figures of this chapter are extracted from their theses.

Figure 5.1: Generic methodology for gesture recognition and collaboration

5.2 State-of-the-Art

5.2.1 Typology and meaning of musical gestures in playing and

learning

The gesture vocabulary described by Delalande, which has been used extensively
in the literature [Delalande 1988, Cadoz & Wanderley 2001, Zhao & Badler 2001],
categorises musical gestures into three classes: 1. Effective gesture: necessary to
mechanically produce the sound (e.g. press a key); 2. Accompanist gesture: an
auxiliary but non-sound-producing movement associated with the effective gesture;
and 3. Figurative gesture: a gesture which is not related to any sound-producing
movements, but which conveys a symbolic message.

In the in-person transmission of music-playing, the meaning of musical
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gestures varies according to 3 different perspectives: a) first-person; b) second-
person; and c) third-person perspectives on gesture [Leman 2010].

The a) first-person perspective defines the meaning of the gesture for the
person that actually implements it (whether expert/teacher or learner). An expert
performer has developed the appropriate sensori-motor skills to be able to interpret
a musical piece and, at the same time, the mental capacity to be able to translate
the musical score into gestures and music, while a beginner has not.

The b) second-person perspective occurs during the in-person transmission
(e.g. in music schools). First, a mirroring system is established between expert
and learner: « my » perception of « your » gesture [Darwin 1872]. Then, the
learner executes the gestures by translating previously observed expert gestures
into ‘concrete’ actions.

The c) third-person perspective on gesture focuses on the measurement
of moving objects, usually using audio-recording, video-recording, motion cap-
ture technologies and brain scans, as well as on physiological body changes
[Camurri et al. 2005, Friberg & Sundberg 1999, Darwin 1872].

5.2.2 Gesture control of sound

In DMIs, gesture control of sound should be intuitive, thus translating motion data
into sound in a reactive way. The ‘mapping gesture to sound’ (or ‘gesture sonifica-
tion’) is the procedure where the motion data is being associated with the sound
parameters. In explicit mapping, the input is directly associated to the output,
while implicit mapping refers mostly to the use of machine learning techniques,
which imply a training phase to set parameters [Françoise 2015]. For this reason,
both the motion descriptors and the sound parameters that are going to be used for
the sonification, need to be defined. In practice, the user performs a gesture that
is recognized by the DMI and used to control the synthesized sound, following an
explicit or implicit mapping strategy. As far as the recognition is concerned, the
statistical and deep learning methods and approaches implemented have already
been presented in Sections 2.2.2 and 2.2.3.

5.2.3 New Interfaces for Musical Expression (NIME)

Movement-based interactive systems, that allow for embodied performances through
motion capturing and MIDI mapping, appeared in the 1990s. ‘The Lady’s Glove’
was the first glove that transformed hand and finger gestures into sounds and it
was developed for the purposes of the Ars Electronica Festival 1991 [Rodgers 2010].
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Beyond the Digital Baton of the MIT Media Lab, various musical interfaces, such
as the USB Virtual Maestro [Nakra et al. 2009], or the Modular Objects MO of
IRCAM, made use of various inertial sensors or accelerometers to capture body
motion and translate it into music.

Omnitouch wearable interfaces offer tangible interactions that are re-
stricted to a flat surface with finger tapping, scroll, flick, pinch-to-zoom etc.
[Harrison et al. 2011]. A well-known example of such interfaces is The ReacTable
[Jordà et al. 2007]. It is a tangible tabletop for multi-player music interaction that
uses real communicating objects. It is equipped with an infrared camera which
recognizes objects on the table and activates sounds accordingly.

Nevertheless, more recently, motion data can also be obtained with com-
puter vision and RGB-D cameras. The Leap Motion sensor opened new path-
ways for finger-based control of sound synthesis. For example, the GECO ap-
plication [Hantrakul & Kaczmarek 2014] enables MIDI control through 3D mid-
air gestures; Han and Gold [Han & Gold 2014] created an air-key piano and an
air-pad drum; while the BigBang rubette controls notes, oscillators, modulators
[Tormoen et al. 2014] etc. Finally, the Airpiano interface combined a Leap Motion
with a transparent sheet of PVC to create a multi-touch musical keyboard for hover-
ing control [d’Alessandro et al. 2015]. The Seaboard by Roli1 and the TouchKeys2

by Andrew McPherson are both extended piano keyboards which consider only fin-
gertips.

5.3 Objectives beyond SoA

Leveraging on the above SoA, three objectives were defined:

O1: Motion capturing finger and upper-body gestures in musical interaction

Development of a markerless vision-based algorithm for capturing the motions of
the whole upper-body in musical interaction.

O2: Musical gesture recognition and sonification in 3D interactive sound spaces

Development of an HAI-based perception layer that understands micro and macro
human movements and sonifies them following various sonification strategies.

O3: Digital Musical Instrument for performing and learning

Development of a novel musical instrument which allows for piano-like music per-

1https://roli.com/products/seaboard
2https://touchkeys.co.uk

https://roli.com/products/seaboard
https://touchkeys.co.uk
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forming, learning and appreciation of music in general, without physical intermedi-
ary mechanisms.

The methodology developed for O1 contributes to the answering of Q1 (see Chapter
1, Section 1.2), by selecting the appropriate vision-based motion sensors and kine-
matic motion parameters for accurate recognition of upper-body gestures in musical
interaction.

O2 contributes to the answering of Q2 (see Chapter 1, Section 1.2), by exploring the
possibility of replacing current intermediary instrumental mechanisms for ’sensing’
human motion and ’translating’ them into sound by using HAI algorithms.

O3 contributes to the answering of both Q1 and Q2. With regards to Q1, it studies
whether HAI algorithms can recognize not only sound-producing finger motions,
but also accompanying upper-body movements. As far as Q2 is concerned, the
main contribution concerns testing whether such a system of intelligence can be
seen as a playful, embodied and expressive partnership between the human and the
machine.

5.4 Overview of the Digital Musical Instrument

Our DMI should be regarded as work which contributes to the continuation of
the NIME community. Inspired by the piano, we use in our system, metaphors
of pianistic gesture. In past decades, as mentioned previously, MIDI keyboards
became more and more popular because of their low price, their smaller size, bulk
and weight and their flexibility in terms of sound choices. The downside of these
instruments has been that they do not and cannot replace real pianos in terms of
sound quality and they do not fully exploit the potential of what could be done
with digital interfaces. With this in mind, the DMI brings the concept of keyboard
instruments to the fields of gesture recognition and human-computer interfaces.

The DMI is an intuitive interactive system, which enables play with the
fingers and upper part of the body. On a deeper level, it aims at capturing piano-like
gestures in order to create sounds with them. These gestures are finally transformed
into sounds via a ’mapping’ phase; however, the objective is not a virtual replace-
ment either of the piano or of any other keyboard instrument.

Moreover, the DMI can be used as a system of intelligence for musical ped-
agogy, where the learner interacts with it to master piano-like techniques or explore
musical patterns of well-known composers. Although the interaction has been sim-
plified for the purpose of having a smooth learning curve, it requires some practice
in order to perform elements of musical stylistics like dynamics and articulation.
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Many early and advanced prototypes of the DMI were developed mainly to
explore various possibilities in the design and building of its ’table’. Nevertheless, all
of them have a common purpose and base of sensors and algorithms. The first pro-
totype of 70x40x13 cm was built using plexiglass (Figure 5.2) and was equipped with
2 Leap Motion sensors for detecting and tracking hand and finger positions in 3D
space; 2 Animazoo IMUs mounted on the wrists for measuring of their 3D rotations;
1 Microsoft KINECT sensor for capturing the upper-body motions and obtaining
3D joint positions; and 1 Emotiv sensor to record electrical brain patterns (research
partly sponsored by the i-Treasures partners). However, gestural interaction is not
limited to this 2D surface, but instead extends to a volume of up to 30 cc above the
plexiglass. The presentation and appearance of the DMI have progressively been
transformed into a more compact and portable box (Figure 5.3) of 50x50x15 cm
that can be more easily transported. The laptop(s) where the algorithms run can
also be put on the lid of the box.

Figure 5.2: First prototype of the DMI

In general, creating the DMI (i.e. designing and implementing the architec-
ture, the interaction design and the sound mapping software) has been a demanding
process. We had to go back and forth between these three areas cyclically: elimi-
nating skeleton joints, adding features, changing the tilt of the table, changing the
material used for the table, experimenting with sound synthesis engines etc., until
a coherent and satisfactory way to play the instrument was found.



86 Chapter 5. Digital musical instruments

Figure 5.3: Latest prototype of the DMI, designed and implemented by Edgar

Hemery

5.5 Bounding volumes for recognition and interaction

The movement-based interaction is performed inside two bounding volumes above
the acrylic sheet (or plexiglass): the micro bounding volume, where finger and hand
motions are detected, and the macro bounding volume, where body movements
of a large amplitude are detected. The two bounding boxes play the role of 3D
interactive spaces where gestures are recognised and sonified. A smooth/natural
transition between them is supported.

The micro bounding box is a dematerialized bounding cone (pink cone in
Figure 5.4), which is defined by the perpendicular axis to the Leap Motion and an
angular span equal to the range of view of the sensor. Its intersection with the
‘table’ defines a circle with a 45 cm diameter. The depth of the cone depends on the
lighting conditions and can go up to 45 cm above the surface. All micro interactions
occur withing this bounding cone, and hands and fingers are not captured outside
it.

Inside the bounding cone, a smaller bounding trapezoid, with a height of
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Figure 5.4: Micro (pink) and macro (blue) bounding boxes

1 cm above the acrylic surface is defined (red volume in Figure 5.5). Fingerings
are only recognised inside the bounding trapezoid. In order to be able to calibrate
the distance between the acrylic surface and the sensor, the user is asked to touch
and slide on the surface with his/her fingertips for about 10 seconds. In this way,y-
coordinates of the fingers are computed, thus providing a threshold, to which 1 cm
is added, to obtain the position of the upper side of the trapezoid.

Figure 5.5: The y-axis detection zone (bounding cone) is in red and the Leap Motion

field of view (bounding cone) is in pink

The macro bounding volume is defined by the Microsoft KINECT sensors
that are placed approximately 1.2 m in front of and 1 m above the table (blue volume
in Figure 5.4) and captures the head, right and left arms and torso.
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The IMUs do not follow the principle of the bounding volumes and can
operate independently and without the use of the cameras.

5.5.1 Modelling hand positions: the octave-like metaphor

In order for the DMI to recognize piano-like fingerings, the acrylic surface of the
table has been segmented into a number of ‘mental zones’, which are represented
by three different colors in Figure 5.6. Each zone consists of a set of fives notes,
with each note corresponding to one fingertip. When a hand is in the zone, only
one particular finger can play one particular note as its ID is associated with this
particular note. For example, if the right index finger is inside the central zone, it
will play the note ‘D’ or if the same finger is in the right zone, it would play the
note ‘G’. Thus, each hand covers three zones and two hands cover six zones, which
correspond to 3 real octaves from C2 up to C5.

Figure 5.6: The keyboard metaphor: 3 zones per hand, 5 notes per zone
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5.5.2 Modelling piano-like fingerings: the keyboard metaphor

Fingerings constitute the cornerstone of piano-playing and their retrieval
on RGB sequences have presented a personal research challenge for many
years [Manitsaris & Pekos 2008, Manitsaris & Pekos 2009, Tsagaris et al. 2011,
Manitsaris et al. 2015, Manitsaris et al. 2016]. They are decomposed into a num-
ber of movement primitives that are internal states of fingering.

During the fingering, four movement primitives occur: preparation, attack,
sustain, release (PASR). In the preparation state, one or several fingers lift upwards.
In the attack state, one or several fingers go down and in sustain state (declination of
the attack state), one or several fingers remain in contact with the acrylic surface.
In rest position, the hand and fingers are relaxed and in contact with the table
surface. The gestures terminate outside the bounding cone (Figure 5.7). Finally,
a release state is considered as the initial and final state, which means that the
process initiates and terminates when the fingers are outside the bounding trapezoid.
Starting from the release state, the fingers can forward to any other states except
to the rest position.

The motion descriptors that are extracted when a gesture occurs within
the micro bounding volume are the 3D positions of the fingertips for both hands.
Moreover, medium-level features are computed based on the 3D fingertips positions.
These are 1. the preparation time that counts the duration a fingertip needs to go
out of the bounding trapezoid and come back into it; 2. the inter-onset-time that
counts the duration between two consecutive attacks; 3. the sustain time; and 4.
the rest time.

Figure 5.7: Movement primitives for fingering: preparation, attack, sustain and rest
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5.5.3 The elastic rubber and kite-flying metaphors

Beyond the sound-producing piano-like gestures, a number of gestural metaphors
have been integrated into the macro bounding volume. They are pantomimic ges-
tures that convey a meaning by miming an action. The elastic rubber gesture is
a metaphor where a rubber cable is stretched and released, which is based on the
Euclidean distance between right and left hand. The kite-flying metaphor is based
on a gesture deployed along a 3D rotation on a plane defined by positions of the
head and the two hands.

Figure 5.8: Left: The elastic rubber gesture with the lengthening/shortening of

the Euclidean distance between hands. Right: The kite-flying gesture where the

triangular plane reacts according to how much the human body is rotating on the

left or on the right (z-axis - red narrow), going forwards/backwards, or hands are

going up or down (x-axis - yellow narrow)

5.6 Gesture sonification strategies

5.6.1 Explicit sonification

In this section, a general overview of the most important explicit sonification (map-
ping) techniques that are integrated into the DMI is presented. For a more analytical
presentation (e.g. classic fingerings in piano-playing vs cover fingerings on the DMI,
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how to play a complete musical scale on the DMI etc.), please refer to the PhD
thesis of Edgar Hemery [Hemery 2017].

A form of instrumental mapping was implemented, within the micro bound-
ing volume, which made use of both the keyboard and octave metaphor as well as
the PASR model for the movement primitives. To accomplish this, the Pianoteq
plugin, that is a physically-based piano model, was used [Rauhala et al. 2008]. The
DMI used the note-on/note-off parameter to map fingering with a pitch/MIDI (fre-
quency and duration), as well as the velocity parameter to map the velocity of the
fingertip in the ‘attack’ state (intensity of the note).

Furthermore, for string sounds, a solution was found in the Karplus-Strong
algorithm, as used in [Jaffe & Smith 1983], which proposes a system with 32 slightly
de-tunable strings in parallel. In addition to the motion/sound mapped parameters
for the piano sounds, the de-tune parameter was also used to facilitate a continuum
of different parameters. Thus, the timbre continuum is attributed to the y-axis of
the surface, while pitch is attributed to the x-axis, and velocity is attributed to the
z-axis, as presented in Figure 5.9.

Figure 5.9: Pitch-timbre space

In addition, a filter control that maps the left-hand y-axis to the cutoff or
center frequency was implemented. In practice, the filter is applied onto the sound
that is triggered with the right hand, and its parameters are controlled, while the
left hand goes up and down within the micro bounding volume.
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5.6.2 Learning-by-demonstration for implicit gesture sonification

The implicit sonification strategy that was integrated into the DMI had a twofold
goal: 1. performing while remaining confident as to the reference gesture provided
by an expert; and 2. learning by imitation the musical gestures of an expert.

For this reason, the recognition and sonification engine x2Gesture
was developed [Volioti et al. 2014, Volioti et al. 2015, Volioti et al. 2016a,
Volioti et al. 2016b, Volioti et al. 2018], as it extends the GVF
[Caramiaux et al. 2014, Zandt-Escobar et al. 2014]. GVF implements SS and
Particle filtering for recognizing gestures using one-shot-learning. Moreover, GVF
uses a pre-fixed value (tolerance) within the observation equation for defining the
deviation between the various examples of the same gesture. The SS model of the
GVF is based on the assumption that a gesture depends on a 3D variation space:
speed, scaling, rotation. x2Gesture proposed an extension of the SS model of GVF
by introducing the assumptions of the GOM, which have already been analytically
presented in Section 2.4. Thus, the advantage of x2Gesture is that the deviation
among the various observations of the same gesture is statistically estimated by the
SS model and can dynamically change over time.

The algorithm includes two phases: the learning and the following phase.
x2Gesture is first trained with a single expert example for each gesture, along with
their attributed pre-recorded sound. In the phase that follows, the user imitates in
real-time the same reference gesture. For each performed musical gesture, x2Gesture
recognizes the input gesture and activates the appropriate confidence bounds. At
the same time, the model aligns the incoming gesture onto the template gesture, es-
timating also the gesture variations. The system resynthesizes a plausible imitation
of the original sound in real-time according to the user’s gesture performance, which
is described by the variables of speed, scaling, rotation and joint angles or positions.
Then, a new audio signal is generated by using the granular sound synthesis engine.
The better the recognition results are, then the better the gesture sonification and
re-synthesis of the sound is.

In practice, by introducing the assumption of the GOM into the recognition
engine, the expressive variations of the reference gestures (namely, ‘expert gestures’
since they are provided by the same user) are also taken into consideration through
the confidence bounds and can dynamically change over time.
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5.7 Fingering detection and explicit sonification assess-

ment

The first assessment layer for the DMI consists of the evaluation of fingertip detec-
tion. To this end, the inter-onset metric for 3 dynamic ranges, namely those of p,
mf and fff in an ascending C-Major scale, were used as a criterion. For this test,
10 successive performances of the same scale were recorded at the dynamic ranges
of p, mf and fff . The typical fingerings for an ascending scale are thumb-index-
middle-thumb-index-middle-ring-pinkie (8 fingerings). The results of the test are
presented in Figure 5.10. Since no missing detection occurs, only false positives
are presented. Accordingly, 8x10 fingerings per dynamic range were performed with
7.5% error for p, 1.25% error for mf , and no error for fff , while 80% of the detec-
tions were generated by the thumb. Since the intensity of the fingering is related
to the velocity of the fingertip, it was observed that the lower the velocity of the
fingering was, the more the error in the detection of the fingertip increased.

Figure 5.10: Fingering detection on ascending scale for p, mf , fff

In order to understand what the impact of the false positives was on the
musical performance, a closer look at the velocities of the fingerings was taken; thus,
it was observed that the velocities of the false positives were much lower than the
velocities of correct fingerings. When the ratio between correct and false fingering
was computed (Figure 5.11), it was concluded that the smaller the ratio, the larger
the velocity and the intensity was. Thus, false detection fingering that triggered
sounds with small intensities were masked by the correct note. In conclusion, only
p5 and p9 false fingerings were intelligible because their ratio was underneath a
threshold.
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Figure 5.11: Velocity ratio between correct fingering detection and false positive

Linear mapping between fingertip velocity and sound intensity (loudness)
was implemented. In order to test whether this principle was confirmed in practice,
the loudness of a C-Major scale played 5 times for p, mf and fff , and thus 15
recordings in all, were recorded by averaging the maximum amplitudes of the sound
over the last 5 milliseconds. The average peak was finally converted into decibels.
Therefore, there was a difference of 7.91 dB between p and fff with a standard
deviation of 1.92dB, mainly because of the imprecision in the calculation of the
loudness (only 5 samples over 1024). Moreover, the linearity among the different
range dynamics was confirmed, as shown in Figure 5.12.

Furthermore, the notion of latency is of a great importance for any musical
instrument, whether acoustic or digital, because we cannot cognitively accept any
intelligible delay between the effective gesture and sound production. As far as
the DMI is concerned, two tests were conducted to test latency, where an expert
performer was asked to produce: 1. a single note 10 times with the index fingertip;
and 2. an arpeggio (thumb-index-middle-pinky) 4 times at different tempos, varying
from adagio (80 Beats Per Minute (BPM)) to prestissimo (380 BPM). According to
Figure 5.13, there is latency of 57ms for repeated notes and 51ms for the arpeggio.

5.8 Gesture recognition and implicit sonification assess-

ment

During the development of the DMI, many functional and technical assessments
of implicit sonification were executed. They are analytically presented in the PhD
thesis of Christina Volioti [Volioti 2016]. Because of the synthetic goal of this thesis,
2 assessment case-studies are presented: 1. performing musical gestures using the
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Figure 5.12: Linearity among the different range dynamics

DMI; and 2. learning-by-imitation expert musical gestures [Volioti et al. 2015].

5.8.1 Assessing the accuracy in performing music

The following musical gestures are included in the musical vocabulary: (a) G1 as-
cending scale performed in legato style, (b) G2 descending arpeggio performed in
staccato style, and (c) G3 a musical excerpt from a famous Greek song. The du-
ration of the gestures is between 10 - 15 seconds and the 6 users repeated each
gesture 5 times, following various tempos: adagio, andante, moderato, allegro (Fig-
ure 5.14). Inertial sensors were mounted on the 2 wrists of the users and 3D Euler
angles were extracted. For both GF and GVF the tolerance was predefined at 0.1,
while for x2Gesture it was dynamically attributed through the SS models for the 2
hands and their confidence bounds. The algorithms were trained with the template
gestures and the pre-recorded sounds. In the recognition phase, x2Gesture selected
the appropriate confidence bounds. In sonification, the sound was re-synthesized
online, while the gesture was replayed, by using the granular synthesis engine. The
metrics that are described in Section 2.9 were also used for this assessment. They
were extracted following the jackknifing procedure and the gestures that were used
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Figure 5.13: Average latency according to BPM for repeated notes and arpeggio

for training and recognition came from the same user (mono-user test).

Figure 5.14: (a) G1 ascending scale, (b) G2 descending arpeggio, (c) G3 musical

excerpt from a Greek song

The recognition results are shown in Figure 5.15 and, in general, x2Gesture
outperforms the other algorithms by at least +1% precision while at user level GF
gives better results for 4 out of the 6 users.

Nevertheless, the recognition performance of the algorithms is only one pa-
rameter, while the stability in recognition is also important. Generally, the less the
algorithm ‘hesitates’ in recognition, the better it is for sonification, since each ‘hesi-
tation’ generates a ‘jump’ to a different sound. As a result, according to Figure 5.16,
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Figure 5.15: Precision and Recall for GF, GVF and x2Gesture

x2Gesture is more stable during the recognition process and gives the appropriate
maximum likelihood (Figure 5.17) faster than the other algorithms. In this case, all
three algorithms correctly recognised G3; however, automatically the sound synthe-
sis with x2Gesture would be expected to be smoother, given that all 3 algorithms
used the same sonification mechanism and sound synthesis engine.
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Figure 5.16: Temporal alignment and gesture progression for G3 from User 3 from

GF, GVF and x2Gesture

5.8.2 Assessing accuracy in learning music

In order to evaluate the use of the x2Gesture algorithm for learning musical gestures,
1 expert pianist was asked to perform the musical vocabulary and then 6 music
apprentices were asked to observe his personal style and perform the same gestures.
The musical dataset contained 90 examples (6 users x 3 gestures x 5 repetitions).

The data of the expert was used for training the algorithms while the data
of the apprentices was used for recognition and synthesis. Figure 5.18 presents the
result of the comparison for the 3 algorithms. They are consistent with what was
expected since they confirm the hypothesis that the confidence bounds generated
from the SS models of the expert can improve the recognition performance. An
improvement of at least +7% for Precision and +4% for Recall was provided by the
x2Gesture on a multi-user dataset.

5.8.3 Sound similarity between training and sonification

In order to test the hypothesis that better and smoother recognition means better
sonification, a similarity measurement between the original and the re-synthesized
sound was conducted.
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Figure 5.17: Instant likelihoods for G3 from User 3 from GF, GVF and x2Gesture

In this instance, the procedure of [Tchernichovski et al. 2000] was followed.
It consists of a Fast Fourier Transformation (FFT) that transforms the waveform
into a frequency space. The FFT window on the original sound describes its char-
acteristics (e.g. tonality, pitch, Wiener entropy etc.), which follow a different sta-
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Figure 5.18: Precision and Recall on a multi-user dataset for GF, GVF and

x2Gesture

tistical distribution. In order to obtain a global similarity between 2 sound signals,
the sound characteristics are converted into statistical distances. For example, the
tonality that is usually measured in Hz is converted to the median absolute deviation
and the Euclidean distance is then computed on the new characteristics. For each
pair of windows from the original and the re-synthesized that is labeled as ‘similar’,
the probability that the ‘match’ would have occurred by chance is computed. The
lower the probability is, the higher the similarity between the two samples. The
final ‘matching’ is measured using the similarity metric, which counts the number
of audio segments of the original sound that are contained in the re-synthesized one,
as well as the accuracy, which generates the median local similarity for the whole
signal and quantifies the ‘imitation’ ability of the new signal.

The similarity and accuracy for the musical vocabulary are provided below
for the x2Gesture, GF and GVF algorithms. Beyond the fact that the gesture
sonification from x2Gesture is slightly more similar to the original one and the
generated sound is at least +1.7% more accurate than from GF or GVF, there is
also a confirmation of the initial assumption which is that better recognition means
better sonification. For example, GF and GVF have a delay in recognizing G3

(Figure 5.17), which has a direct impact on the similarity between the sounds (Figure
5.19). Furthermore, slight delays in performing the gesture by the user may occur.
They could also be characterised as an expressive variation in the performance.
x2Gesture has the ability to remain correctly aligned with the appropriate template
gesture and to continue sonifying less accurately, but without delays, mainly due to
the use of the confidence bounds.
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GF GVF x2Gesture

Similarity Accuracy Similarity Accuracy Similarity Accuracy

G1 95% 76% 96% 76% 96% 77%

G2 96% 76% 96% 77% 96% 78%

G3 96% 78% 96% 79% 96% 81%

Total 95.7% 76.7% 96% 77.3% 96% 79%

Figure 5.19: Similarity and accuracy in sound synthesis compared to the original

sample for GF, GVF and x2Gesture

5.9 Summary of contributions

In this chapter, a methodology for conceptualising, designing and developing a new
DMI that is able to capture the whole upper-body motions, including fingers, and
translate them into music without any physical intermediary mechanism was con-
sidered.

In short, two major scientific contributions emerged from this study. First,
there was validation that in addition to effective musical finger gestures, other ges-
tures can modulate or generate sounds when an HAI perception layer is added to
the DMI. Equally well, there was evidence that HAI-driven DMIs can be musical
partners since they can contribute to the performance, learning and appreciation of
music in general, without using any physical intermediary mechanism.
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6.1 Other contributions and ongoing work

6.1.1 Vocal tract imaging and speech synthesis for post-

laryngectomy voice replacement

This work was done during my postdoctoral research at the ESPCI ParisTech. The
aim was to develop a voice replacement technology that permits speech commu-
nication without vocalisation, also known as SSI. The visual-speech recognition
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engine used in the proposed SSI is based on vocal tract imaging [Denby et al. 2011,
Cai et al. 2013]. The advantage of this engine is that it gives the opportunity to the
individual who has undergone laryngectomy to speak using his/her original voice.
Lip and tongue movements are recognized in real-time with the goal of extracting
text sentences, which are synthesized afterwards by a Text-to-Speech (TTS) system.
I contributed significantly to the creation of English and French voices, based on
semi-HMMs [Manitsaris et al. 2012]. The SSI system is installed on a backpack and
can be controlled remotely using a mobile device, and the new voices are installed
on a Web Server. This work was funded by the "Revoix" ANR research project.

6.1.2 3D reconstruction of a deformable revolving object under

heavy hand interaction

In this work, the goal was to reconstruct a 3D deformable object over time, in the
context of the live creation of a ceramic vessel by an expert potter. The hands
interact heavily with the clay in the creation process of the deformable object.
Particle energy optimization was used to extract the profile of the object and use
its radial symmetry to increase the quality of the reconstruction, thus removing
occlusion effects and noise. One or more streams of depth images can be used as
input to the algorithm [de Charette & Manitsaris 2019]. This work was funded by
the i-Treasures FP7 European project and was primarily developed by Raoul de
Charette, under my supervision.

6.1.3 3D hand and fingers pose estimation for gesture recognition

In this work, a 3D hand and fingers pose estimation model was built that is based
on depth imaging and Random Decision Forests. A time-of-flight sensor was used to
capture the finger motions. The algorithm was initially used to capture the finger
musical gestures with a semi-closed palm [Dapogny et al. 2013]. Subsequently, the
algorithm was improved to also cover parts of the upper body in driver-vehicle
interaction. More precisely, two use-cases were considered for application inside
the cockpit of a vehicle: 1. palm-grasp micro-gestures at the steering-wheel; and
2. macro gestures in front of the touchscreen. The goal of this research was to
remove physical instrumental mechanisms (i.e. buttons) from the dashboard of a
car in order for the driver to be able to keep his/her hands on the steering-wheel
and to maintain his/her gaze on the road [Jacob et al. 2015, Pradere et al. 2019].
This work was funded by the PSA group of companies and implemented by Yannick
Jacob, under my supervision.
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6.1.4 Gesture control of mobile robots

The use of a 2D tablet to control a drone in a battlefield imposes strong limits when
the soldier in control is constantly moving and yet needs to be focused on his/her
task. We worked on the validation of the scientific hypothesis that air-gestures,
as a modality to command a drone, place fewer constraints on human behaviour
and demand a less significant cognitive load than the use of a tablet. First, an
interaction model was designed to define the most ergonomically appropriate gesture
vocabulary. Second, a gesture recognition module was developed that was based on
a formal description of regular expressions. The experiments conducted confirmed
the initial hypothesis that gestures are a less distracting modality, both visually and
physically [Taralle et al. 2015a, Taralle et al. 2015b, Taralle 2016]. This research
was conducted in the context of the PhD of Florent Taralle, under my supervision,
and was funded by the SAFRAN group of companies.

6.1.5 Automatic detection of work-related musculoskeletal disor-

ders

Manual, heuristic and subjective methods are currently applied to identify the risk
of having Work-related Musculoskeletal Disorders (WMSD) (e.g. European As-
sessment Worksheet (EAWS), Rapid Upper Limb Assessment (RULA) etc.). I am
currently supervising the PhD of Brenda Olivas, which aims at the analysis and fore-
casting of the exposure of the operators to postural risks, the identification of the
body joints contributing the most to the movement and the automatic evaluation
of the risk factors [Menychtas et al. 2019, Olivas et al. 2019, Olivas et al. 2020a,
Olivas et al. 2020b, Menychtas et al. 2020]. Wearable sensors are used to record hu-
man motion and the time-series of joint angles produced are provided to the GOM.
The impact of this work is twofold: 1. to characterize what is a ‘good’ and a ‘bad’
gesture from an ergonomic point of view; and 2. to use the output of this algorithm
in order to delegate the most painful tasks to the machine in HRC configurations.

6.1.6 Egocentric gesture recognition using 3DCNNs for the spa-

tiotemporal adaptation of collaborative robots

I am currently working on egocentric computer vision approaches for the recognition
of actions and gestures of operators when collaborating with robots. The main goal
of this research is twofold: 1. the development of an end-to-end DL architecture
of 3DCNNs that receives egocentric images as input and outputs the actions of the
operator assembling a TV screen; and 2. the quantification of the contribution of
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pose estimation and gesture recognition in HRC. Five experiments were conducted
in which the following modalities for interaction are compared: 1. the operator
presses on a button to activate the task of the robot; 2. as in (1) but the robot
also estimates the pose of the operator so as to provide the parts at an ergonomic
location; 3. as in (2) but with an additional sound notification to the human when
the hand is waiting at a non-reachable location; 4. the recognition of the actions and
gestures of the operator replaces the pressing of the button to activate the tasks of
the robot and 5. the modalities for 2, 3 and 4 are put together (sound notification,
pose estimation and gesture recognition). Furthermore, the quality of the collabo-
ration was evaluated through questionnaires. The action recognition works almost
perfectly, with an accuracy which is higher than 99%. The preliminary conclusions
of this study show that the operators prefer to interact with a robot through ges-
tures than by pressing a button and they consider the collaboration more natural.
They consider the pose estimation useful for ergonomic purposes and the sound no-
tification important for reminding them about an action [Papanagiotou et al. 2021].
Moreover, the collaboration that is based on action recognition is faster than the
other modalities. A potential contribution of this work would be the proposal of a
new Key Performance Indicator (KPI) that measures the impact of the spatial adap-
tation of the robot to the anthropometrics of the operator in HRC. More precisely,
this KPI could be linked with the ratio of distance that an operator covers when the
robot understands the human gestures to the covered distance when s/he presses
a button to activate the task of the robot. This work is still ongoing and is being
implemented by the research engineers Gavriela Senteri and Dimitris Papanagiotou.
It is funded by the Collaborate H2020 project.

6.2 Discussion

In this thesis, overall I have presented an HAI approach for collaborating with ma-
chines through body motion. The principle of this approach relies on the creation of
perception layers external to the machines that allow for sensing and understanding
of human gestures (Chapter 2). Nevertheless, the scope of collaboration with the
machines, or ‘systems of intelligence’, can be the goal, such as in robotics (Chapter
3), or the means, such as in human learning or in music playing (Chapters 4 and 5).

Indeed, it is possible for a machine to recognize kinematic parameters of
situated expert and non-expert gestures (Q1 from Chapter 1). The research chal-
lenges for recognizing generic human actions from image sequences, such as chal-
lenges related with inter - and intra- class variations, lighting conditions, position
and motion of the camera, limited access to annotated data or intention detection
and predictability, are also valid for the recognition of situated gestures. Neverthe-
less, recording human motion in professional environments is a major challenge and
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data can be extremely rare, no matter what the sensors are. When the amount
of data is sufficient and the goal is to classify human motion patterns, not many
robust alternatives to deep learning exist. More precisely, when analysis, feature ex-
traction, representation and modelling are not needed, end-to-end DL architectures
constitute a valuable shortcut between motion sensing and recognition, especially
for image data. However, recognizing a gesture may be much more complex than
classifying it. Recognition can only be the final step of a bigger process where anal-
ysis, representation and modelling are also essential, such as for detecting not only
which gesture is performed but also how it is performed. Therefore, decomposing
the gesture into states for understanding its temporal evolution or concatenating
the spatiotemporal dynamics of the body parts when they work synergistically, still
constitute challenges, for which probabilistic methods and biomechanics may be
able to provide valuable solutions. Finally, what applies in many scientific domains
probably also applies in the case of gesture recognition: the models should follow the
data and not the opposite.

In fact, it is possible to use gesture recognition as an alternative to instru-
mental interaction mechanisms (Q2 from Chapter 1). Instrumenting objects and
tools with sensors for interaction purposes does not necessarily put limits on human
behaviour. Indeed, when the data provided by pre-existing ‘non-intelligent’ tools
(e.g. a standard screwdriver) fits in with ‘systems of intelligence ’, this generates
new knowledge and means. In particular, when the machine is considered as a
partner of the human, touchless interaction contributes towards a more natural col-
laboration. In HRC, gesture recognition facilitates the continuous monitoring and
anticipation of the operator, as well as the ‘on-the-fly’ adaptation of the robot. In
human learning, the computer becomes the partner of the apprentice when practis-
ing alone without the expert, due to the recognition of his/her trial-error gestures
and the augmented feedback it provides. In musical interaction, gesture recogni-
tion and sonification enables embodied, real-time creation of the sound, removing
physical constraints for performers and facilitating the learning curve for learners.

6.3 Achievements

Modelling the spatiotemporal dynamics of the human body for human
action recognition and forecasting: My contribution in this field is the method-
ological representation and modelling of the spatiotemporal dynamics of the human
body for gesture recognition and forecasting of motion trajectories. The operational
model introduced for gestures relies on biomechanical principles to stochastically
represent the temporal evolution of the dynamics of body movement. Furthermore,
the human body is a physical model whose dynamics change over time and are
influenced by endogenous and exogenous parameters. The concatenation of the



108 Chapter 6. Synthesis and perspectives

dynamics of the theoretical model generates a set of first-order differential equations
that fully describe the kinematics of the body movement. The model offers various
forms of analysis for investigating which body parts contribute more to the gesture,
over which axis, and how fast or slow, as well as what movement variations can
be tolerated (confidence bounds). Various uses can also be considered, such as
that of selecting the appropriate features and analysing the body dexterity or
ergonomic risks related with the gesture itself. What we have proved is that,
when this approach is used for gesture recognition, it outperforms state-of the-art
probabilistic methods, as well as a standard end-to-end deep learning architecture.

Human-Robot Collaboration: My contribution to the science of HRC re-
lies on the proof of the hypothesis that the professional gestures and actions of the
operators can be continuously recognised in real-time and communicated to the
robot. The robot can anticipate the human movements and adapt its behaviour
accordingly. Furthermore, we proved that multi-user action and gesture recognition
techniques can be deployed both in co-presence and collaborative workspaces. Both
wearables and vision-based sensors can be used to capture human motion. The
choice of sensor depends on the type of activity or industry and the constraints
of the application. By instrumenting objects and tools with sensors, additional
information about human actions can be recorded and used for improvements in
the performance of the algorithm. We proved that when a new operator joins
the line, only a few examples of his/her gestures are sufficient for the algorithm
to recognize him/her properly. I consider my contribution to the field to be the
innovation in the way the robot can be regarded in relation to humans. The robot
becomes a partner of the human, opening up a huge gamut of perspectives and
potential with regard to such collaboration, especially in improving the quality of
life for humans at work.

Computer-mediated sensori-motor human learning: My contribution
to this field relies on the premise that expert kinematic skills in manual jobs can be
modelled and recognized using motion capturing and machine learning. A particular
focus has been placed on the in-person transmission of skills in craftsmanship.
The computer can be trained on some expert performances and a gamification
mechanism generates augmented sensori-motor feedback when the apprentice
deviates from the expert gestures. We proved, at least for the wheel-throwing art
of pottery, that computer-mediated sensori-motor feedback has a positive impact
on the human self-training process. I consider my main contribution in this area
to be an innovation in the way expert movement skills can be recorded, preserved
and transmitted to upcoming generations, both for industrial and cultural heritage
purposes. We underline the role of the expert, who is irreplaceable, in the in-person
transmission, and also prove the valuable role the computer has to play as a partner
in the learning process.

Digital Musical Instruments: My main contribution to the field of DMIs
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and to the NIME community in general has been based on proving that it is
possible to musically interact on tabletop 3D interactive spaces, while the whole
body contributes in this creative process. Moreover, it is possible to go beyond the
activation of physical intermediary mechanisms that trigger sounds through finger
motions only. Inspired by piano playing, keyboard-like and octave-like metaphors
are implemented. They generate a dynamic micro bounding box where mid-air
finger movement primitives are detected and converted into physically-based piano
and string sounds. Additionally, when hands are in the air, the upper-body motions
are recognized, through stochastic machine learning, and are translated into sounds
through a macro bounding box. All the gesture recognition and sonification
mechanisms are integrated in a new tabletop DMI, which is able not only to
recognize a number of musical gestures but, in addition, can also recognise some
parameters of expressivity. Research and development has led to an innovation in
the sense that we built a tabletop DMI, which can be a unique partner for humans,
not just in the performing of music, but also in learning music.

6.4 Perspectives and challenges

Leveraging on the validation of the research questions Q1 and Q2 (Section 1.2),
that are introduced in Chapter 1, and the quantitative evaluation of the method-
ologies proposed, I have provided concrete examples of HAI-driven movement-based
human-machine collaborations. In fact, the research methodology of my thesis is
industry-oriented and has produced prototypes for the Factory of the Future (mainly
manufacturing), the Creative and Cultural Industries, as well as for Vocational
Training. I also had the opportunity to perform various feasibility studies, or to su-
pervise research, in the domains of interaction with intelligent vehicles (automotive
industry) or drones (defense and security industries).

Although I have not had the opportunity to confirm my results beyond
the industrial sectors previously mentioned, I am generally convinced that machines
can be trained to recognize situated gestures and actions as well as anticipate them
during a collaborative task. I therefore consider generalisation and extrapolation as
my future (big) personal research challenges for gesture recognition.

Generalisation is definitely a well-identified problem in machine learning.
From a human movement perspective, recognizing motion patterns from a relatively
small vocabulary is possible. Nevertheless, because of the nature of humans and
the variations derived in performing a movement, generalisation might be difficult,
even with gestures of the same difficulty and nature e.g. professional gestures in
the same job. Therefore, the recognition and characterisation of motion patterns
from a large number of classes is not a straightforward issue. Again, if the clas-
sification of human actions is the only goal, the most recent advances in DL can
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provide solutions when sufficient data is available. Therefore, my principal moti-
vation is to further investigate how machines can learn satisfactorily well a large
number of patterns from the same group e.g. almost all the gestures involved in one
profession. However, recognition is usually neither the final step in the pipeline nor
the only output of the algorithm. Recognition and characterisation strongly depend
on the application. For example, learning a movement from an expert performance
or adapting a movement already learned to external disturbances are discrete chal-
lenges in sensori-motor human learning. They both need models that are capable of
continuously decoding micro (adaptation to an existing skill) and macro (acquisition
of a new skill) kinematic variations in the execution of the movement. Furthermore,
differentiating a tolerated expert performance from a non-tolerated one is still a
research challenge. Bearing this in mind, GAIL can be considered to be a promising
research direction due to its capability to discriminate expert demonstrations from
artificial non-tolerated ones.

Extrapolation is also a well-identified problem in AI that consists of being
trained on a certain type of data and being capable of predicting another type
of data. From the perspective of human movement, extrapolation would mean
training the machine on a very large set of movement primitives that are common
across various professional sectors e.g. screw, wait, put, rotate etc., with the goal
of hierarchically recognizing and characterising the human activity as a sequence of
actions constituted from movement primitives. For this reason, meta-learning can
be a promising research direction due to its facility of learning how to learn, thus
extrapolating from a set of actions to unseen actions.

I consider that in only a few years’ time, almost all machines will be
equipped with various layers of HAI-driven perception, enabling continuous un-
derstanding of behaviours and anticipation of human actions. Therefore, from a
research perspective, generalisation and extrapolation are progressively becoming a
necessity in order to address the future vertical ‘lift-off’ of demand for algorithms
that are able to support human-machine collaborations on a grand scale.
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Abstract: In industry, ergonomists apply heuristic methods to determine workers’ exposure to
ergonomic risks; however, current methods are limited to evaluating postures or measuring the du-
ration and frequency of professional tasks. The work described here aims to deepen ergonomic
analysis by using joint angles computed from inertial sensors to model the dynamics of professional
movements and the collaboration between joints. This work is based on the hypothesis that with these
models, it is possible to forecast workers’ posture and identify the joints contributing to the motion,
which can later be used for ergonomic risk prevention. The modeling was based on the Gesture
Operational Model, which uses autoregressive models to learn the dynamics of the joints by assuming
associations between them. Euler angles were used for training to avoid forecasting errors such as
bone stretching and invalid skeleton configurations, which commonly occur with models trained
with joint positions. The statistical significance of the assumptions of each model was computed to
determine the joints most involved in the movements. The forecasting performance of the models
was evaluated, and the selection of joints was validated, by achieving a high gesture recognition
performance. Finally, a sensitivity analysis was conducted to investigate the response of the system
to disturbances and their effect on the posture.

Keywords: movement modeling; state-space representation; gesture recognition; wearable sensors;
ergonomics

1. Introduction

To fulfill market demands within specific time limits, job specifications and budget
restrictions, the tasks performed by manual laborers in the industrial sector are becom-
ing more challenging and complex. The tasks demanded of them require workers to go
sometimes beyond their natural physical limitations, performing repetitive tasks for long
periods of time. Being subjected to such constant physical strain leads to work-related mus-
culoskeletal disorders (WMSDs) [1]. WMSDs can cause permanent or temporary damage
to tissue, such as muscles, bones, joints or tendons, caused by cumulative microdamage,
where the internal tolerance of the tissues is eventually exceeded. WMSDs are the most
common work-related health issue in Europe [2], entailing consequences for workers and
for the companies that employ them, that have to contend with high levels of sick leave
and drops in productivity.

The ability to record accurate measurements for ergonomic analysis is essential as
it provides ergonomists with quantitative measures of workers’ performance. This rep-
resents an added value in preventing ergonomic risk. Risk factors such as assuming
awkward postures and performing highly repetitive or physically demanding tasks are
often associated with WMSDs [2], mostly when occurring at high levels of repetition or
in some kind of combination. Several rules and methods were established to identify
ergonomic risks that workers might be exposed to during their professional activities.
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Three different measurements were used for these evaluations [3]. The first was self-
assessment, where workers were asked to fill out a questionnaire indicating their level of
exposure to diverse risk factors, including how tired they felt after their shift or if they
had assumed any dangerous postures during their tasks. The second measurement is
through observation by others, where an ergonomist observes the workers during their
shift and completes a heuristic evaluation based on standards that indicate human physical
limitations and abilities (e.g., the ISO 11226:2000 and EN 1005-4). These standards are
mostly based on the deviation of the working posture from the neutral pose. The higher
the deviation, the higher the risk of developing WMSD. Some existing questionnaries that
use this approach are the Rapid Upper Limb Assessment (RULA) [4], Ergonomic Assess-
ment Worksheet (EAWS) [5], and Ovako Working Posture Analysing System (OWAS) [6].
The third technique consists of direct measurement and primarily involves implementing
a biomechanical-based analysis, where the loads and external forces the workers are ex-
posed to are considered in the evaluation. An example of a direct measurement method
is the National Institute of Occupational Safety and Health (NIOSH) lifting equation [7],
which helps assess whether lifting a load is acceptable. Another is the Liberty Mutual
manual materials handling tables [8], which indicate the load range that certain male or
female members of the population may be able to lift, lower, carry, push or pull as part of
their daily work, without the risk of developing WMSDs.

While methods based on self-assessment or visual observation, are quick and straight-
forward ways to evaluate, they are not always accurate and precise. They are quite
subjective, since they are dependant on the worker’s feelings or sensations, or on the pow-
ers of observation of the ergonomist, leading, quite possibly, to low accuracy and high intra-
and inter-observer variability [9]. For methods based on direct measurements, laboratory
equipment is usually required, such as optical motion capture systems and force plates
to measure external forces. This equipment requires a large infrastructure and is thus
rather impractical and difficult to use in the workplace. Moreover, using these technologies
involves bringing workers to the laboratory, causing inaccurate measures since they lack
authenticity and are not real workplace scenarios. Recent research has started to develop
alternative sensor-based automated evaluation methods, using cameras or body-mounted
inertial sensors [10–13]; however, ergonomic evaluation in these studies relies purely on
joint angle thresholds, which can only identify risks related to static postures [4–6].

The work presented in this paper aims to further expand the scope of the analysis
conducted in current ergonomic evaluations by modeling professional movements. The hy-
pothesis formulated here is that by modeling the workers’ dynamics, it is possible to extract
information about the contribution of body joint movements to various ergonomic risks.
Moreover, with the learned models, it is possible to predict the motion trajectory of body
joints and thus detect any possible future exposure to postural ergonomic risk.

For the purposes of this research, human motion modeling and trajectory predictions
were made using a Gesture Operational Model (GOM) [14], which consists of a system of
equations based on different assumptions about the dynamic relationship of body parts.
The methodology was validated by evaluating the forecasting performance of the system
and by improving the recognition performance of professional movements, using four
datasets. The first and second datasets were taken from professional movements executed
in factories concerned with television production and airplane manufacturing, respectively.
The third dataset was composed of gestures performed in a glassblowing workshop, while
the fourth dataset of motion primitives, with different ergonomic risk levels, according to
EAWS [5], was recorded in a laboratory.

In Section 2, which follows, the present state-of-the-art related to motion analysis for
modeling, prediction, and pattern recognition, will be presented, while the methodology
and evaluation procedures we used are described in Section 3. Section 4 presents the results
of the experiments conducted on the four datasets, Section 5 discusses our findings and
results, followed by the presentation of our conclusions in Section 6.
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2. State-of-the-Art
2.1. Motion Analysis Based on Body Structure

In the past, biomechanical, stochastic, and hybrid models have been used to represent
human motion and these models were then used to study the coordinated mechanical
interaction between bones, muscles, and joints within the musculoskeletal system. The mod-
eling of human movements, and their changes, caused by internal and external action
forces has generally been addressed with biomechanical models. These models represent
the human body as a set of articulated links in a kinetic chain where joint torques and
forces are calculated using anthropometric, postural, and hand load data [15]. Inertial data,
such as accelerations and velocities, and information about external forces like ground
reaction forces from force plates, are used as input for biomechanical models [16]. When
dealing with inverse dynamics, quantitative information about the mechanics of the mus-
culoskeletal system, while performing a motor task, is extracted. Most previous studies
have used biomechanical modeling to extract the kinematic and kinetic contributions of
the joints, in diverse motor tasks, then investigate the mechanical loading of the joints and
their response to ergonomic interventions. To analyze the ergonomic impact of different
postures on human joints, Menychtas et al. [17] applied the Newton–Euler algorithm for
the computation of upper body joint torques. The normalized integral of joint angles and
joint torques was then calculated to describe the kinematic and kinetic contribution of
the body joints when awkward poses are assumed. The method identified which joints
moved the most during the tasks and were under the most strain while performing er-
gonomically dangerous gestures. Faber [18] used a spanned inverse dynamics model to
estimate 3D L5/S1 moments and ground forces, then compared symmetric, asymmetric,
and fast trunk bending movements through ergonomic analysis. Similarly, Shojaei [19]
estimated the reaction forces and moments of the lower back, in manual material han-
dling (MMH) tasks, to assess age-related differences in trunk kinematics and mechanical
demands on the lower back.

In previous research, statistical modeling has been used to learn the stochastic be-
havior of human motion. These models capture the variance information of body motion
trajectories and have been used both to estimate human intentions and label human activi-
ties. In order to infer intentions from observed human movements in real-time, Wang [20]
presented the Intention-Driven Dynamics Model (IDDM), based on Gaussian processes.
The dynamics model assumes that the goal directs human action, meaning that the dy-
namics change when the actions are based on different intentions. The study proved that
including human dynamics in the modeling benefits the prediction of human intentions.
In order to capture the motion patterns that emerge in typical human activities (e.g., walk-
ing and running), Argwal [21] trained a mixture of Gaussian auto-regressive processes
with joint angles and position trajectories. The dynamic models take advantage of local
correlations between joints motion to track complicated movements successfully (turns
in different directions) using only 2D body measures (joint positions and joint angles).
To segment and analyze human behaviours, Devanne [22] applied a Dynamic Naive Bayes
model to capture the dynamics of elementary motions and to segment continuously in long
sequences diverse human behaviors.

Hybrid methodologies that take into consideration human biomechanical structure
and the stochastics of motion have been developed to improve the analysis of the random
outcomes of movement. A hybrid model, designed to predict the probability of injury and
identify factors contributing to the risk of non-contact anterior cruciate ligament (ACL)
injuries, has been proposed by Lin [23]. A biomechanical model of the ACL estimated
the lower leg kinematics and kinetics. In turn, the means and standard deviations of
the number of simulated non-contact ACL injuries, injury rate, and female-to-male injury
rate were calculated in Monte Carlo simulations of non-contact ACL injury and non-injury
trials. T-tests revealed the biomechanical characteristics of the simulated injury trials.
Donnell [24] used a two-state Markov chain model to represent the survival of surgical
repair from rotator cuff. The load applied to the shoulder and the structural capacity of
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tissue were the random variables. The analysis was based on the application of struc-
tural reliability modeling. By introducing this new modeling paradigm for explaining
clinical retear data, the model successfully predicted the probability of rotator cuff repair
retears and contributed to understanding their causes. To describe the cooperation of body
parts in the execution of professional movements, Manitsaris [14] proposed the Gesture
Operational Model (GOM), based on state-space modeling. GOM offered insights into
the dynamic relationship between body parts, within the execution of a movement, ac-
cording to the statistical significance of its various assumptions and their dependencies on
the motion of other body parts.

2.2. Motion Trajectory Prediction

The problem of human motion trajectory prediction has been researched extensively
in the past. There is a growing interest, in the industrial sector, in implementing systems
that allow prediction of how workers’ motion descriptors will unfold over time, and to
incorporate this knowledge in a pro-active manner e.g., to facilitate human-robot collabora-
tion or risk prevention. There are three prediction approaches, which are based on how
human motion is represented and how the behavior pattern is formulated. Physics-based
models are explicitly defined dynamic models explicitly defined and follow Newton’s Law
of Motion. Pattern-based models, on the other hand, learn statistical behavioral patterns
that emerge, based on the observed motion trajectories. Plan-based models are concerned
with reasoning about the intention behind the movement and the goal of the performer.

2.2.1. Physics-Based Models

Physics-based models predict future human motions according to a defined dynamic
model ( f ). This model follows the form of a state-space representation:

s(t + 1) = f (s(t), u(t), t) + w(t) (1)

where s(t + 1) is the prediction, s(t) is the current motion state of the system, u(t) is
the input, and w(t) the process noise. The motion is predicted by forward simulating
the dynamic equations that follow the physics-based model. Physics-based models have
tended to use kinematic models for prediction and these represented the motion states as
position, orientation, velocity, or acceleration and linked the observations to the state’s evo-
lution. Some examples of kinematic models used are constant velocity (CV) [25], constant
acceleration (CA) [26], and coordinated turn (CT) [27]. These models describe the agent’s
motion based on the mathematical relationship between the movement parameters (e.g., po-
sition, velocity, acceleration) without considering the external forces that affect the motion.
Kinematic models are frequently used for prediction due to their simplicity and acceptable
performance, under the conditions of little motion uncertainty, or short-term prediction.

For the prediction of pedestrians’ position trajectories, previous studies have applied
Kalman Filters (KFs), with kinematic models such as CV and CA [26,28]. The main
application of KF is for tracking the pedestrian position according to the estimated velocity
or acceleration. Zernetsch [29] applied a kinematic model for trajectory prediction of
cyclists that consisted of a CV model for the computation of all significant forces, such as
the driving force and resisting force, composed of acceleration resistance, rolling resistance,
and air resistance. In order to determine the kinematic model parameters, a curve-fitting
approach was used, with motion profiles of cyclists that were recorded with a video camera
and laser scanners at a public intersection.

For the prediction of movements with a high level of uncertainty, previous studies
have used multi-model (MM) methods. These methods fuse different motion modes
(e.g., sudden accelerations, linear movements, maneuvers) to describe complex motions
(e.g., pedestrians or vehicles in public areas), where a dynamic model represents each
mode. Pool [30] applied an MM approach to predict cyclists’ motion based on their
motion strategies (go straight, turn left or right 45◦ or 90◦). Whenever a strategy does
not comply with the road topology, the probability of the strategy is set to zero, in place
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of prediction. A multi-model approach for pedestrian trajectory prediction has been
presented by Kooij [31], which uses Switching Linear Dynamical Systems (SLDS) to model
maneuvering pedestrians that shift between motion models (e.g., walking, stopping).
Then, a Dynamic Bayesian Network (DBN) predicts the pedestrian movements based on
the SLDS model. The latent variables consisted of the pedestrian location, curb location
and head orientation (indicating awareness of oncoming vehicles). The results proved that
including context cues in the analysis improves overall prediction accuracy. Manitsaris [14]
adequately addressed the forecasting trajectories of a 3D skeleton’s joint positions by using
state-space modeling. The state variables corresponded with the dynamic association of
body parts, their synergies, their serial and non-serial mediations, and the two previous
positions of the body part represented. This study, by including information about other
body parts in the representation of each body part, boosted the forecasting performance of
the system due to the strong dynamic relationship between them.

Physics-based approaches are appropriate, where an explicit transition function can be
defined for modeling the agent’s motion dynamics, as well as the influence of other agents
and of their surroundings on it. The main drawback of using physics-based approaches is
that they do not perform well for very complex situations (e.g., public areas with multiple
agents). Moreover, their use is commonly limited to short-term predictions and obstacle-
free environments.

2.2.2. Pattern-Based Models

Pattern-based approaches, unlike physics-based approaches, learn human motion
behaviors by fitting models to data. For the prediction of pedestrian trajectories, Quin-
tero [32] presented the Gaussian process dynamical models (B-GPDMs). The system can
reduce the 3-D time-related information extracted from key positions on the pedestrians’
bodies into only two observations, used for the prediction. The most similar model to
the multiple models of four activity types (e.g., walking, stopping, starting and standing)
is then selected to estimate future pedestrian states. For the motion prediction of multiple
people, Kucner [33] used Gaussian Processes and their mixtures to model multimodal
distributions, representing speed and orientation in joint space, for the purpose of modeling
the motion of people and mapping their flow in the area analyzed.

Neural Networks have achieved promising performances for time-series predic-
tion [34–36]. Among the most popular are the Long Short-Term Memory (LSTM) networks
to predict human [34,35] and vehicle motion [36]. For the trajectory prediction of pedes-
trians’ 2D position and orientation, Sun [34] incorporated spatial and temporal context
information into an LSTM to learn the human activity patterns generated in different
environments at different times of the day. Xue [35] proposed the Social-Scene-LSTM
(SS-LSTM), which uses three LSTMs to capture person, social and scene scale information.
In turn, the output of the three networks is used by an LSTM decoder for the prediction
of pedestrian trajectory coordinates. Srikanth [36] has proposed a robust model for future
trajectory prediction of vehicles, where a simple Encoder-Decoder model connected by
a convolutional LSTM was used to learn vehicle temporal dynamics, including semantic
images, depth information and other vehicles’ positions. In this study, the use of scene
semantics improved the prediction performance over models that only use information
such as raw pixel intensities or depth information.

For the capturing of more complex unknown dynamics, it has to be admitted that
pattern-based approaches have outperformed physics-based approaches; however, they
require a large amount of data to train the model to avoid generalization issues. To improve
the prediction performance, pattern-based and physics-based approaches have benefited
from integrating context information into their observations. The studies that included
information about the shape and structure of the environment, together with the external
forces that the person or object is exposed to, or information about their interaction with
other agents (e.g., people, vehicles or robots) produce more precise predictions in numer-
ous cases [37].
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2.2.3. Planning-Based Models

The third prediction approach employs Planning-based models. Unlike the previous
approaches, these assume rationality, in the case of tracked human movements and their
long-term motion goals. This approach computes path hypotheses that allow the agent to
reach their motion goals by considering the impact of current actions on future motions.
The prediction is made using a predefined cost function, based on intended motion goals
or inferred cost function, according to the observed trajectories. Best and Fitch [38] have
proposed a Bayesian framework to estimate pedestrians’ intended goal destination and
future trajectory. The framework is based on multimodal hypotheses of the intended
goal, and the long-term trajectory that decreases the distance to the intended goal is
selected. By seeing the trajectory prediction as an optimization problem, Lee [39] suggests
a deep stochastic Recurrent Neural Network (RNN) Encoder-Decoder framework for
trajectory prediction of multiple vehicles in complex scenes. The model obtains a diverse
set of hypothetical trajectories which takes into consideration the agent interactions, scene
semantics, and expected reward function. The single end-to-end RNN encoder-decoder
network captures the past trajectories and incorporates the information into the inference
process to improve prediction accuracy.

In order to use planning-based approaches, the goals that the agents under analysis
are trying to achieve must first be explicitly defined, and the context information about
the environment surrounding the agent must be provided for the model. Planning-based
approaches usually perform better for long-term predictions than do physics-based ap-
proaches and also tend to have less generalization issues than Pattern-based approaches.
The downside of these approaches is that as the complexity of the prediction problem
increases (e.g., long-term predictions, multiple agents and size of the environment), so does
the running time for training the models.

2.3. Human Gesture Recognition

Ergonomic evaluations have been conducted by identifying the risks involved in work-
related motions, using gesture recognition (GR) techniques to recognize professional mo-
tions and estimate their frequency and duration on the workers’ shift. Peppoloni [40]
developed a monitoring system by training State machines to classify manual handling
activities with data from a wearable sensor network. Likewise, Ryu [41] trained a Support
Vector Machine (SVM) classifier, with data from an accelerometer placed on the wrist, to
classify a mason’s actions (e.g., laying and adjusting bricks). With deep learning architec-
tures, Slaton [42] trained a hybrid network, containing convolutional and recurrent Long
Short-Term Memory (LSTM) layers, to recognize construction-related activities. Parsa [43]
applied Temporal Convolutional Networks (TCNs) to segment videos and recognize man-
ual handling tasks with different ergonomic risk levels.

Hidden Markov Models (HMMs) have been widely used for the modeling and recog-
nition of human gestures. HMMs model the dynamic behavior of gestural time series
based on a probabilistic interpretation of the gesture samples. The HMMs assume that
a hidden state sequence causes the observed sequence (gesture samples). HMMs cap-
ture the motion patterns presented in the training set’s gestures, meaning that they will
not recognize other variations from these patterns that could emerge during the move-
ment performance, after the training. To address this issue, Caramiaux [44] proposed
the Gesture Variation Follower (GVF), representing pre-recorded template gestures with
continuous state-space models. Particle Filtering was used to update the models’ parame-
ters to estimate the likeliest template of a new observation, considering its varying gesture
characteristics. The gesture’s speed, size, scaling and rotation angles were considered
the varying gesture characteristics and state variables.

Despite the fact that ergonomic evaluation based on GR adds factors such as the fre-
quency and duration of activities into the analysis, basing the ergonomic evaluation on
only these two factors could lead to the oversight of other risk factors in the motions that
could cause the development of WMSDs.
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3. Methodology

Due to the nature of the hypothesis defined for this study, a physics-based approach
was selected to model the dynamics of professional movements. Physics-based approaches
have proved to be capable of handling joint predictions efficiently and because of the use of
a transition function, they perform well with observations obtained from different environ-
ments and subjects, without extensive training datasets. This generalization capability is
essential if workers from various industrial sectors are to be monitored. Moreover, by using
a physics-based model, information could be extracted regarding the human dynamics and
their response to risk factors, by examining the resulting trained models.

In this study, human motion was represented as a sequence of human poses, where
each pose was described through 3D-joint angles. The modeling of each gesture was done
using the Gesture Operational Model methodology [14], which was extended by integrating
more assumptions into the representation of the motion of joints. The models were used to
predict the trajectory of joint angles, instead of joint positions, to avoid forecasting errors
such as bone stretching and invalid skeleton configurations, errors that commonly occur
in models trained with joint positions [45–47]. The proposed methodology is illustrated
in Figure 1.

The statistical significance of the assumptions of each model was computed to deter-
mine the body joints contributing the most to the professional movements. The selected
joint angles were validated by comparing their gesture recognition performance with
another two sensor configurations, the first using all joint angles for training, and the
second using only a small set of two hand-picked sensors. Finally, the forecasting ability of
the models was evaluated, and a sensitivity analysis was conducted to analyze the stability
and behavior of the system when external forces affect system response, meaning a change
in the posture and ergonomic risk level of the motion.

Figure 1. Methodology pipeline.

3.1. Data Collection and Gesture Vocabularies
3.1.1. Inertial Motion Capture Technology

Due to the advantages of using motion capture (MoCap) technologies, based on inertial
sensors for the MoCap of industrial workers and the subjects’ movements, the BioMed bun-
dle motion capture system from Nansense Inc. (Baranger Studios, Los Angeles, CA, USA)
was used. This system consisted of a full-body suit composed of 52 IMUs placed through-
out the body and hands. The sensors allowed the orientation and acceleration of body
segments on the articulated spine chain, shoulders, limbs and fingertips to be measured
at a rate of 90 frames per second. Those 52 rotations were combined to create a kine-
matic skeleton that included the body segments measured. The Euler local joint angles on
three axes X, Y, and Z were computed through the inverse kinematics solver provided by
Nansense Studio (suit software). The joint angles per time frame were then exported to
Biovision Hierarchy (BVH) files. Before the analysis, an offline pre-processing procedure of
the data was followed. The motion data was low pass filtered to mitigate noise, and the
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common zero velocity update algorithm was applied to remove the drifting caused by
electromagnetic interference.

3.1.2. Recording and Gesture Vocabularies

Industrial workers from television (TV) production, airplane manufacturing, and glass-
blowing sectors were recorded under real conditions in their respective factories. Figures 2–5
illustrate the four gestures vocabularies, and a detailed description of each gesture is pro-
vided in the Appendix A.

(a) (b) (c)

Figure 2. Gesture vocabulary with gestures for TV assembly (G1). (a) G1,1: Grab the electronic card
from a container; (b) G1,2: Take a wire from a container; (c) G1,3: Connect the electronic card and wire
and place them on the TV chassis.

(a) (b) (c)

Figure 3. Gesture vocabulary with gestures for airplane assembly (G2). (a) G2,1: Rivet with the pneu-
matic hammer; (b) G2,2: Prepare the pneumatic hammer and grab rivets; (c) G2,3: Place the bucking
bar to counteract the incoming rivet.

(a) (b) (c) (d) (e)

Figure 4. Gesture vocabulary with gestures for glassblowing (G3). (a) G3,1: Grab glass melt from
the oven; (b) G3,2: Shape the carafe’s curves; (c) G3,3: Blow through the blowpipe; (d) G3,4: Shape
the carafe’s neck with pliers; (e) G3,5: Heat the glass of the carafe.
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(a) (b) (c)

Figure 5. Gesture vocabulary with motion primitives based on EAWS (G4). (a) G4,1: Standing while
bending forward and rotating the torso; (b) G4,2: Sitting while raising arms above shoulder level;
(c) G4,3: Kneeling while bending forward.

The professional gestures from each gesture vocabulary presented essential differences
in their execution due to the different contexts in which they were recorded. For instance,
G1,1, G1,2, or G2,2 were mostly manipulating tools or objects, where the subject grabbed
an object or prepared it for later use. The iterations for these gestures had a high intra-class
variance since their motion was not restricted, nor was high precision or dexterity required.
On the contrary, for the gesture vocabulary G3 and gestures G1,3, G2,1, and G2,3, the subjects
needed to be more precise since they placed the objects in a specific position. It has to be
considered that human factors such as level of experience, fatigue, or mental stress affected
how the subjects’ bodies performed the gestures. Although this did not apply for the G3,
high dexterity and technicity were required to execute the gestures effectively. The gestures
from G3 were recorded from a glassblowing expert, who performed the gestures with
high repeatability and low spatial and temporal variations between iterations, to produce
a carafe four times with the same specifications. Regarding G4, there was a low intra-class
variation in this dataset since the performance of each movement was controlled. Feedback
was provided to subjects in order to perform the gesture demanded correctly. On the
other hand, the inter-class variation was intended to be low, where there were only a few
variations in the postures assumed in each gesture. The end in using this last dataset
was to test whether the proposed methodology was able to identify the small variations
between motions and provide an accurate estimate of the joints that most contributed to
the execution of the 28 motions.

From an ergonomic point of view, these four datasets could assist in the evaluation
of human motions in industrial settings. The modeling of these motions could help
in evaluating the subjects’ manual dexterity in relation to the gesture’s ergonomic risk.
For example, as mentioned, the glassblower had a high level of dexterity for glassblowing
gestures, but some observational methods could recognize that the gestures executed
were ergonomically risky (e.g., G3,3 and G3,4). An ergonomic analysis of these gesture
vocabularies could therefore aid in improving ergonomically how the professional gestures
were executed without affecting manual dexterity.

3.2. Movement Representation with GOM

The Gesture Operational Model was composed of auto-regressive models that learn
the dynamics of each body part. Each representation had different assumptions of the dy-
namic association between body parts. These assumptions consisedt of the intra-joint
association (H1), inter-limb synergies (H2), serial (H3.1) and non-serial intra-limb me-
diations (H3.2), and transitioning over time (H4), [14]. For the intra-joint association,
a bidirectional relationship was assumed between variables where the motion is decom-
posed e.g., joint angles on the X-axis, Y-axis, and Z-axis. The transitioning assumption was
that current values depend on their previous values. The inter-limb synergies assumed
a relationship between body parts that worked together to achieve a motion trajectory
e.g., using both hands to execute a specific gesture. Finally, the serial and non-serial intra-
limb mediations included the relationship between joints, whether directly and not directly
connected e.g., the wrist was directly connected with the elbow (serial mediation) and
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indirectly connected with the shoulder (non-serial mediation). These assumptions are
represented in Figure 6.

Figure 6. Upper-body assumptions that constitute a Gesture Operational Model. The intra-joint
association is indicated by green arrows, transitioning over time with dashed arrows, inter-limb
synergies with blue arrows, intra-limb serial mediation with black arrows, and intra-limb non-serial
mediation with red arrows.

The number of representations was equal to the number of associated dimensions
for a given body part, multiplied by the number of body parts defined in the GOM.
The representation of each body part had different assumptions depending on its location
within the body:

• Intra-joint association: All body parts included it in their representation.
• Inter-limb synergies: Only the body parts representing joint angles from arm and leg

parts included this assumption.
• Intra-limb serial and non-serial mediation: The assumptions included in each rep-

resentation depended on the body part location within the body. The joint angles
related to the spine only included in their equation joint angles of other spine parts
with which it had serial or non-serial mediation. The serial and non-serial mediations
from angles related to the spine are illustrated in Figure 7a. The angles related to
the arms only included in their equation joint angles of other arm parts with which it
had serial or non-serial mediation (Figure 7b). Equally, the angles related to the legs
only included in their equation joint angles of other leg parts (Figure 7c).

The transitioning assumptions corresponded to the lagged endogenous variables,
where lag depended on the order given to the model. For this work, second-order au-
toregressive models were selected. The order was selected according to the correlation
between lag values in the time series (auto-correlation). If the observations had positive
auto-correlations with a certain number of lags, then it was better to have a higher or-
der of differencing until the auto-correlation was negative and more than −0.5, to avoid
overdifferencing [48].
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(a) (b)
(c)

Figure 7. Location of the sensors that provide the XYZ joint angles included in GOM’s state-space
equations. (a) Spine parts; (b) Arm parts; (c) Leg parts.

An example of a mathematical representation of the assumptions is shown in Equation (2),
for a motion on the X-axis (Xax) of a body part P, with only two dimensions Xax and Yax,
and assumptions that includes an association with only a second body part (P2,Xax (t− 1)).

P1,Xax (t) = P1,Yax (t− 1)︸ ︷︷ ︸
H1

+ P2,Xax (t− 1)︸ ︷︷ ︸
H2

+ P1,Xax (t− 1)︸ ︷︷ ︸
H4

+ P1,Xax (t− 2)︸ ︷︷ ︸
H4

(2)

These representations were then translated into simultaneous equations by using
state-space modeling. State-space equations allowed estimation of the state of the system
according to the input-output data [49]. Thus, given the input and the current state of
the system, state-space gave the hidden states that resulted in the observable variables.
A state-space representation is shown in Equations (3) and (4). Equation (3) is the state-
space equation, a first-order Markov process where A is the transition matrix. Equation (4)
is the measurement equation, where the time derivative of the state vector s(t) is taken into
account for the computation of the output y(t) along with the input vector u(t), where C is
the output matrix and D the feed-through matrix.

s(t) = ASs(t− 1) + w(t) (3)

y(t) = Cs(t) + Du(t) (4)

To model the GOM representation of the Equation (2) using second-order state-space
modeling, first, the state-space variable is substituted with the subtraction of two previous
values of the body part to model, each multiplied by one coefficient of the transition matrix:

s(t) = ASs(t− 1) =
[

α1 0
0 α2

][
P1,Xax (t− 1)
−P1,Xax (t− 2)

]
=

[
α1P1,Xax (t− 1)
−α2P1,Xax (t− 2)

]
(5)

For the measurement equation, the input vector u(t) corresponds to the endogenous
variables, for the case of Equation (2), it consists of the intra-joint association and inter-
limb synergy:

P1,Xax (t) =
[

1 1
]
s(t) + α3P1,Yax (t− 1) + α4P2,Xax (t− 1) (6)

Finally, by merging Equations (5) and (6), the state-space representation is obtained:

P1,Xax (t) = α1P1,Xax (t− 1)− α2P1,Xax (t− 2)+

α3P1,Yax (t− 1) + α4P2,Xax (t− 1) (7)

The full body modeling consisted of three sets of equations for each body part, one
for each dimension X, Y, and Z. Hence, by discarding the body parts from the fingers,
the GOM consisted of 84 equations per gesture. The coefficients of the equation system
were estimated using the Maximum Likelihood Estimation (MLE) via Kalman filtering [50].
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For the coefficient estimation, first, the probability of obtaining the observation vectors O0:k
was defined:

P(O0:k) =
k

∏
t=0

P(Ot|O0:t−1) (8)

which consisted of the products of probabilities of the observation at time t, given previous
observations. This probability distribution is considered Gaussian, as shown in the follow-
ing equation:

P(O0:k|ψ) = ∏k
t=1 exp




−

(
ot − õt−1

t

)2

2Ft−1
t





(
2π
∣∣∣Ft−1

t

∣∣∣
)− 1

2 d′ (9)

where Ft−1
t is the covariance and õt−1

t is the mean. From Equation (9), the log-likelihood
was computed, where the Kalman filter could optimally estimate the mean and covariance
that gave the maximum likelihood:

log L(ψ|O0:t−1) = −
k
2

log 2π − 1
2 ∑k

t=1 log
∣∣∣Ft−1

t

∣∣∣− 1
2 ∑k

t=1

(
ot − õt−1

t

)2

Ft−1
t

(10)

The Kalman filtering consisted of two steps which were repeated until obtaining
the maximum likelihood. These are known as the prediction and update steps. Initial values
were set, then the log-likelihood was computed for the evaluation in the prediction step.
Next, in the update step, the variance and mean were updated according to the Kalman
gain (Kt), until, in the prediction step, the maximum likelihood was achieved:

Kt =
Ft−1

t(
Ft−1

t + R
) (11)

õt−1
t = õt−1

t + Kt

(
ot − õt−1

t

)
Ft−1

t = Ft−1
t − KtFt−1

t (12)

In the end, the computation of the coefficients of the state space models was derived
through Equation (10).

3.3. Applications of the GOM
3.3.1. Selection of Significant Joint Angles

Statistical analysis was done to investigate the significance of the model assump-
tions in relation to the body part associations defined within the GOM. By estimating
the statistical significance of each assumption, it was possible to determine which joint
descriptors contributed the most to the execution of all the gestures of each gesture vocabu-
lary. The number of times a joint descriptor was statistically significant in all the equations
that constitute the GOM was counted in order to select the most important joint angles for
each gesture vocabulary.

In order to evaluate the selection of the most meaningful joint angles, different combi-
nations from the selected joint angles were used to train Hidden Markov Models (HMM)
for gesture recognition using an “all-shots” approach. The motion data of sensors that
provided at least one of the top three joint angles contributing the most in the response
for the spine, arms, and legs parts motion was used for gesture recognition. Since one
sensor provided three angles of one joint, all the joint angles of the sensor were used
for training. The first combination to test for gesture recognition consisted of a minimal
sensor configuration: the best sensor to measure the spine, another which was the best
to measure the arms, and a third for the legs. If the recognition performance was low,
an extra sensor was added to the configuration to improve the performance, or it was
replaced by another of the top three sensors selected to measure its corresponding body
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location (spine, arms, or legs). The configuration that achieved the best performance was
compared with the recognition performance obtained using all the joint angles of the sen-
sors. The recognition performance, by using only a minimal set of two sensors, was also
computed for comparison. This minimal set consisted of two hand-picked sensors, which
provided the Euler joint angles of the right forearm (RFA) and hips (H). The sensor placed
on the right forearm was chosen since most of the subjects in all datasets were right-handed,
and the hips sensor was chosen because the origin of all movement of the spine starts from
the hips.

To determine the best HMM setting for each gesture vocabulary, both ergodic and
left-right topologies were tested, in addition to a different number of hidden states. The per-
formance metric used consisted of the F-score. In the training phase of HMM, each profes-
sional gesture Gv,c, where v ∈ [1, 4] indicates the gesture vocabulary and c ∈ N the gesture
of the Gv, is associated to an HMM. The set of models for all gestures for every gesture
vocabulary is Gv∈[1,4] = {HMMc}c∈N.

3.3.2. Prediction of Joint Angles Trajectories

For evaluating the forecasting performance of the GOM models, the joint angle se-
quences of each gesture were simulated by solving the simultaneous equation system of
the GOM. The models forecasted one time frame per iteration, then, after forecasting all
the time frames of the gesture, the simulated gesture was compared with the original for
evaluation. Consequently, their forecasting ability was evaluated by computing Theil’s
inequality coefficient (U) along with its decompositions: bias proportion (UB), variance
proportion (UV), and covariance proportion (UC).

A sensitivity analysis was conducted to investigate the reaction of the models after
a shock occurred in one of their variables. For this analysis, a disturbance of 80% was
applied only in the first two frames of the gesture, then the whole gesture was forecasted.
This analysis aimed to simulate the situation where subjects were exposed to external
forces that affected their performance or made the workers assume awkward postures that
increased the risk of injury.

4. Experimental Results
4.1. Statistical Significance of Motion Descriptors

Here, an example of a joint angle motion equation for one gesture from each vocabu-
lary will be provided. These examples are offered to enable visualization of the coefficients
and p-values of the different assumptions that compose the equation, where some vari-
ables need to remain dynamic and others static. The first example is for the equation of
the gesture G1,1 (grab an electronic card from a container) for the joint angle RAY, which is
the joint angle of the right arm on the Y-axis:

RAY(t) = (−86.76)LSH1Y(t− 1)︸ ︷︷ ︸
p=0.01

+ (−169.03)LSH1Z(t− 1)︸ ︷︷ ︸
p=0.001

+

(88.48)LSH2X(t− 1)︸ ︷︷ ︸
p=0.008

+ (−67.38)RSH1Y(t− 1)︸ ︷︷ ︸
p=0.001

+

(−142.13)RSH1Z(t− 1)︸ ︷︷ ︸
p=0.002

+ · · ·+ (−2.18)RAX(t− 1)︸ ︷︷ ︸
p=0.508

(13)

By doing a statistical analysis of Equation (13), the p-values show intra-limb serial
mediations with the joint angles on the Y and Z-axis of the left shoulder (LSH1) and
intra-limb non-serial mediation with the right shoulder (RSH1). In the last equation, it
should be noted that there is no intra-joint association shown by the p-value of the RAX,
and although it is not illustrated in the equation, there is no inter-limb synergy either.
These results make sense since most of this motion is highly dependent on movements of
the shoulders. Consequently, it is the reason that shoulders are statistically significant for
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the equation of RAY. The second example is the equation for G2,3 (Hold the bucking bar)
for the joint angle of the neck on the X-axis (NX):

NX(t) = (−1.2)NY(t− 1)︸ ︷︷ ︸
p=0.001

+ (−0.47)NZ(t− 1)︸ ︷︷ ︸
p=0.001

+

(−0.01)S2X(t− 1)︸ ︷︷ ︸
p=0.002

+ (−0.02)S2Y(t− 1)︸ ︷︷ ︸
p=0.001

+

(−0.01)S3X(t− 1)︸ ︷︷ ︸
p=0.001

+ · · ·+ (0.01)HX(t− 1)︸ ︷︷ ︸
p=0.84

(14)

Equation (14) indicates that there is an intra-joint association with NY and NZ, and an
intra-limb serial mediation with the S3. There is an intra-limb non-serial mediation with S2,
but not with H. For the gesture of holding a bucking bar to counteract a rivet, it is necessary
to bend forward on the X-axis and Y-axis, which corresponds to what Equation (14) shows,
that is to say, that joint angles from S2 and S3 on the X and Y-axis are statistically significant
and contribute to gesture. Moreover, for this gesture, the subject needed to rotate the neck
to see where to place the bucking bar; therefore, this matches with the intra-joint association
indicated by the p-value of NY and NZ.

The next equation is an example of gesture G3,2 (shape the carafe curves) for the joint
angle of the left shoulder on the X-axis, representing the motion of the left clavicle (LSH2X):

LSH2X(t) = (0.15)LSH2Y(t− 1)︸ ︷︷ ︸
p=0.003

+ (0.17)LSH2Z(t− 1)︸ ︷︷ ︸
p=0.016

+

(−0.02)LAY(t− 1)︸ ︷︷ ︸
p=0.001

+ (−0.36)RSH2X(t− 1)︸ ︷︷ ︸
p=0.001

+

(−1.05)RSH2Z(t− 1)︸ ︷︷ ︸
p=0.001

+ · · ·+ (−0.01)LFAX(t− 1)︸ ︷︷ ︸
p=0.731

(15)

Statistical analysis of the Equation (15) indicates an intra-joint association, intra-limb
serial mediation with the left arm, and an inter-limb synergy with the right shoulder. In this
gesture, both arms must cooperate to shape the carafe correctly. The joints angles from
the right shoulder contribute to the response of the left shoulder, since with the right
arm the glassblower shaped the curves of the carafe, while the left arm slowly rolled
the blowpipe. The Equation (16) presents a gesture from the G4, where the subject bent
forward more than 60◦ for the joint angle S3 on the Y-axis (S3Y):

S3Y(t) = (2.13)S3X(t− 1)︸ ︷︷ ︸
p=0.007

+ (−0.17)S3Z(t− 1)︸ ︷︷ ︸
p=0.001

+

(−0.91)HX(t− 1)︸ ︷︷ ︸
p=0.012

+ (0.42)S1Y(t− 1)︸ ︷︷ ︸
p=0.001

+

(−3.24)S2X(t− 1)︸ ︷︷ ︸
p=0.001

+ · · ·+ (−0.06)HEX(t− 1)︸ ︷︷ ︸
p=0.061

(16)

The p-values show that there is a dependency on the intra-joint association assumption.
The joint angles on the X-axis from the sensors S3, H, and S2 are statistically significant
and have the highest coefficient values, which is to be expected since the spine moves on
the X-axis in order to bend forward. Moreover, there is an intra-limb serial and non-serial
mediation with joint angles on the Y-axis, except for HY.

The top ten variables that contributed the most in the gestures of each gesture vocabu-
lary are illustrated in Tables 1–4. From these joint angles, as mentioned in the methodology,
different sets are used for gesture recognition. The results are shown in Section 4.2.
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Table 1. G1: Televison assembly.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S1Z 49 LAX 56 RULY 32
S2Z 47 RSH1X 55 LULZ 32
HY 46 RSH2Y 55 LULY 31
HZ 45 RSH1Z 54 RLY 31
NY 44 RSH2Z 53 LULX 29
S1X 43 RSH2X 53 LLX 29
HZ 42 RAY 49 RLX 29
NX 42 LFAZ 48 HX 29
S1Y 41 LSH1X 46 RULX 29
S3X 41 LFAX 42 RULZ 29

Table 2. G2: Airplane assembly.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S3X 209 LSH2X 243 LULZ 39
S3Y 205 LSH1X 236 RULX 39
S2X 202 RAZ 230 HX 38
HZ 202 LFAX 229 LLX 38
HX 201 RFAY 227 LULY 38
SX 201 LAY 224 LLY 37

S1Y 197 LAZ 217 LLZ 37
S1Z 193 RSH1X 217 RLX 36
S3Z 193 LFAY 216 RLY 36
NY 193 LFAZ 212 RLZ 36

Table 3. G3: Glassblowing.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S3X 155 LSH2Y 99 HY 65
S3Y 155 RAX 92 LLZ 63
S3Z 149 RFAZ 90 LLY 62
S2X 118 LSH2X 89 RLX 60
S2Z 116 RSH1Z 88 RLY 60
S2Y 110 LSH1Z 86 HZ 59
S1Y 105 RSH1Y 85 LLX 59
S1X 102 RSH2X 85 RULY 58
S1Z 93 LAY 84 RULZ 58
NX 89 LSH2Z 84 LULY 57
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Table 4. G4: Motion primitives based on EAWS.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S3Z 332 LSH1X 534 RULZ 474
S2Y 330 LAX 533 RULY 473
S2Z 330 RSH1X 523 LULY 472
S3X 326 LSH1Y 520 RLX 468
S3Y 316 LFAX 520 LLX 465
S2X 311 RSH2X 518 LULX 461
HEZ 279 RSH1Y 516 LULZ 457
SZ 264 RAX 514 RULX 456
HY 261 RSH1Z 508 LFTZ 455
NZ 258 LAY 507 RFTY 455

4.2. Validation of the Joint’s Selection

In this section, the recognition performances achieved by the different sets of sen-
sors are reviewed and compared. Table 5 summarizes the results obtained when using
different sensors and shows the configuration selected according to the GOM (SS), which
achieved the best recognition performance. The gesture vocabulary G1, as mentioned ear-
lier, was composed of three gestures, each with 106 repetitions. HMMs with seven hidden
states achieved the best recognition performance, trained with the joint angles provided
by the sensors S1, LA, and RUL, selected by using the GOM. The precision and recall
achieved with each configuration of sensors to recognize gestures from G1 are illustrated
in Tables 6 and 7.

Table 5. Recognition performance with each configuration of sensors. MS: Minimal set of two sensors.
SS: Selected sensors by using the GOM.

Gesture Vocabularies N◦ Classes Sensors F-Score (%)

G1: TV assembly 3
MS: H and RFA 95.59
SS: S1, LA, RUL 96.84

All sensors 93.39

G2: Airplane assembly 3
MS: H and RFA 88.89

SS: S3, S2, LSH1, LSH2, RA, LUL, RUL 94.33
All sensors 72.02

G3: Glassblowing 5
MS: H and RFA 88.03

SS: S3, LSH2, H, RFA 94.70
All sensors 80.68

G4: Motions based on EAWS 28
MS: H and RFA 73.85

SS: S2, LA, RSH1, RUL, LFA 91.77
All sensors 84.88

Table 6. Recall achieved for G1 using HMMs.

Sensors Recall (%)
G1,1 G1,2 G1,3

MS: H and RFA 97.17 95.28 94.34
SS: S1, LA, RUL 94.34 99.06 97.17
All sensors 92.45 95.28 92.45
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Table 7. Precision achieved for G1 using HMMs.

Sensors Precision (%)
G1,1 G1,2 G1,3

MS: H and RFA 95.37 96.19 95.24
SS: S1, LA, RUL 98.04 95.45 97.17
All sensors 94.23 91.82 94.23

G2 contained three gestures with 10 to 12 repetitions each. HMM with eight hidden
states achieved the best performance. The SS sensor configuration had the best F-score,
as shown in Table 5, 5.44% more than the set with the two sensors, and 22.31% more than
the set with all the sensors. Tables 8 and 9 shows the recognition performance for G2 with
each sensor configuration, where the best precision and recall was achieved by the set SS.

Table 8. Recall achieved for G2 using HMMs.

Sensors Recall (%)
G2,1 G2,2 G2,3

MS: H and RFA 83.33 83.33 100.00
SS: S3, S2, LSH1, LSH2, RA, LUL, RUL 100.00 83.33 100.00
All sensors 66.67 50.00 100.00

Table 9. Precision achieved for G2 using HMMs.

Sensors Precision (%)
G2,1 G2,2 G2,3

MS: H and RFA 83.33 83.33 100.00
SS: S3, S2, LSH1, LSH2, RA, LUL, RUL 85.71 100.00 100.00
All sensors 57.14 60.00 100.00

G3 consisted of five gestures with 10 to 35 repetitions for each. For this gesture vocab-
ulary, HMM with four states modeled the best gestures and yielded the best recognition
performance. This performance is illustrated in Tables 10 and 11. The configuration of
sensors selected using GOM improved the overall F-score by at least 6% over the other sets.
The G4 was composed of the 28 motion primitives based on EAWS, where each exposed
the subjects to different ergonomics risks concerning the posture. There are 30 repetitions
for each motion, and HMM with seven states modeled the best gestures from G4. For the
gesture recognition of the 28 classes, the set SS yielded the higher F-score (91.77%), average
precision (91.90%) and recall (92.33%), over the minimized set of two sensors and the set
with all sensors. The minimized set achieved an average precision of 74.16% and an average
recall of 77.31%. By using all the sensors for the recognition, an average precision of 84.76%
and an average recall of 86.46% was achieved.

Table 10. Recall achieved for G3 using HMMs.

Sensors Recall (%)
G3,1 G3,2 G3,3 G3,4 G3,5

MS: H and RFA 100.00 100.00 72.72 70.00 94.29
SS: S3, LSH2, H, RFA 83.33 95.45 100.00 100.00 97.14
All sensors 70.00 100.00 45.45 80.00 97.14
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Table 11. Precision achieved for G3 using HMMs.

Sensors Precision (%)
G3,1 G3,2 G3,3 G3,4 G3,5

MS: H and RFA 90.90 95.65 100.00 70.00 91.67
SS: S3, LSH2, H, RFA 100.00 95.45 81.82 100.00 97.14
All sensors 77.78 95.65 100.00 80.00 82.93

Performance Analysis of Selected Sensors Sets

The relevance of the sensors selected for G1 in the execution of the three gestures
was proven due to the high recognition performance achieved. By observing the results
for G1 in Tables 6 and 7, it became apparent that the three sensors chosen improved
the precision of the recognition and the recall of the gestures G1,2 and G1,3. In the case of
G1,1, the two sensors configuration had the best recall. Overall, the selected sensors had
the best performance, with at least +1.2%. From the four gesture vocabularies, G1 had
the best performance for gesture recognition, which could be due to the low inter-class
variance between the three gestures.

G2 was the gesture vocabulary with the highest number of sensors selected. The reason
could be because the gestures in this vocabulary were more complex and more prolonged.
The most complicated gesture to model and recognize was G2,2, which was expected since
it is the gesture that could vary the most in its execution (high intraclass variance) from
among the three gestures. The subject did not prepare the material in exactly the same
way for each iteration. The subject was slower in some iterations than others since he
required more time to adjust the pneumatic hammer or needed to prepare more rivets.
The low intra-class variance could be because of the way the gestures were executed, which
depended on the locations where the worker was going to fasten the metal plate with
the rivets. For the recording of G2, there was only one airplane structure to build, and there
were no iterations where the subject placed the pneumatic hammer in the same location
more than once.

The sensors selected for recognition of gestures from G3 were validated by achiev-
ing a high recognition performance of the five gestures. By analyzing the results in
Tables 10 and 11, the recall is improved in most gestures using the set SS, since the selected
sensors capture the motion better. Regarding precision, the set SS improved it for G3,4 and
G3,5, but then it decreased in comparison with the minimized set for G3,1. This could be
because the information provided by the sensors S3 and LSH2 generated similar patterns
between the gestures G3,1 and G3,3. The minimized set had the worse precision and recall
for G3,4. The reason could be because of the lack of information on the motion of the shoul-
ders. According to GOM, the shoulders contribute most to executing this gesture. Four
out of the five gestures in this vocabulary generated similar patterns on the shoulder and
arms. Still, there was low intra-class variation because of the high level of the subject’s
dexterity, as an expert in glassblowing. In addition, the subject used a metal structure
for shaping the carafe that limited any potential freedom in the gesture performances.
Finally, for G4, a maximum F-score of 91.77% was recorded for the recognition of 28 motion
primitives, using the selected sensors S2, LA, RS1, RUL and LFA. The poor performance of
the minimized set was due to its failure to discriminate between motions that vary only
with regard to posture of the legs, while the poor performance using all the sensors can be
explained by the multiple dimensions of the data.

4.3. Simulated Movements and Sensitivity Analysis

This section presents the results of the trajectory prediction and sensitivity analysis.
Figure 8 illustrates one example of a simulated gesture and the original from each gesture
vocabulary, with confidence bounds of 95%. Figure 8b,c show that the models could
capture the patterns generated on the motion of the spine by the task of buckling a rivet
and the motion of the forearm while the glassblower was rotating the blowpipe. For more
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quantitative measurement of the forecasting performance, the Theil inequality coefficient,
its decompositions, and the root mean square error were computed. Table 12 shows
the forecasting performance for one gesture of each vocabulary on three Euler angles of
a joint used during the execution of the gesture. By observing the Figure 8 and Table 12
alone, it can be assumed that the forecasting performance was good for these gestures.
The original and simulated values were close to each other, and the simulated values were
mostly inside the confidence bounds.

(a) (b)

(c) (d)

Figure 8. Examples of simulated gestures, their original gesture, and confidence bounds of 95%
(a) Simulation of the gesture G1,3 on the joint angle LAX; (b) The simulated joint angle sequence of SZ

for G2,3; (c) Simulation of LFAY for the gesture G3,1; (d) Forecasting of RAX for G4,9, which consists
of raising the forearms above the shoulder level.

In Figure three examples of shocks applied to different variables for the sensitivity
analysis are illustrated. Figure 9a,b show the forecasting behavior of the model of the joint
angle LAX for the gesture of raising the hands above the shoulder level. In Figure 9a
a shock was applied on the joint angles of LSH2, and in Figure 9b, it was on the joint angles
of RSH2. It is apparent that applying a shock to the left shoulder affected the motion of
the left arm far more than applying it to the right shoulder, due to the strong mediation
of the left shoulder over the left arm motion. Figure 9c shows the simulated motion of
S2Y when the subjects rotated their torso to the left. The shock in this case was applied
to the joint angles of H. It can be seen from the figure that the model was able to adapt
fast and, indeed, in less than 1 s (90 frames), which indicated low sensitivity of the model
to external disturbance. However, there was still a small variation in the forecasting if
compared to the simulated gesture forecast without shocks.
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Table 12. Forecasting performance of one gesture for each gesture vocabulary.

Gestures Joint Angles
Theil Bias Variance Covariance

RMSEInequality Proportion Proportion Proportion
U UB UV UC

G1,3

LSH1X 0.0174 0.2499 0.0030 0.7483 0.0958
LSH1Y 0.0069 0.0000 0.0021 0.9996 0.0078
LSH1Z 0.0147 0.0006 0.0001 1.0010 0.0083

G2,1

RSH2X 0.0939 0.0002 0.0769 0.9230 0.0648
RSH2Y 0.0142 0.0000 0.0000 1.0001 0.0075
RSH2Z 0.0247 0.0002 0.0018 0.9981 0.0093

G3,4

LSH2X 0.2061 0.2786 0.0275 0.6947 0.2139
LSH2Y 0.3958 0.2327 0.0038 0.7645 0.1821
LSH2Z 0.3662 0.4919 0.1726 0.3361 0.6323

G4,3

S2X 0.0077 0.0290 0.0187 0.9531 0.0742
S2Y 0.0351 0.0906 0.2100 0.7001 0.1434
S2Z 0.0115 0.0692 0.0599 0.8717 0.0776

(a) (b)

(c)

Figure 9. Simulated joint angles with and without disturbance of 80% on the two initial time frames.
(a) Simulation of the joint angle LAX with a disturbance on the joint angles of LSH2 (blue) and
without (red); (b) Simulated joint angle sequence of LAX with a disturbance on the joint angles of
RSH2 (blue) and without (red); (c) Simulation of the joint angle S2Y with a disturbance on the joint
angles of H (blue) and without (red).

5. Discussion

This paper evaluates GOM’s feasibility to model industrial workers and subjects’
dynamics and select the joint angles that best represent the gesture vocabulary, and predict
their joint angles’ trajectory. The statistical analysis conducted on the GOM models permit-
ted identification of the joint angles that contributed most to the execution of the gestures of
each vocabulary. For validation, these joint angles were then used for gesture recognition.
These results demonstrate the potential of the selected set of sensors for a posture-based
ergonomic analysis. By only using the data of the selected sensors, it was possible to
discriminate accurately between different professional gestures and motion primitives
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where various postures of the spine, arms, and legs were assumed. The recognition of
these changes in posture are clearly useful for ergonomic analysis of professional gestures.
By applying a whole gesture to the trained HMMs from this vocabulary, the models could
tell whether an awkward motion primitive is performed and which body part causes this
ergonomic risk (i.e., spine, legs, or arms).

By solving the simultaneous equations that compose the GOM, it was possible to
accurately forecast the modeled gesture, using Euler joint angles as input. Moreover,
the models are tolerant to small variations in the gestures and offsets between same
class gestures, which could be due to different recording conditions (different subjects
or different recording days). Regarding the sensitivity analysis, the models showed low
sensitivity to external disturbances, with only a small variation in the forecasting from
that of a simulation without shocks. The response of the models to the shocks applied on
different variables could be useful for detecting any physical strain (e.g., on the shoulders
or lower back) or a load that affects the workers’ performance and increases the ergonomic
risk of the motion.

The industry has used ergonomic evaluations based on joint angle thresholds widely,
due to their practicality. Previous studies have applied these evaluations in their anal-
ysis, where their only contribution was to fill them automatically using motion capture
technologies [10–13]. An ergonomic analysis using such an approach can result in over-
simplicity and ignore other potential risks workers are exposed to (e.g., external forces and
dangerous movements). Menytchas [17] expanded such ergonomic analysis by examining
the kinematics and kinetics of professional movements to identify joints that accumulate
the most strain. The kinetic descriptors used in that study, however, did not allow for
accurate discrimination between dangerous motions with small variations in the posture;
moreover, they do not analyze the dynamics of movements, unlike the present study, which
allowed for a good recognition performance and distinction between motions of different
ergonomic risk.

In this study, GOM was proved to be useful for ergonomic analysis of professional
motions. In comparison with the approach taken in the previous study by Manitsaris [14],
a more in-depth analysis was conducted over the dynamic relationships of body parts,
including more assumptions in the mathematical representation of each body joint motion.
This gave insight into the influence of all body parts that work together to execute a specific
movement and into devising helpful strategies to address ergonomic hazards, such as opti-
mizing workspaces. Moreover, the methodology which was followed allowed the selection
of the most meaningful joint angles for gesture recognition, improving the recognition
performance considerably.

Despite the good performances and contributions achieved, this study highlighted
some limitations regarding the use of inertial sensors in real workplace scenarios. Inertial
sensors can offer precise and reliable measurements to study human motion; however,
the degree of this precision and reliability depends on the site, movements, and tools han-
dled during the performance. For instance, in the recording for the gesture vocabularies G2
and G3, workers used plastic gloves or did not wear the gloves that come with the inertial
suit in order to avoid disturbances in the measurements. For this study, the motion data
needed to be pre-processed after the recording to remove disturbances and drifts that could
affect the results of the method.

6. Conclusions

From the literature reviewed, most of the studies used inertial sensors for quantify-
ing the intensity, repetition, and duration of extreme motions and postures. The ability
to extract information about work content from kinematics data is underutilized. In-
dustrial workers perform complex professional gestures that contain crucial information
about ergonomic risks. In this paper, not only was the contribution of every body joint
in the execution of a specific professional gesture statistically estimated, but how they all op-
erationally cooperate was modeled using GOM, and, in addition, their motion trajectories
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were accurately predicted using the trained models. GOM is based on state-space represen-
tations and consists of a simultaneous equation system of differential equations for all body
body parts. The most significant joint motions for each gesture vocabulary were selected
based on their statistical significance in the GOM models. The selection was then validated
by achieving a high recognition performance of gestural time-series, which was modeled
using continuous HMM. Four datasets were created for this work that contain profes-
sional gestures recorded under real conditions in factories and in a laboratory environment.
The forecasting performance of the models was evaluated by comparing the simulated
gestures with their original values. According to the Theil inequality coefficient and its
decompositions, the performance of the models can be considered accurate.

Analyzing the response of the models to external disturbances and identifying the body
joints to enable tracking for ergonomic monitoring could be useful for faster and more
efficient evaluation of workers’ gestures. Furthermore, the models could be used for er-
gonomic risk prevention. They could detect patterns in the motion trajectories that imply
exposure to an ergonomic risk factor (e.g., workers are bending their torso or raising their
arms beyond a level that could be considered ergonomically safe).

Lastly, using a full-body mocap suit in an industrial context has several difficulties.
This study contributes to the literature by identifying the minimum motion descriptors
to measure. This allows for the use of less intrusive technologies, such as smartphones
and smartwatches, to measure these same motion descriptors. Future work will consist of
adding kinetic measures to the assumptions that GOM models are composed of (e.g., joint
moments), to complement the kinematic information, and will consider the effect of loads
on the kinetic variables, which could indicate worker exposure to higher ergonomic risk.
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Appendix A. Description of the Datasets’ Gestures

This appendix presents a detailed description of the gestures from the four gesture
vocabularies recorded. The first gesture vocabulary (G1) consists of three gestures executed
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by two workers from the TV assembly sector. They grabbed an electronic card from
a container, took a wire from another, connected them, and placed them on a TV chassis.
The first gesture is grabbing the electronic card from a container (G1,1), the second consists
of taking a wire from a second container (G1,2), and the third one involves connecting
the electronic card and wire and placing them on the TV chassis (G1,3).

The second gesture vocabulary is composed of three gestures performed in the air-
plane assembly sector (G2). Two workers were recorded, one performing riveting with
a pneumatic hammer and the other holding a bucking bar to counteract the incoming rivet.
The first gesture in this second vocabulary is riveting with the pneumatic hammer (G2,1),
while the second is preparing the pneumatic hammer and grabbing rivets (G2,2), and the
third involves positioning the bucking bar to counteract the incoming rivet (G2,3).

The third gesture vocabulary contains five gestures performed by a glassblower
when creating a water carafe (G3). In the first gesture, the glassblower with a blowpipe
grabs melted glass from an oven while rotating the blowpipe (G3,1). For the second
gesture, the glassblower holds a specific paper with his right hand and shapes the carafe’s
curves while seated in a metallic structure (G3,2). The third gesture involves blowing
through the metal blowpipe that holds the glass for the carafe (G3,3). In the fourth gesture,
the glassblower is shaping the carafe’s neck with pliers while standing (G3,4), and the fifth
gesture concerns heating the glass of the carafe in the oven while rotating the blowpipe
(G3,5).

The last gestural vocabulary is related to 28 motion primitives performed in a labo-
ratory (G4), recorded from ten subjects. Each gesture exposed the subjects to a different
level of ergonomic risk. According to EAWS, the ergonomic risk level depends on the torso,
legs, and arms posture. The gestures here varied in the posture of the spine, legs, and arms.
For the torso posture, in some gestures, the subjects bent more than 60◦, rotated the torso,
laterally bent to the left, or rotated their torso while leaning forward. The legs posture
changes depending on whether the subject executes the gesture standing, sitting, or kneel-
ing. Regarding the arms posture, the changes consist of raising their arms above shoulder
level or keeping them down and having the arms stretched or bent 90◦.
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Human-centered artificial intelligence is increasingly deployed in professional workplaces

in Industry 4.0 to address various challenges related to the collaboration between the

operators and themachines, the augmentation of their capabilities, or the improvement of

the quality of their work and life in general. Intelligent systems and autonomous machines

need to continuously recognize and follow the professional actions and gestures of

the operators in order to collaborate with them and anticipate their trajectories for

avoiding potential collisions and accidents. Nevertheless, the recognition of patterns

of professional gestures is a very challenging task for both research and the industry.

There are various types of human movements that the intelligent systems need to

perceive, for example, gestural commands to machines and professional actions with or

without the use of tools. Moreover, the interclass and intraclass spatiotemporal variances

together with the very limited access to annotated human motion data constitute a major

research challenge. In this paper, we introduce the Gesture Operational Model, which

describes how gestures are performed based on assumptions that focus on the dynamic

association of body entities, their synergies, and their serial and non-serial mediations,

as well as their transitioning over time from one state to another. Then, the assumptions

of the Gesture Operational Model are translated into a simultaneous equation system

for each body entity through State-Space modeling. The coefficients of the equation

are computed using the Maximum Likelihood Estimation method. The simulation of the

model generates a confidence-bounding box for every entity that describes the tolerance

of its spatial variance over time. The contribution of our approach is demonstrated for

both recognizing gestures and forecasting human motion trajectories. In recognition, it is

combined with continuous Hidden Markov Models to boost the recognition accuracy

when the likelihoods are not confident. In forecasting, a motion trajectory can be

estimated by taking as minimum input two observations only. The performance of the

algorithm has been evaluated using four industrial datasets that contain gestures and

actions from a TV assembly line, the glassblowing industry, the gestural commands to

Automated Guided Vehicles as well as the Human–Robot Collaboration in the automotive

assembly lines. The hybrid approach State-Space and HMMs outperforms standard

continuous HMMs and a 3DCNN-based end-to-end deep architecture.

Keywords: state-space representation, differential equations, movement modeling, hidden Markov models,

gesture recognition, forecasting, motion trajectory
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INTRODUCTION

Human motion analysis and recognition are widely researched
from various scientific domains including Human–Computer
Interaction, Collaborative Robotics, and Autonomous Vehicles.
Both the industry and science face significant challenges in
capturing the humanmotion, developingmodels, and algorithms
for efficiently recognizing it, as well as for improving the
perception of the machines when collaborating with humans.

Nevertheless, in factories, “we always start with manual work,”
as explained by Mitsuri Kawai, Head of Manufacturing and
Executive Vice-President of Toyota (Borl, 2018). Therefore,
experts from both collaborative robotics and applied ergonomics
are always involved when a new collaborative cell is being
designed. Nowadays, despite the significant progress in training
robots by demonstration, automatizing the human tasks inmixed
workspaces still remains the goal. However, those workspaces are
not necessarily collaborative. For example, in a smart workspace,
a machine that perceives and anticipates gestures and actions of
the operator would be able to adapt its own actions depending on
those of the operator, thus giving him/her the possibility to obtain
ergonomically “green postures.” Furthermore, automated guided
vehicles (AGVs) should also be able to detect the intentions of
the operator with the aim of collaborating with them, avoiding
accidents and understanding gestural commands. Finally, in
Industry 4.0, an important number of Creative and Cultural
Industries, for example, in luxury goods manufacturing, still base
their know-how on manual dexterity, no matter whether the
operator is in collaboration with a machine or not. Therefore,
human movement representation and gesture recognition
constitute a mean for identifying the industrial know-how and
transmitting it to the next generation of the operators.

From a scientific point of view, major research challenges
are faced by scientists, especially when dealing with professional
environments in an industrial context. Initially, there is
an extremely limited access to motion data from real-life
configurations. This is mainly due to acceptability issues from
the operators or to limitations imposed by laws and regulations
that protect the access to/use of personal data, for example,
the “General Data Protection Regulation” in the European
Union. Therefore, most of existing datasets include only gestures
from the everyday life. Furthermore, when creating custom
datasets with professional motion data, many practical, and
environmental issues might occur, for example, variation in
luminosity, various workspace with different geometries, camera
inmotion to record a personmoving in space, and low availability
of real experts. Additionally, the community of actions and
gesture recognition deals with challenges that are related to
intraclass and interclass variations (Fu, 2016). Frequent are the
cases where a professional task involves gestures that have very
similar spatiotemporal characteristics (low interclass variation)
together with very important differences in the way different
humans perform the same gesture (high intraclass variation).
Finally, when applied to accident prevention, a small delay in
predicting the action might be crucial.

The work presented in this paper contributes to the
aforementioned challenges, through the proposition of a Gesture

Operational Model (GOM) that describes how the body parts
cooperate, to perform a situated professional gesture. The model
is built upon several assumptions that determine the dynamic
relationship between the body entities within the execution
of the human movement. The model is based on the State-
Space (SS) representation, as a simultaneous equation system
for all the body entities is generated, composed of a set of first-
order differential equations. The coefficients of the equation
system are estimated using the Maximum Likelihood Estimation
(MLE) method, and its dynamic simulation generates a dynamic
tolerance of the spatial variance of the movement over time.
The scientific evidence of the GOM is evaluated through its
ability to improve the recognition accuracy of gestural time
series that are modeled using continuous HiddenMarkovModels
(HMMs).Moreover, the system is dynamically simulated through
the solution of its equations. Its forecasting ability is evaluated
by comparing the similarity between the real and simulated
motion data using two real observations for initializing the
models as well as by measuring the Theil inequality coefficient
and its decompositions.

The performance of the algorithms that implement the GOM,
the recognition of gestures, and the forecasting of the motion
trajectories are evaluated by recording four industrial real-
life datasets from a European house-holding manufacturer, a
glassblowing workshop, an AGV manufacturer, and a scenario
in automotive industry. More precisely, the first dataset contains
motion data with gestures and actions from a TV assembly
line, the second from the creation of glass water carafes, the
third gestural commands to mobile robots, and the fourth from
a scenario of Human–Robot Collaboration in the automotive
industry. The motion data used in our experiments are 2D
positions that are exported from computer vision and the
application of a deep-learning-based pose estimation using the
OpenPose framework (Cao et al., 2019).

State of the Art presents a state of the art on human motion
modeling, representation, and recognition. In Methodology, the
whole methodology analysis, modeling, and recognition are
presented, whereas in Evaluation, the different approaches in the
evaluation of the ability of the models to simulate a gesture and
forecast its trajectories are analyzed. In the same section, the
accuracy of the proposed method is also presented. Finally, in
Discussion and Conclusion and Future Work, a discussion and
the future work and perspectives of the proposed methodology
are described.

STATE OF THE ART

In professional environments, a movement can be defined
as the displacement of the human body in space, whereas
gesture is a form of non-verbal communication for interacting
with a machine or manipulating a tool or object. In industry,
professional gestures define the routine of workers. The non-
physical interaction of the workers with collaborative machines
is relying on an external perception layer that gets input from
the ambient environment using, among others, human motion
sensors, to understand their movement and adapt their behavior
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according to the humans. Whether machine or deep learning can
be used to create an AI-based perception layer for collaborative
machines. Machine learning has demonstrated an important
number of applications in action and gesture recognition by
using whether a probabilistic modeling of the phenomenon, and
optionally a representation of it, or a template matching that
makes use of a temporal rescaling of the input signal according
to the reference. Finally, architectures of deep neural networks
have recently seen a considerable number of applications with a
high accuracy and precision.

Movement Modeling and Representation
Each body articulation is strongly affected by the movement
of other articulations. Observing a person running brings
evidence on the existing interdependencies between different
parts of human body that need to move cooperatively
for a movement to be achieved. Duprey et al. (2017)
attempted to study those relationships by exploring the
upper body anatomy models available and describe their
applicability using multi-body kinematic optimization, mostly
for clinical, and ergonomic uses. Biomechanics has also actively
contributed to the study of human movement modeling by using
Newtonian methods and approaches, especially in sports and
physical rehabilitation (Zatsiorsky, 2000). The representation
of the human movement with physical or statistical models
provides with a simplified mathematical formalization of the
phenomenon and approximates reality, e.g. through simulation
and forecasting. State-Space (SS) is a statistical modeling that
allows to stochastically represent a human movement through
a reasoning over time that makes use of internal states. An SS
representation is a mathematical model of a physical system
as a set of input, output, and state variables related by first-
order differential equations. Kalman filtering is a method that
estimates and determines values for the parameters of a model.
To represent human movement, Zalmai et al. (2015) used
linear SS models and provided an algorithm based on local
likelihood for detecting and inferring gesture causing magnetic
field variations. Lech and Kostek (2012) used Kalman filtering to
achieve hand tracking and presented a system based on camera
and multimedia projector enabling a user to control computer
applications by dynamic hand gestures. Finally, Dimitropoulos
et al. (2016) presented a methodology for the modeling and
classification of multidimensional time series by exploiting the
correlation between the different channels of data and the
geometric properties of the space in which the parameters of
the descriptor lie by using a linear dynamic system (LDS). Here,
multidimensional evolving data were considered as a cloud of
points (instead of a single point) on the Grassmannmanifold, and
codebook is created to represent each multidimensional signal as
a histogram of Grassmannian points, which is not always the case
for professional gestures.

Machine Learning for Gesture Recognition
Template-Based Machine Learning
Template-based machine learning has been widely used for
gesture recognition in the context of continuous real-time
human–machine interaction. Dynamic Time Warping (DTW)

is a template-based method that has been widely used for
measuring the similarity between motion data. DTW makes
it possible to find the optimal global alignment between two
sequences. Bevilacqua et al. (2005), Bevilacqua et al. (2007), and
Bevilacqua et al. (2009) successively developed a system based
on DTW, the Gesture Follower, for both continuous gesture
recognition and following, between the template or reference
gesture, and the input or performed one. A single example allows
the training of the system (Bobick andWilson, 1997). During the
performance, a continuous estimation of parameters is calculated
in real time, providing information for the temporal position
of the performed gesture. Time alignment occurs between the
template and the performed gesture, as well as an estimation of
the time progression within the template in real time. Instead,
Psarrou et al. (2002) used the Conditional Density Propagation
algorithm to perform gesture recognition and made sure that
they will not get probabilities for only one model per time stamp.
The experiments resulted to a relatively good accuracy for the
time period conducted.

Model-Based Machine Learning
One of the most popular methods of model-based machine
learning that has been used to model and recognize movement
patterns are HMMs. Pedersoli et al. adopted this method
(Pedersoli et al., 2014) to recognize in real-time static hand poses
and dynamic hand gestures of American Sign Language. Sideridis
et al. (2019) created a gesture recognition system for everyday
gestures recorded with inertia measurement units, based on
Fast Nearest Neighbors, and Support Vector Machine methods,
whereas Yang and Sarkar (2006) chose to use an extension of
HMMs. Vaitkevičius et al. (2019) used also HMMs with the same
purpose, gesture recognition, for the creation of virtual reality
installations, as well as Williamson and Murray-Smith (2002),
who used a combination of HMMswith a dynamic programming
recognition algorithm, along with the granular synthesis method
for gesture recognition with audio feedback. In a more industrial
context, Yang et al. (2007) used gesture spotting with HMMs
to achieve efficient Human–Robot collaboration where real-
time gesture recognition was performed with extended HMM
methods like Hierarchical HMMs (Li et al., 2017). HMMs seem
to be a solid approach, allowing to achieve satisfying results
of gesture modeling and recognition and are suitable for real-
time applications.

The aforementioned methodologies and research approaches
permit the identification of what/which gesture is performed by
giving a probability, but not how expressively the gesture has
been performed. Caramiaux et al. (2015) extended the research,
by implementing a sequentialMonte Carlo technique to deal with
expressivity. The recognition system, named Gesture Variation
Follower, is being adapted to gesture expressive variations in real
time. Specifically, in the learning phase, only one example per
gesture is required. Then, in the testing (recognition) phase, time
alignment is computed continuously, and expressive variations
(such as speed and size) are estimated between the template and
the performed gesture (Caramiaux, 2015; Caramiaux et al., 2015).

The model-based and template-based methods present an
interesting complementarity and their combination in most of
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cases, give the possibility to achieve satisfying gesture recognition
accuracy. However, when the probability given per class presents
a high level of uncertainty, these methods need to be completed
with an extra layer of control that will permit to take a final, more
robust, decision about the probability of an observation to belong
to each class. One of the goals of this work is to focus on the
use of the SS method for human movement representation and
modeling and to use this representation as the extra control layer
to improve gesture recognition results.

Deep Architectures for Action Recognition
Deep Learning (DL) is another approach with increasing
scientific evidence in action and gesture classification. Mathe
et al. (2018) presented results on hand gesture recognition with
the use of a Convolutional Neural Network (CNN), which is
trained on Discrete Fourier Transform images that resulted
from raw sensor readings. In Oyedotun and Khashman (2017),
the authors proposed an approach for the recognition of hand
gestures from the American Sign Language using CNNs and
auto-encoders. 3DCNNs are used in Molchanov et al. (2015) to
detect hand movements of drivers, and in Camgoz et al. (2016)
continuously recognize gesture classes from the Continuous
Gesture Dataset (ConGD), which is the larger user-independent
dataset. A two-stage approach is presented in Li et al. (2015),
which combines feature learning from RGB-D using CNNs with
Principal Component Analysis (PCA) for selecting the final
features. Devineau et al. (2018) used a CNN model and tested
its performance on classifying sequential humans’ tasks using
hand-skeletal data as input. Shahroudy et al. (2016), wanting
to improve their action recognition results and decrease the
dependency in factors like lightning, background, and color
clothing, used a recurrent neural network to model the long-
term correlation of the features for each body part. For the
same reason, Yan et al. (2018) proposed a model of dynamic
skeletons called spatial–temporal graph convolutional network
(ST-GCN). This Neural Network (NN) learns automatically the
spatial and temporal patterns from the given data, minimizing
the computational cost, and increasing the generalization
capability. In other cases, action recognition was achieved using
either 3DCNNs (Tran et al., 2015) or two stream networks
(Simonyan and Zisserman, 2014). CNNs are the NNs used in
all cases above, as they are the main method used for image
pattern recognition.

The particularity of DL methods is that they require a big
amount of data in order to be trained. In some applications,
having access to an important volume of data might not be
possible for various reasons. One application with extremely
limited amount of data is the recognition of situated professional
actions and gestures performed in an industrial context, such
as in manufacturing, assembling lines, and craftsmanship. Deep
NNs are powerful methods for pattern recognition with great
accuracy results, but they present some limitations for real-time
applications, which are linked to the computational power that
is required for both training and testing purposes. In this paper,
given the fact that the available examples per gesture class are
also limited, it is assumed and proved that stochasticmodel-based
machine learning can give better results than DL.

The aim of this paper is to get advantage of existing knowledge
in machine learning, and more precisely in the stochastic
modeling for the recognition of gestures and the forecasting of
their motion trajectories. To underline the advantages of the
method proposed we also compare its performance with results
obtained with a recent DL-based end-to-end architecture.

Our Previous Work
Manitsaris et al. (2015b) previously defined an operational model
explaining how the body parts are related to each other, which
was used for the extraction of confidence bounds over the time
series of motion data. In Manitsaris et al. (2015b), as well as in
Volioti et al. (2016), the operational model has been tested on
Euler angles. In this work, the operational model is expanded to
the full body and is tested with various datasets with position data
from various real-life situations that have more classes and users
than in previous work.

METHODOLOGY

Overview
The motion capturing of the operators in their workplace is
a major task. A number of professional gestural vocabularies
are created to build the methodology and evaluate its scientific
evidence. Although the proposed methodology (Figure 1) is
compatible with various types of motion data, we opted for
RGB sensors and, in most of cases, with 2D positions to avoid
any interference between the operator and his/her tools or
materials. Thus, RGB images are recorded for every gesture of the
vocabulary, segmented into gesture classes, annotated, and then
introduced to an external framework for estimating the poses and
extracting the skeleton of the operators.

As shown in Figure 2, the GOM is based on a number of
assumptions that describe the way the different entities of the
human body cooperate to efficiently perform the gesture. The
assumptions of the model refer to various relationships between
the entities, which are: the intrajoint association, the interlimb
synergies, the intralimb mediation, and the transitioning over
time. Following the theory of the SS modeling, the GOM is
translated into a simultaneous equation system that is composed
of two first-order differential equations for each component (e.g.,
dimension X, Y for 2D or X Y , Z for 3D) of each body entity.

During the training phase, the motion data of the training
dataset are used to compute the coefficients of the equation
system using the MLE method but also to execute a supervised
learning of the continuous HMMs. Moreover, the motion data
are used to solve the simultaneous equation system and simulate
the whole gesture, thus generating values for the state variables.
Once the solution of the system is completed for all the gestures of
the vocabulary, the forecasting ability of every model is evaluated
using the Theil coefficients as well as their performance in
comparison with the motion data of other gestures.

During the testing phase, the HMMs output their likelihoods,
which are multiplied by a confidence coefficient when their
maximum likelihood is under a threshold. Finally, a motion
trajectory can be dynamically or statically forecasted at any time
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FIGURE 1 | Methodology pipeline.

by giving as input at least two time-stamp values from the real
motion data.

Industrial Datasets and Gesture
Vocabularies
The performance of the algorithms is evaluated by recording four
industrial real-life datasets from a house-holding manufacturer,
a glassblowing workshop, an AGV manufacturer, and an
automotive industry. For each dataset, a gesture vocabulary has
been defined in order to segment the whole procedure into small
human motion units (Table 2).

The first gesture vocabulary (GV1) includes four gestures
where the operator takes the electronic card from one box and
then takes a wire from another, connects them, and places them
on the TV chassis. The gestures are performed in a predefined
working space, in front of the conveyor and with the boxes placed
on the left and right sides. However, the operator has a certain
degree of variation in the way of executing the tasks, because
the gestures are ample involving the whole body. Moreover, in
order to avoid self-occlusions and scene occlusions, the camera
is mounted on the top, which is not necessarily the optimal
camera location for pose estimation algorithms, for example,
OpenPose. Currently, in the factory, together with the operator
who performs the actions of GV1, there is also a second operator
who will be progressively replaced by a collaborative robot.

The second gestural vocabulary proposes gestural commands
for controlling an AGV. This dataset GV2 contains five gestures
involving mostly the arm and forearm. G2,1 initiates the

communication with the AGV, by shaking the palm, whereasG2,2

and G2,3 turn left and right the AGV by raising the respective
arms. G2,4 speeds up the AGV by raising three times the right
hand, whereas G2,5 speeds down the AGV by rolling the right
hand away from the hips with a distance of around 20/30 cm.
All gestures of GV2 start and end with the i-pose.

The third gesture vocabulary GV3 contains four gestures
performed by a glassblower when creating a water carafe. The
craftsman executes the gestures in a very limited space that
is defined by a specific metallic construction. The craftsman
puts the pipe on the metallic structure and performs various
manipulations of the glass by using tools, such as pliers. Three
out of four gestures are performed while the craftsman is sitting.
More precisely, he starts by shaping the neck of the carafe with
the use of pliers (G3,1), then he tightens the neck to define the
transition between the neck and the curved vessel (G3,2), he holds
in his/her right hand a specific paper and shapes the curves of the
blown part (G3,3), and finalizes the object and fixes the details
by using a metallic stick (G3,4). In general, the right hand is
manipulating the tools while the left is holding and controlling
the pipe. In parallel with G3,2 and G3,3, an assistant is helping and
blowing promptly the pipe to permit the creation of the blown
curved part.

The last dataset (GV4) used in this paper is related to a real-
life Human–Robot Collaboration scenario that has been recorded

1https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/
doc/output.mdwhwhoch
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FIGURE 2 | The full-body assumptions of the Gesture Operational Model (GOM) are depicted in the figure. Some relationships happen to be bidirectional, while others

not. The relationships of the human body are governed by four different assumptions, intra-joint association, transitioning, inter-limb synergies, and intra-limb

mediation. On the down-right of the image, the mapping on body is presented. The numbers in the GOM model, represent the corresponding body part of the joints

representation from OpenPose framework. The idea of the GOM was based on a previous article of the authors (Manitsaris et al., 2015b)1.

in the automotive assembly lines of PSA Peugeot Citroën (PSA
Group). A dual-arm robot and the worker are facing each other
in order to cooperate for assemblingmotor hoses. More precisely,
for the assembling of the motor hoses, the robot gives to the
worker one part from the right and one part from the left claw,
and the worker takes two hose parts from the robot, joins them,
screws them, and finally places the mounted motor hose in a
box. In order for the robot to achieve the appropriate level of

perception and move accordingly, it needs to make two specific
actions “to take a piece in the right claw” and “to take a piece
in the left claw.” Then, the worker can screw after the first
gesture “to assemble” or can choose to screw later during the last
assembly subtask. At the end of the assembly task, the worker
puts the assembled piece in a box, which means that a cycle has
just ended. Therefore, it is important for the robot to recognize
the actions “to assemble” and “to screw” of the worker, so as to
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give at the correct moment the next motor piece with its arm.
Twelve operators have been recorded in GV4.

The four datasets and vocabularies contain professional
gestures performed in different industries and contexts.
Important differences may be observed between them though.
For example, GV1, GV3, and GV4 involve the manipulation of
tools from the operator. Therefore, the distribution of variances
alternates between high, for example, when moving for grabbing
the tool, and low values, for example, when tools or objects
are put on a specific position. In GV1, despite the fact that the
gestures are performed in a predefined space, the operator has a
certain degree of variation between different repetitions of the
same gesture. Human factors such as the level of experience,
fatigue, or even stress influence the way these gestures are
performed without necessarily having a direct impact on the final
result, which is to place the card on the TV. However, this is not
the case of the GV3, where a high level of technicity and dexterity
is required. In GV3, only low spatial and temporal variations can
be accepted. The glass blower performs the gestures with a high
repeatability from one repetition to another and successfully
reproduces the object with exactly the same specifications, for
example, size and diameter. The gestural commands of GV2 are
simpler and ampler. A bigger freedom and variation are thus
expected in the way they are performed. In GV4, the operator
is performing actions with a high repeatability. Because the
dual-arm robot Motoman SDA20 has been used, the operator,
depending on whether he/she is left- or right-handed, has various
possibilities for grabbing the parts from the robot and the tools.

In GV1, although all the gestures are performed by a single
user, the different positions of the operator in space in each
gesture make it an interesting dataset to work on. Also, this
dataset appears to have a lot of noise, and it was an opportunity
to examine the reaction of the pose estimation framework to
noisy data. The second dataset (GV2) has multiple users, giving
the opportunity to examine how gesture recognition works with
a high variation among the performance of the same gestures.
In the third gestural vocabulary (GV3), all gestures have been
performed by an expert artist. They are fine movements where
hands are cooperating in a synchronous way. Consequently,
investigating body parts dependencies in this GV becomes
extremely interesting. The fourth gestural vocabulary (GV4) has
a robot involved in the industrial routine.

From an intraclass variance point of view, the Root-Mean-
Square Error (RMSE) is used to evaluate the datasets. The RMSE
allows the measurement of the difference between two times
series, and it is defined as shown in Equation (1).

RMSE =

√

(o1 − o2)
2 (1)

where o1 is one of the iterations of a specific gesture within
a gestural vocabulary and o2 is another iteration of the same
gesture, among which the variance is to be examined. A high
variance between the iterations of each gesture of GV2 is noticed,
which is the expected result, because this dataset consists of
gestures performed by six different users (Table 1). The RMSE for
GV3 appears to have low intraclass variation, as expected, because

TABLE 1 | RMSE between the iterations of the real data of GV2 and GV3.

GV2 G2,1 G2,2 G2,3 G2,4 G2,5

RMSE 0.0565 0.0523 0.0556 0.0330 0.0407

GV3 G3,1 G3,2 G3,3 G3,4

RMSE 0.0265 0.0302 0.0489 0.0461

the gestures are performed by an expert, who is able to repeat
them in a very precise way.

Pose Estimation and Feature Extraction
After the motion capturing and recording of the data, each image
sequence of the three first datasets is imported to the OpenPose
framework, which detects body keypoints on the RGB image
and extracts a skeletal model together with the 2D positions of
each body joint (Cao et al., 2019) (Figure 2). These joints are
not necessarily physical joints. They are keypoints on the RGB
image, which, in most cases, correspond to physical joint centers.
OpenPose uses the neck as the root keypoint to compute all
the other body keypoints (or joints). Thus, the motion data are
normalized by using the neck as the reference joint. In addition
to this, the coordinates of each joint are derived by the width and
height of the camera. With regard to GV4, 3D hand positions
are extracted from top-mounted depth imaging by detecting
keypoints on the depth map. The keypoints are localized by
computing the geodesic distances between the closest body part
to the camera (head) and the farthest visible body part (hands),
as it is presented in our previous work (Manitsaris et al., 2015a).
Any vision-based pose estimation framework may output 2D
positions of a low precision, depending on the location of the
camera, such as OpenPose for a top-mounted view. However,
these errors may not strongly affect the recognition accuracy
of our hybrid approach. This is also proved by the fact that
our approach outperforms the end-to-end 3DCNNs that does
not use any skeletization of the human body to recognize the
human actions.

The extracted features for each joint, were the X and Y
positions, as they are provided by OpenPose. More specifically,
for GV1, the 2D positions of the two wrists have been used,
whereas for GV2 and GV3, the 2D positions of the head, neck
and shoulder, elbows, wrists, and hands have been used, as they
were proven to give optimal recognition results. With regard to
GV4, 3D hand positions are used.

Gesture Operational Model
When a skilled individual performs a professional situated
gesture, the whole body is involved combining, thus,
theoretical knowledge with practical motor skills. Effective and
accompanying body movements are harmonically coordinated
to execute a given action. The expertise in the execution
of professional gestures is characterized by precision and
repeatability, while the body is continuously shifting from one
phase to another, for example, from specific postures (small
tolerance for spatial variance) to ample movements (high
tolerance for spatial variance). For each phase of the movement,
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TABLE 2 | Gesture vocabulary of TV assembling dataset, AGV commands dataset, Glassblowing and Human-Robot Collaboration dataset, respectively.

GV1 -TV assembly

G1,1: Take the card from the left side box G1,2: Take the wire from the right-side box G1,3: Connect the wire with the card G1,4: Place the card on the TV chassis

GV2-AGV commands

G2,1: Hello G2,2: Left G2,3: Right G2,4: Speed up G2,5: Speed down

GV3-Glassblowing

G3,1: Fix details with pliers G3,2: Tighten base of glass G3,3: Make shape with paper G3,4: Fix shape

GV4-Human-robot collaboration

G4,1: Take a motor hose part in

the robot right claw

G4,2: Take a motor hose part

in the robot left claw

G4,3: Join two parts of

the motor hose

G4,4: Screw G4,5: Put the final

motor hose in a box

each body entity, for example, articulation or segment, moves in
a multidimensional space over time. When considering the 2D
motion descriptors of the movement, two mutually dependent
variables represent the entity, for example, X and Y positions.
Each of these variables is associated with the other, creating
thus a bidirectional relationship between them. Furthermore,
they also depend on their history, whereas some entities might
“work together” to execute an effective gesture, for example,
when an operator assembles two parts. However, a unidirectional
dependency might be observed when one entity influences
the other entity and not vice versa as well as a bidirectional
dependency when both entities influence one each other, for
example, when a potter shapes the clay with both hands.

The above observations on situated body movements can
be translated into a functional model, which we define here
as the GOM, which describes how the body skeletal entities
of a skilled individual are organized to deliver a specific result
(Figure 2). It is assumed that each of the assumptions of
“intrajoint association,” “transitioning,” “intralimb synergies,”
and “intralimb mediation” contribute at a certain level to the
production of the gesture. As far as the intralimb mediation

is concerned, it can be decomposed into the “interjoint serial
mediation” and the “interjoint non-serial mediation.” The
proposed model works perfectly for all three dimensions (X, Y ,
and Z), but for reasons of simplicity, it will be presented only for
two dimensions, the X and Y . In addition to this, in this work,
only positions are used, but the model is designed to be able to
receive joint angles as input as well.

Intrajoint Association
It is hypothesized that the motion of each body part (Entity) (e.g.,
right hand) is decomposed in a motion on the X-axis and Y-
axis, thus described by two mutually dependent variables. It is
assumed that there is a bidirectional relationship between the two
variables, defined here as intrajoint association and indicated by

.

Transitioning
It is also assumed that each variable depends on its own history,
also called inertia effect. This means that the current value of
each variable depends on the values of previous times, also called
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lag or dynamic effect, which is defined here as transitioning and

indicated by .

Interlimb Synergies
It is assumed that some body entities work together to achieve
certain motion trajectories, for example, hands when assembling
two parts, defined here as interlimb synergies.

Intralimb Mediation

Interjoint serial mediation
It is assumed that a body entity may depend on its neighboring
entities to which it is directly connected to; for example,
a glassblower, while using the pipe, moves his/her wrists along
with his/her shoulders and elbows. In case this assumption is
statistically significant, there is an interjoint serial mediation.

Interjoint non-serial mediation
It is assumed that each body entity depends on non-neighboring
entities of the same limb; for example, the movement of the
wrist may depend on the movement of the elbow and shoulder.
Thus, it is highly likely that both direct and indirect dependencies
simultaneously occur in the same gesture. Entities are named
after the first letters of the respective body joint. More specifically,
LSH and RSH represent the left and right shoulders, respectively.
Accordingly, LELBOW and RELBOW represent the left and right
elbows; LWRIST and RWRIST, the left and right wrists; and
LHAND and RHAND, the left and right hands. HEAD, NECK,
and HIPS represent, as their names indicate, the head, the neck,
and the hips.

So an example of the representation of those assumptions for
the X-axis would be as follows:

Entity1,X (t) = Entity1,Y (t − 1)+ Entity1,X(t − 1)+

+Entity1,X (t − 2)+ Entity2,X (t − 1)

+Entity3,X (t − 1) (2)

Simultaneous Equation System
The simultaneous equation system concatenates the dynamics of
an Nth-order system, the GOM, into N first-order differential
equations. The number of equations is equal to the number of
associated dimensions to a given entity multiplied by the number
of body entities. Therefore, the steps to follow are the estimation
of the model, with the aim of verifying its structure, as well as the
simulation of the model to verify its forecasting ability.

State-Space Representation
The definition of the equations of the system follows the
theory of the SS modeling, which gives the possibility for the
coefficients to dynamically change over time. An SS model
for n-dimensional time series y(t) consists of a measurement
or observation equation relating the observed data to an m-
dimensional state vector s(t) and a Markovian state or transition
equation that describes the evolution of the state vector over
time. The state equation depicts the dependence between the
system’s past and future and must “canalize” through the state
vector. The measurement or observation equation is the “lens”
(signal) through which the hidden state is observed, and it shows

the relationship between the system’s state, input, and output
variables. Representing a dynamic system in an SS form allows
the state variables to be incorporated into and estimated along
with the observable model.

Therefore, given an input u(t) and a state sS(t), a SS gives
the hidden states that result to an observable output (signal). A
general SS representation is as follows:

dss

dt
= AsS (t − 1)+ w (t) (3)

y = C
dss

dt
+ Du (4)

where Equation (3) is the state equation, which is a first-order
Markov process; Equation (4) is the measurement equation; sS is
the vector of all the state variables; dss

dt
is the time derivative of

the state vector; u is the input vector; y is the output vector; A
is the transition matrix that defines the weight of the precedent
space; C is the output matrix; and D is the feed-through matrix
that describes the direct coupling between u and y; and t
indicates time.

When capturing the gestures with motion sensors, Gaussian
disturbances (w(t)) are also added in both the state and output
equations. After the experiments presented in this work were
performed, it was observed that Gaussian disturbances did not
change at all the final estimation result, so they were considered
to be negligible.

The SS representation of the positions on the X-axis for a
body Entityi,j, where i represents the body part modeled in an SS

form and j the dimension of each Entity- according to the GOM
structured, as follows:

dss

dt
= A∗sS (t − 1) =

[

α1 0
0 α2

] [

Entity1,X (t − 1)
−Entity1,X (t − 2)

]

=

[

α1Entity1,X (t − 1)
−α2Entity1,X (t − 2)

]

(5)

(5)
⇒ Entity1,X (t) = [1 1]

dss

dt
+ α3Entity1,Y (t − 1)+

+α4Entity2,X (t − 1)

= α1Entity1,X (t − 1)− α2Entity1,X(t − 2)+

+α3Entity1,Y (t − 1)+ α4Entity2,X (t − 1)

(6)

where αi are the coefficients that need to be estimated. For
simplicity, the inter-joint non-serial mediation is not used in the
specific example. In Equation (6), EntityX(t − 2) is subtracted
by EntityX(t − 1), indicating the difference between successive
levels of dimensions, for example, positions on the Y-axis
(transitioning assumption). Equations (5) and (6) occur by
Equations (3) and (4), respectively. More specifically, Equation
(6) consists of the exogenous variables to which the endogenous
ones, coming up from the state equation (Equation 5), are added.

Equation (6) has now the form of a second-order
autoregressive (AR) model. An AR model predicts future
behavior on the basis of past behavior. The order of the
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AR model is adapted in each case according to the data
characteristics and the experiments. During the performance
of the experiments, the use of an AR model of second order
led to better estimation results. As such, in the transitioning
assumption, the position values of the two previous time periods
(frames) of a given axis are considered.

For the modeling of the full human body, the simultaneous
equation system is based on Equations (5) and (6), which
consists of two sets of equations for each used entity, one
for each dimension X and Y. Thus, for a full-body GOM,
we obtain 32 equations describing 32 variables with 64
state variables that contain two endogenous variables for
t − 1 and t − 2.

As an example, the SS representation for the right wrist is
given as follows:

RWRISTX (t) = α1RWRISTX (t − 1)− α2RWRISTX(t − 2)+

+ α3RWRISTY (t − 1)+ α4LWRISTX (t − 1) (7)

In Equation (7), RWRISTX (t − 1) and RWRISTX (t − 2) are
the endogenous variables, whereas RWRISTY (t − 1), and
LWRISTX (t − 1) are the exogenous ones.

Computing the Coefficients of the
Equations
The coefficients of the simultaneous equation system are
computed using the MLE method via Kalman filtering (Holmes,
2016). Let us consider a gesture Gj∈N of a gesture vocabulary
GVi∈[1,3] and an observation O0 : k = {o1, . . . , ok }k∈N, where ok
is one observation vector and k the total number of observations.
Thus, the probability Ps to observe ot at time t ∈

[

0, k
]

will be
as follows:

Ps (O0 : k) =

k
∏

t=0

P(ot |O0 : t−1) (8)

where k represents the observed data, P (ot|O0 : t−1) is the
probability of ot given all the observations before time t.

Also, the probability of time series given a set of parameters
Ψ is

P (O0 : t−1|9) =
∏

k
t=1exp

{

−

(

ot − õt−1
t

)2

2Ft−1
t

}

(2π|Ft−1
t |)

− 1
2 dθ

(9)

with variance Ft−1
t and mean õt−1

t . So the log-likelihood of ψ
given dataO0 : t−1 is

logL (Ψ |O0 : t−1) = −
k

2
log 2π −

1

2

k
∑

t=1

log
∣
∣Ft−1

t

∣
∣−

−
1

2

k
∑

t=1

(ot − õt−1
t )

2

Ft−1
t

(10)

For the computation of this log-likelihood, the estimation, the
variance, and mean that appear in Equation (4) need to be

estimated optimally. Kalman filtering gives the optimal estimates
of the mean and covariance for the calculation of the maximum
likelihood of ψ . Kalman filtering consists of two main recursive
steps, prediction and update. In the first step, there is an
estimation of the mean and covariance, along with the predicted
error covariance. In the update step, the optimal Kalman gain
is computed, so the estimation of mean and covariance from
the prediction step is updated according to it. These two steps
appear recursively, until the optimal õt−1

t and Ft−1
t that fit the

observed data are computed. This derives the computation of the
coefficients of the SS equations and the forecasting of a new time
series given those observed data.

Learning With Hidden Markov Models
HMMs follow the principles of Markov chains that describe
stochastic processes. They are commonly used to model and
recognize human gestures. They are structured using two
different types of probabilities, the transition probability from
one state to another and the probability for a state to generate
specific observations on the signal (Bakis, 1976). In our case,
each professional gesture is associated to an HMM, whereas the
intermediate phases of the gesture constitute internal states of
the HMM. According to our datasets, these gestures define the
gesture vocabulary GVi∈[1,3] =

{

Gj

}

j∈ N.
Let Sh be a finite space of states, corresponding to all the

intermediate phases of a professional gesture. The transition
probability is between the states Q

(

sh, s
′
h

)

, where sh, s
′
h
∈ Sh

are given in the transition matrix Q = [Q
(

sh, s
′
h

)

]. A hidden
sequence of states where Sh0 : k = {sh1, . . . , shk }k∈N, where shk ∈

Sh is also considered. A given sequence of hidden states Sh0 : k

is supposed to generate a sequence of observation vectors Oo : k.
We assume that the vectors ok depends only on the state shk.
From now on, the likelihood that the observation o is the result
of the state sh will be defined as Ph(o|sh). It is important to
outline that in our modeling structure, each internal state of the
model depends only on its previous state (first-order Markov
property). Consequently, the set of the models for all gestures
for every gesture vocabulary is GVj∈[1,3] = {HMMi}i∈N, where
HMMi = (̺i,Qi,Phi)i∈N are the parameters of the model and ̺i
is the initial state probability. Thus, the recognition becomes an
issue of solving three specific problems: evaluation, recognition,
and learning (Dymarski, 2011). Each one of those problems was
solved with the use of the algorithms, Viterbi (Rabiner, 1989),
Baum’s “forward” (Baum, 1972), and Baum–Welch, respectively
(Dempster et al., 1977).

Gesture Recognition
In the recognition phase, the main goal is to recall with a
high precision the hidden sequence of internal states Sh0 : k that
correspond to the sequences of the observation vectors. Thus, let
us consider the observation of motion data O0 : k, which need
to be recognized. Every HMMλ with λ ∈

[

1, j
]

of a given GVi

with i ∈ [1, 3] generates the likelihood Phλ(O0 : k|HMMλ). If
there is at least one HMMξ with ξ ∈

[

1, j
]

that generates
Phξ ≥ 0.55, then it is considered that O0 : k is generated by Gi,ξ .
Otherwise, the following quantity is computed for every SSλ of
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GVi (confidence control):

SSscoreλ =
1

1+ d
(

O0 : k,Os
0 : k,λ

) (11)

where d is the minimum distance between the simulated values
Os

0 : k,λ from the model SSλ and the original observationsO0 : k.
Then, for every SSλ of GVi, the likelihood

P ′
hλ

(

O0 : k|HMMSS
λ

)

is computed as follows:

P ′
hλ

(

O0 : k|HMMSS
λ

)

=Phλ(O0 : k|HMMλ) · SS
score
λ (12)

Therefore, the final formula provides the way the algorithm
recognizes the observation of motion dataO0 : k,

RGVi (O0 : k) =













max
j
1

(Phi(O0 : k|HMMi)
)

, max
(Phλ(O0 : k|HMMλ)

)

≥ 0.55

max
j
1

(P ′
hλ

(O0 : k|HMMSS
λ

))

, max
(Phλ(O0 : k|HMMλ)

)

< 0.55

(13)

EVALUATION

The evaluation of the accuracy and performance of the method
follows an “all-shots” approach for the training of the HMMs
and a “one-shot” approach for estimating the coefficients of the
SS models.

In order to select which gestural iteration to use for computing
the coefficients of the SS models, the “leave-one-out method” is
used. It is a resampling technique that is also useful for variance
and bias estimation (and avoidance), especially when the data are
limited. It consists in systematically leaving out one observation
from a dataset, calculating the estimator, and then finding the
average of these calculations. In our case, the estimator was the
likelihood of the HMM when trained with one iteration of a
gesture and tested with all the other iterations. The iteration
giving the maximum likelihood is selected for computing the
coefficients of the SS models.

STATISTICAL SIGNIFICANCE AND
SIMULATION OF THE MODELS

In order to evaluate the significance of the assumptions
concerning the body part dependencies that are defined within
the GOM, a statistical significance analysis is done. The statistical
significance p-value indicates whether the assumptions are
verified or not. The level of statistical significance is often
expressed by using the p-value, which takes values between
0 and 1. Generally, the smaller the p-value, the stronger the
evidence that the null hypothesis should be rejected. In this work,
the 0.05 p-value was used as the threshold for the statistical
significance tests. If the p-value of the estimated coefficient is
smaller than 0.05, then the specific coefficient is statistically
significant and need to be included in the SS representation
of the model.

In the case of the professional gestures, investigating the
significance level of the coefficients of each variable within the
GOM explains how important is each joint for each gesture in the
gestural vocabulary. Examples of some of the gestures from GV2

andGV3 are given, to observe cases where some of the coefficients
affect strongly the results and need to remain dynamic, whereas
others cannot, and can remain constant. In the GOM below,
the equation of G2,1 for RWRISTX is as follows, starting from
Equation (2).

RWRISTX (t) = a12RWRISTY (t − 1)+ a13RWRISTX(t − 1)−

−a14RWRISTX (t − 2)+ a15LWRISTX (t − 1)

=

0.266
︷ ︸︸ ︷

−0.0629 RWRISTY (t − 1)+

+

0.00
︷ ︸︸ ︷

1.3438RWRISTX(t − 1)−

−





0.00
︷ ︸︸ ︷

−0.3648



RWRISTX(t − 2)+

+





0.449
︷ ︸︸ ︷

−0.6625



 LWRISTX(t − 1) (14)

Having performed the statistical significance analysis of the
model in Equation (14), we get the estimation of the coefficients,
where Equation (14) is the general equation forX-axis of the right
wrist, along the p-values that indicate the level of significance of
each part of the equation. The p-values show that in the case of
the G2,1, the past values on the same axis appear to be significant,
whereas the respective p-values of the left wrist or the Y-axis of
the right wrist are not statistically significant. This result was
expected, as this gesture is a “hello waving movement,” where the
right wrist is moving across the X axis and the left wrist remains
still through the performance of the gesture, leading to the result
that there is no intralimb mediation in this specific gesture.

In the following, there is one more example of the same GV ,
from gesture G2,3, for X-axis (Equation 15) and Y-axis (Equation
16). The numbers above the estimated coefficients correspond to
their respective p-values.

RWRISTX (t) = a12RWRISTY (t − 1)+ a13RWRISTX(t − 1)−

−a14RWRISTX (t − 2)+ a15LWRISTX(t − 1)

=

0.00
︷ ︸︸ ︷

−0.2871 RWRISTY (t − 1)+

0.00
︷ ︸︸ ︷

0.6392×

×RWRISTX (t − 1)

0.86
︷ ︸︸ ︷

−0.0273RWRISTX(t − 2)+

+

0.00
︷ ︸︸ ︷

0.0516 LWRISTX(t − 1) (15)

RWRISTY (t) = a12RWRISTX(t − 1)+ a13RWRISTY (t − 1)−

−a14RWRISTY (t − 2)+ a15LWRISTY (t − 1)

=

0.00
︷ ︸︸ ︷

−3.9907 RWRISTX(t − 1)+

+

0.00
︷ ︸︸ ︷

0.5003 RWRISTY (t − 1)−
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−

0.616
︷ ︸︸ ︷

(−0.0818)RWRISTY (t − 2)+

+

0.00
︷ ︸︸ ︷

(−0.0927)LWRISTY (t − 1) (16)

In this gesture, the operator moves his/her right wrist toward
his/her right side both on theX andY axes, indicating to the AGV
to turn right. So according to the results, all coefficients appear
to be statistically significant, apart from the two previous time-
period values of the X-axis of the right wrist. The same results
occur for the Y-axis of the same wrist.

To verify the results, a significance level test is presented
for G3,2 of GV3. During the performance of this gesture, the
glassblower is moving both wrists cooperatively, to tighten the
base of the glass piece. The right wrist works more intensively to
complete tightening the glass, whereas the left wrist complements
the movement by slowly rolling the metal pipe.

RWRISTX (t) = a12RSHX (t − 1)+ a13RELBOWX(t − 1)+

+a14RWRISTY (t − 1)+ a15LWRISTX(t − 1)+

+a16 RWRISTX (t − 1)− a17RWRISTX(t − 2)

=






0.562
︷ ︸︸ ︷

−0.0778




RSHX (t − 1)+

0.00
︷ ︸︸ ︷

1.1126 RELBOWX(t − 1)+

+






0.00
︷ ︸︸ ︷

−0.4757




 RWRISTY (t − 1)+

0.00
︷ ︸︸ ︷

0.3423×

×LWRISTX (t − 1)+

0.00
︷ ︸︸ ︷

0.4585 RWRISTX(t − 1)+

−

0.00
︷ ︸︸ ︷

0.4604 RWRISTX(t − 2) (17)

RWRISTY (t) = a12RSHY (t − 1)+ a13RELBOWY (t − 1)+

+a14RWRISTX(t − 1)+ a15LWRISTY (t − 1)+

+a16 RWRISTY (t − 1)− a17RWRISTY (t − 2)

=

0.117
︷ ︸︸ ︷

0.290 RSHY (t − 1)+

0.00
︷ ︸︸ ︷

0.3678RELBOWY (t − 1)+

+






0.00
︷ ︸︸ ︷

−1.0912




 RWRISTX(t − 1)+






0.045
︷ ︸︸ ︷

−0.1602




 ×

×LWRISTY (t − 1)+

0.00
︷ ︸︸ ︷

1.1298 RWRISTY (t − 1)+

−(

0.00
︷ ︸︸ ︷

−0.1679) RWRISTY (t − 2) (18)

LWRISTX (t) = a12LSHX (t − 1)+ a13LELBOWX(t − 1)+

+a14 LWRISTY (t − 1)+ a15RWRISTX(t − 1)+

+a16 LWRISTX (t − 1)− a17LWRISTX (t − 2)

=

0.00
︷ ︸︸ ︷

0.3668 LSHX (t − 1)+

0.007
︷ ︸︸ ︷

0.11180 LELBOWX(t − 1)+

+

0.00
︷ ︸︸ ︷

0.9589 LWRISTY (t − 1)+






0.339
︷ ︸︸ ︷

−0.0126




×

×RWRISTX (t − 1)+

0.00
︷ ︸︸ ︷

1.1111LWRISTX(t − 1)+

−(

0.052
︷ ︸︸ ︷

−0.1398) LWRISTX(t − 2) (19)

LWRISTY (t) = a12LSHY (t − 1)+ a13LELBOWY (t − 1)+

+a14LWRISTX (t − 1)+ a15RWRISTY (t − 1)+

+a16LWRISTY (t − 1)− a17LWRISTY (t − 2)

=

0.00
︷ ︸︸ ︷

0.9313 LSHY (t − 1)+

0.00
︷ ︸︸ ︷

0.5433 LELBOWY (t − 1)

+

0.272
︷ ︸︸ ︷

0.1144 LWRISTX(t − 1)+

0.356
︷ ︸︸ ︷

0.0162 RWRISTY (t − 1)+

+

0.0
︷ ︸︸ ︷

1.0463 LWRISTY (t − 1)−

0.124
︷ ︸︸ ︷

(−0.1095) LWRISTY (t − 2)

(20)

In the equations presented above, all coefficients appear to be
statistically significant, except from RSHX (t − 1) in Equation
(17), LWRISTX (t − 1) in Equation (18), LWRISTX (t − 1)
and RWRISTX (t − 2) in Equation (19), and RWRISTX (t − 1),
RWRISTY (t − 1) , and LWRISTX (t − 1) in Equation (20). As
a result, the hands of the operator work mostly independently
(there appears to be a dependency in the interlimb synergies
in Equation 17), whereas all the other assumptions seem to be
statistically significant for both X-axis and Y-axis of the right and
left wrists.

The simulation of the models is based on the solution of
their simultaneous equations system. Figures 3–5 show examples
of the graphical depiction of real observations of motion data
together with their simulated values from the SS model of the
right wrist. A general conclusion that can be exported by looking
at the depictions is that the behavior of the models is very good
because the two curves are really close in most cases.

Recognition Accuracy and Comparison
with End-to-End Deep Learning
Architectures
For the evaluation of the performance and the proposed
methodology, the metrics precision, recall, and f-score were
calculated. Those metrics are defined as shown below.

precision =
#(true positives)

#(true positives)+ #(false positives)
(21)

recall =
#(true positives)

#(true positives)+ #(false negatives)
(22)

Precision, recall, and f-score are calculated for all the gestures
that each gestural vocabulary consists of. For a gesture of class
i, #(true positives) represent the number of gestures of class i that
were recognized correctly, #(false positives) represent the number
of gestures that did not belong in class i, and they were recognized
from the algorithm as parts of class i. Finally, #(false negatives)
represents the number of gestures belonging to class i that were
not recognized as part of it.

More precisely, precision represents the rate of gestures that
really belong in class i, among those who are recognized as
class i, whereas recall represents the rate of iterations of gestures
of class i that have been recognized as class i. A measure that
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FIGURE 3 | Examples of real motion observations (blue) and simulated values (orange) from the RHANDX State-Space model of the gesture G1,1 (left) and G1,4 (right).

FIGURE 4 | Examples of real motion observations of motion data (blue) and simulated values (orange) from the RHANDX State-Space model of gesture G2,1 (left) and

G2,2 (right).

combines both precision and recall is the f -score, which is given
by Equation (23).

f − score = 2
precision∗recall

precision+ recall
(23)

The performance of the algorithms was tested with the four
different gestural vocabularies. As presented before, the GV1

contains four classes, from 44 to 48 repetitions for each.
Four hidden states were used for HMM training. To simplify
the evaluation task, a simplified GOM with only X and Y
positions of two wrists are used for training and recognition.
Table 4 presents the results when only the HMMs are used for
recognition without any confidence control and also the results

with the confidence control provided by the simulation of the
SS models.

It is possible to observe that HMMs provide a recall superior
to 90% in three out of four gestures. The G1,3 presents the lowest
recall of 81.81%, and this can be due to the fact that this is the
most complex gesture, where both hands interact more than in
the other three gestures. The lowest precision is detected for the
HMM1,4. When the SS representation and confidence control
is used, the recall for G1,2 is slightly improved, whereas in the
case of the G1,3, a significant improvement of 15.91% is achieved.
Especially for G1,3, the improvement can be justified by the fact
that the operator is connecting the wire with a very small card
outside the conveyor. Thus, the operator has the possibility to
perform very small movements in different positions of his/her
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FIGURE 5 | Examples of real motion observations (blue) and simulated values (orange) from the RHANDX State-Space model of the gesture G3,1 (left) and G3,4 (right).

TABLE 3 | Confusion matrix using HMM, HMMSS, and 3DCNN based on the

model of Tran et al. (2015) approaches for GV1.

HMM1,1 HMM1,2 HMM1,3 HMM1,4 Recall (%)

G1,1 48 0 0 0 100

G1,2 0 44 0 2 95.65

G1,3 1 4 36 3 81.81

G1,4 0 0 0 46 100

Precision (%) 97.9 91.66 100 90.2

HMMSS
1,1 HMMSS

1,2 HMMSS
1,3 HMMSS

1,4 Recall (%)

G1,1 47 0 0 1 97.91

G1,2 1 45 0 0 97.82

G1,3 0 1 43 0 97.72

G1,4 0 4 0 42 91.3

Precision (%) 97.91 90 100 97.67

3DCNN1,1 3DCNN1,2 3DCNN1,3 3DCNN1,4 Recall (%)

G1,1 48 0 0 0 100

G1,2 0 43 0 5 89.5

G1,3 0 0 44 0 100

G1,4 0 7 0 39 84.7

Precision (%) 100 86 100 88.6

workplace. The precision of HMMSS
1,4 has been also positively

impacted by the SS augmenting the precision from 90.2 to
97.67%. However, a slight decline can also be seen in the case of
G1,4 recall (Table 3).

The GV2 contains five classes and 16 repetitions of each
gesture, and one to 11 hidden states were used for the machine
learning gesture recognition engine according to the best states’
number for each iteration. The joints selected for training with
GV2 were the wrist, elbow, and shoulder joints for each hand,
along with the neck. In Table 4, precision and recall using only
HMM and the HMMSS approach is presented, respectively. For

G2,1, G2,4, and G2,5, ergodic topology was used, as iterations of
the same gestural part appear during the performance of each
gesture, whereas left to right topology was used for the rest of the
gestures. Precision appears improved for every model, whereas
recall is decreased for G2,2 and G2,5 (Table 4).

GV3 consists of four different gestures with 35, 34, 21, and
27 repetitions, respectively. 5 to 20 hidden states were used
for training the gesture recognition algorithm, the number of
which were again computed for every iteration in the resampling
phase. The joints selected for training with GV3 were again the
wrist, elbow, and shoulder joints for each hand, along with the
neck. Precision appears improved in almost every observation
and maximum likelihood. The recall in almost every gesture has
remained stable except from G3,3, where it was increased by+4%
(Table 5).

GV4 consists of five different gestures. The clusters used in
the k-means approach in combination with an HMM with 12
hidden states were 25. The proposed methodology in this work
performed better than the rest of the machine learning methods,
with f -score results improved by+12% (Table 6).

In Table 7, the comparison of mean f -scores for each GV
and each approach is presented. The score of GV1 and GV2

was improved by ∼2%, while the most important contribution
is observed for the GV3. The HMMSS allows to improve
significantly (+7.5%) the recognition results of this last dataset.

A similar conclusion can be extracted from the same table,
where the total accuracy for the GV3 has reached 80.34% from
70.94%. The accuracy improvement of the two other datasets
remain at the same level with the one of the mean f -score,
around+2%.

In order to compare the results of the approach proposed
in this paper with other classification techniques, a DL end-to-
end 3D CNN has been used to classify the gestures of the three
first vocabularies described in Industrial Datasets and Gesture
Vocabularies. More precisely, a 3DCNN has been initially trained
on spatiotemporal features from a medium-sized UCF-101 video
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TABLE 4 | Confusion matrix using HMM, HMMSS, and 3DCNN based on the model of Tran et al. (2015) approach for GV2.

HMM2,1 HMM2,2 HMM2,3 HMM2,4 HMM2,5 Recall (%)

G2,1 14 1 0 1 0 87.5

G2,2 3 13 0 0 0 81.25

G2,3 0 0 16 0 0 100

G2,4 5 0 0 11 0 68.75

G2,5 2 0 0 2 12 75

Precision (%) 58.3 92.8 100 78.5 100

HMMSS
2,1 HMMSS

2,2 HMMSS
2,3 HMMSS

2,4 HMMSS
2,5 Recall (%)

G2,1 16 0 0 0 0 100

G2,2 4 12 0 0 0 75

G2,3 0 0 16 0 0 100

G2,4 2 0 0 14 0 87.5

G2,5 3 0 0 3 10 62.5

Precision (%) 64 100 100 82.3 100

3DCNN2,1 3DCNN2,2 3DCNN2,3 3DCNN2,4 3DCNN2,5 Recall (%)

G2,1 16 0 0 0 0 100

G2,2 0 16 0 0 0 100

G2,3 0 0 16 0 0 100

G2,4 0 0 0 12 4 75

G2,5 8 0 0 0 8 50

Precision (%) 66.6 100 100 100 66.66

TABLE 5 | Confusion matrix using HMM, HMMSS, and the Tran et al. (2015)

3DCNN approach for GV3.

HMM3,1 HMM3,2 HMM3,3 HMM3,4 Recall (%)

G3,1 31 2 1 1 88.57

G3,2 0 33 1 0 97.05

G3,3 2 2 16 1 76.19

G3,4 0 0 0 27 100

Precision (%) 93.93 89.18 88.88 93.1

HMMSS
3,1 HMMSS

3,2 HMMSS
3,3 HMMSS

3,4 Recall (%)

G3,1 31 2 1 1 88.57

G3,2 0 33 1 0 97.05

G3,3 1 1 17 2 80.95

G3,4 0 0 0 27 100

Precision (%) 96.87 91.66 89.47 90

3DCNN3,1 3DCNN3,2 3DCNN3,3 3DCNN3,4 Recall (%)

G3,1 35 0 0 0 100

G3,2 0 27 7 0 79.4

G3,3 2 2 17 0 80.9

G3,4 0 0 0 27 100

Precision (%) 94.5 93.1 70.8 100

dataset, and the pretrained weights have been used to fine-tune
the model on small-sized datasets including images of operators
performing customized gestures in industrial environments.

The architecture of the network is based on the one proposed
in Tran et al. (2015) with four convolution and two pooling

TABLE 6 | Confusion matrix using HMM and HMMSS approach for GV4.

HMM4,1 HMM4,2 HMM4,3 HMM4,4 HMM4,5 Recall (%)

G4,1 42 1 0 0 1 95.4

G4,2 3 86 0 0 1 95.5

G4,3 0 0 75 2 12 84.2

G4,4 1 0 0 43 0 97.7

G4,5 2 0 3 0 75 93.7

Precision (%) 87.5 98.8 96.15 95.5 86.2

HMMSS
4,1 HMMSS

4,2 HMMSS
4,3 HMMSS

4,4 HMMSS
4,5 Recall (%)

G4,1 42 1 0 0 1 95.5

G4,2 3 86 0 0 1 95.5

G4,3 0 0 87 0 2 89.8

G4,4 5 2 0 37 0 84

G4,5 1 0 5 0 74 92.5

Precision (%) 82.3 96.6 94.5 100 94.8

layers, one fully connected layer, and a softmax loss layer to
predict action labels. It has been trained from scratch on the
UCF-1012 video dataset, using batch size of 32 clips and the
Adam optimizer (Kingma and Ba, 2014) for 100 epochs, with
the Keras DL framework (Chollet, 2015). The entire network was
frozen, and only four last layers were fine-tuned on customized
datasets by backpropagation.

2https://www.crcv.ucf.edu/data/UCF101.php
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TABLE 7 | Comparison of mean f-scores and final accuracies of each GV for

HMM and HMMSS approach.

Mean f-score Datasets

GV1% GV2% GV3% GV4%

HMM 94.34 83.1 90.64 92.1

HMMSS 96.21 85 91.57 92.29

k− means + HMM - - - 80

3DCNN 93.4 84 90 -

Total accuracy Datasets

GV1% GV2% GV3% GV4%

HMM 94.56 82.5 91.45 92.5

HMMSS 96.19 85 92.3 93.94

k− means + HMM 82

3DCNN 93.5 87 89

For the datasets GV1, GV2 and GV3 also the 3DCNN results are presented, based on

the model of Tran et al. (2015). For GV4 the results are compared to those presented in

Coupeté et al. (2019) using a k-means and HMM approach, with 25 clusters and discrete

HMMs with 12 hidden states.

The comparison of recognition accuracy results between
HMMs, HMMSS, and 3DCNN is shown in Tables 3, 7. As far
as the GV1 is concerned, the use of a 3DCNN improves the
recognition of only one gesture (G1,1) as shown in Table 3.
However, in total, the HMMSS outperforms the other two
methods, reaching a total accuracy of 96.19% (Table 7). In the
second dataset (GV2), 3DCNN does not achieve a satisfying
recognition result for the G2,5 (66%) in comparison with other
methods that reach 100% (Table 4); and in total, HMMSS still
performs the best as it is possible to observe in Table 7. In
the GV3, the HMMSS performs again the best among the three
methods, as shown also in Table 7, with a total accuracy almost
+4% higher and an f -score of+1.5% higher than the DLmethod.

Forecasting Ability for Motion Trajectories
For the evaluation of the ability of the four SS models that
are used to explain the assumptions of the two-entity GOM, a
simulation using Equation (2) for all three dimensions and for all
used joints was performed (Table 8). It includes the computation
of Theil’s inequality coefficient (U) and its decomposition into
the inequality of bias proportion UB, variance proportion UV,
and covariance proportion UC. UB examines the relationship
between the means of the actual values and the forecasts, UV

considers the ability of the forecast to match the variation in
the actual series, and UC captures the residual unsystematic
element of the forecast errors (Wheelwright et al., 1997). Thus,
UB + UV + UC = 1. The Theil inequality coefficient measures
how close the simulated variables are to the real variables, and it
gets values from 0 to 1. The closer to 0 the value of this factor
is, the better the forecasting of the variable. Also, the forecasting
ability of the model is better when UB and UV are close to 0
and UC is close to 1. The computed coefficients as shown in
Table 8 and result to a sufficient forecasting performance of the
simulated model, and the error results reinforce this conclusion.

TABLE 8 | Theil inequality coefficient, root mean squared error, for one example of

the X coordinate of the right wrist per dataset.

Gestures Theil

Inequality

U

Bias

proportion

UB

Variance

proportion

UV

Covariance

proportion

UC

RMSE

G1,1 0.018388 0.009178 0.081456 0.909366 0.028904

G2,1 0.0000373 0 0.017247 0.983653 0.007461

G3,1 0.0000161 0 0.008713 1.041715 0.003277

G4,1 0.010059 0 0.039551 0.960449 0.018053

FIGURE 6 | Forecasting performance of all the SS models of GV2 on the

variable RWRISTX based on G2,4.

Also, because the UV values are really very close to 0, we could
extract the potential conclusion that model is able to forecast
efficiently even when the real motion data vary significantly
(e.g., different operators).

Finally, Figure 6 presents an example of trajectory forecasting
for GV2. More specifically, the forecasting performance of all the
SS models of GV2 on the variable RWRISTX is presented, when
an unknown observation with data from the G2,1 is provided to
them. The similarity or distance metric from the DTW is plotted
on Figure 6 taking as input for every time t: 1) the simulated
values of the RWRISTX on G2,4 when providing it with real
observations until t = 1 (starting from t = 3), and 2) the
real observations between t and the end of the sequence. The
distance becomes minimum (high similarity) from the very first
time-stamp for the SS model of G2,4.

Sensitivity Analysis
As mentioned, the GOM depicts all the possible relationships
that take place during the process of the performance of
a gesture. Following the GOM, the next steps are the
estimation of the model, its dynamic simulation, and its
sensitivity analysis. All those steps lead to checking the model’s
structure, forecasting ability, and its reaction to shocks of its
variables, respectively.

Frontiers in Robotics and AI | www.frontiersin.org 16 August 2020 | Volume 7 | Article 80



Manitsaris et al. Motion Trajectory Forecasting and Recognition

FIGURE 7 | Left: Diagram of the simulated forecasted values of RWRISTX before the disturbance (red) and simulated forecasted values of RWRISTX (blue), after the

shock on the values of RWRISTY by 80% for two frames. Right: Diagram of the simulated forecasted values of RWRISTY before the disturbance (red) and simulated

forecasted values of RWRISTY after the shock on the values of RWRISTX by 80% for two frames.

The sensitivity analysis of the simulated GOM follows two
steps. During the first step, all the simulated values of the
model are being estimated, after an artificial shock is provoked
for the first two frames. In the second step, all the simulated
values that came up after the disturbance are being compared
with the simulated values before it (baseline). For example,
in Figure 7, the simulated values of RWRISTX are depicted
before (red color) and after (blue color) the disturbance on the
values of RWRISTY by 80%. The disturbance on the simulated
variables of RWRISTX is observed for 10 frames in total, eight
more frames than the duration of the initial shock. A similar
behavior is also observed for RWRISTY . The quick adaptation
of the models after the application of the artificial shock is
observed, which also confirms the low sensitivity of the models to
external disturbances.

DISCUSSION

The proposed method for human movement representation
on multivariate time series has been used for recognition of
professional gestures and forecasting of their trajectories. A
comparison has been done between the recognition results of
our hybrid approach and the standard continuous HMMs. In
general, with both approaches, the best recognition accuracy is
achieved for the GV1. This can be explained by the beneficial
interclass and intraclass variations of this vocabulary. The
gestures are sufficiently discrete, whereas the different repetitions
performed by one operator are sufficiently similar. Nevertheless,
we observe an improvement on the recognition accuracy for
micro-gestures, when the confidence control of the HMMSS is
applied for micro-movements, for example, assembling small
pieces, whereas the performance of HMMs is satisfactory
for macro-movements.

The second-best results are given for the GV2. Even though
these gestures are simpler and do not require any particular

dexterity, less good results in recognition accuracy in comparison
with the GV1 are expected mostly because of the high intraclass
variation due to multiple users. Although they followed a
protocol, each person had significant variations in the way
he/she performed the commands. For both datasets, a slight
improvement of results has been achieved.

As explained in Industrial Datasets and Gesture Vocabularies,
the biggest difference of the GV3 in comparison with the other
two gesture vocabularies is the low interclass variation because
the gestures are similar between them. In three out of four
gestures, common gestural patterns are presented: the glass
master if controlling the pipe with the left hand is manipulating
the glass with the right while sitting, and so forth. These common
gestural patterns generate the low intraclass variation. This low
variation can be due to the high level of expert’s dexterity, the
use of a predefined physical setup (metallic construction) that
places his/her body and gestures in a spatial framework (situated
gestures) and the use of professional tools that also reduces
potential freedom in gesture performances. The low intraclass
variation is also underlined by the comparison of the RMSE
values for different repetitions of the same gesture performed
by the same person. The HMMs are thus expected to provide
less good results among the four datasets, for the GV3, because
this method may struggle in managing low interclass variation.
An important similarity between classes is expected to augment
the uncertainty in the maximum likelihood probabilities given
by the HMMs. This hypothesis can be confirmed through the
current recognition results on the basis of HMMs. However,
it can be clearly noticed that HMMSS had the most beneficial
impact on the recognition accuracy of the GV3. A conclusion
can be thus formulated that the proposed methodology
permits the improvement of the gesture recognition results to
a significant level.

The recognition results of all the three gestural vocabularies
using machine learning methods were also compared with those
when using 3DCNNs as a DL method for gesture recognition. In
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all of the three experiments, the HMMSS method outperformed,
and especially inGV1, achieved+3% higher f -score and accuracy
compared with the 3DCNNs. In the gestural vocabularies GV1

and GV3, the HMM method, even if it was not combined with
the SS method, achieved slightly higher f -score results than
the 3DCNNs.

As far as the GV4 is concerned, our current approach of
continuous HMMs and SS outperforms our previous one that
used k-means and discrete HMMs (Table 7). More precisely,
an improvement of at least +12% is observed on the mean f -
score, together with an improvement of at least +10% at the
total accuracy.

As far as the ability of the models to effectively simulate
the professional gestures is concerned, the graphical depiction
of the simulated values of the models together with the real
motion data can lead to encouraging conclusions. Initially, the
simulated values follow very well the real ones for the whole
gesture. In particular, the results on GV1 are quite promising
because the pose estimation had some fails because of the top-
mounted camera. Nevertheless, the changes or discontinuities
on the motion data did not affect the simulation ability of
the models. With the regard to the forecasting ability of the
models, it is obvious that if the model follows the trajectory
from the very beginning, then its forecasting ability is maximized,
which is the case in Figure 6. Moreover, the evaluation of the
forecasting ability of the models using the coefficient of Theil
is also encouraging, thus opening a possibility for an efficient
forecasting of motion trajectories. In parallel, the sensitivity
analysis applied to equations variables proves forecasting’s ability
of the model to react rapidly to shocks and to provide a solid
prediction of motion trajectories.

CONCLUSION AND FUTURE WORK

In this paper, a Gesture Operational Model is proposed to
describe how the body parts cooperate to perform a professional
gesture. Several assumptions are formulated that determine
the dynamic relationship between the body entities within the
execution of the human movement. The model is based on
the SS statistical representation, and a simultaneous equation
system for all the body entities is generated, which is composed
of a set of first-order differential equations. The coefficients
of the equation system are estimated using the MLE, and its
simulation generates a tolerance of the spatial variance of the
movement over time. The scientific evidence of the GOM is
evaluated through its ability to improve the recognition accuracy
of gestural time series that are modeled using continuous
HMMs. Four datasets have been created for this experiment,
corresponding to professional gestures from industrial real-
life scenarios. The proposed approach overperformed the
recognition accuracy of the HMMs by approximately +2%
for two datasets, whereas a more significant improvement of
+10% has been achieved for the third dataset with strongly
situated professional gestures. Furthermore, the approach has
been compared with an end-to-end 3DCNN approach, and the
mean f -score of the proposed method is significantly higher

than the DL, varying approximately from +1.57 to +2.9% better
performance, depending on the dataset. A second comparison
is done by using a previously recorded industrial dataset from
a human–robot collaboration. The proposed approach gives
∼ +13% for the mean f -score and +12% for total accuracy,
compared with our previous hybrid k-means and discrete
HMM approach.

Moreover, the system is simulated through the solution
of its equations. Its forecasting ability has been evaluated by
comparing the similarity between the real and simulated motion
data, using at least two real observations to initialize the
system, as well as by measuring the Theil inequality coefficient
and its decompositions. This paper opened a potential for
investigating simultaneous real-time probabilistic gesture and
action recognition, as well as forecasting of human motion
trajectories for accident prevention and very early detection
of the human intention. Therefore, our future work will be
focused on extending the proposed methodology for real-
time recognition and enhancing the GOM to include kinetic
parameters as well. Finally, there will be a continuous enrichment
of the datasets by adding new users and more iterations.
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and Wozniak, M. (2019). Recognition of American sign language gestures in
a virtual reality using leap motion. Appl. Sci. 9:445. doi: 10.3390/app9030445

Volioti, C., Manitsaris, S., Katsouli, E., and Manitsaris, A. (2016). “x2Gesture:
how machines could learn expressive gesture variations of expert musicians,”
in Proceeding of the 16th International Conference on New Interfaces for

Musical Expression.

Wheelwright, S., Makridakis, S., and Hyndman, R. J. (1997). Forecasting: Methods

and Applications. 3rd edition. New York, NY: Wiley.
Williamson, J., and Murray-Smith, R. (2002). Audio Feedback for

Gesture Recognition Technical report TR-2002-127, Dept. Computing
Science, University of Glasgow.

Yan, S., Xiong, Y., and Lin, D. (2018). “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Thirty-Second AAAI

Conference on Artificial Intelligence New Orleans, LA.

Yang R., and Sarkar, S. (2006). “Gesture recognition using hidden markov models
from fragmented observations,” in 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06) (New York, NY), 766–773.
doi: 10.1109/CVPR.2006.126

Yang, H. D., Park, A. Y., and Lee, S. W. (2007). Gesture spotting and
recognition for human–robot interaction. IEEE Trans. Robot. 23, 256–270.
doi: 10.1109/TRO.2006.889491

Zalmai, N., Kaeslin, C., Bruderer, L., Neff, S., and Loeliger, H. A. (2015).
“Gesture recognition from magnetic field measurements using a
bank of linear state space models and local likelihood filtering,” in
IEEE 40th International Conference on Acoustics, Speech and Signal

Processing (Brisbane, QLD: ICASSP), 19–24. doi: 10.1109/ICASSP.2015.71
78435

Zatsiorsky, V. (2000). Biomechanics in Sport: Performance Enhancement and Injury

Prevention. Blackwell Publishing; International Olympic Committee.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Manitsaris, Senteri, Makrygiannis and Glushkova. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 20 August 2020 | Volume 7 | Article 80



Noname manuscript No.
(will be inserted by the editor)

Multi-users online recognition of technical gestures for natural
Human-Robot Collaboration in manufacturing

Eva Coupeté · Fabien Moutarde · Sotiris Manitsaris

Received: date / Accepted: date

Abstract Human-Robot Collaboration in industrial con-
text requires a smooth, natural and efficient coordi-

nation between robot and human operators. The ap-
proach we propose to achieve this goal is to use on-
line recognition of technical gestures. In this paper, we

present together, and analyze, parameterize and eva-
luate much more thoroughly, three findings previously
unveiled separately by us in several conference presen-
tations: 1/ we show on a real prototype that multi-users

continuous real-time recognition of technical gestures
on an assembly-line is feasible (≈ 90% recall and pre-
cision in our case-study), using only non-intrusive sen-

sors (depth-camera with a top-view, plus inertial sen-
sors placed on tools); 2/ we formulate an end-to-end
methodology for designing and developing such a sys-

tem; 3/ we propose a method for adapting to new users
our gesture recognition. Furthermore we present here
two new findings: 1/ by comparing recognition perfor-
mances using several sets of features, we highlight the

importance of choosing features that focus on the effec-
tive part of gestures, i.e. usually hands movements; 2/
we obtain new results suggesting that enriching a multi-

users training set can lead to higher precision than using
a separate training dataset for each operator.
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1 Introduction

The development of robots is currently increasing in
our society, and also in our industries. Social robots
have already been used in various contexts: assistant for

elderly people, stimulation for autistic children, guide
in museum or sale assistants in stores.

In the industrial context, robots are present since

the 1950’s. Until recently, they were always located in
isolated areas where operators are not allowed to go
while robots are running. In the last years, collabora-

tive robots emerged on assembly-lines. These robots are
smaller and can work in co-presence or in collaboration
with operators, in the same area. Issues arise with the
introduction of these robots. The first one is to guar-

antee the safety of the operators working nearby those
collaborative robots. Technology advances allowed to
develop “safe” robots, i.e. robots with with a limited

strength and embedded sensors to prevent any injury to
operators. A second issue is to make the collaboration
smooth and efficient between these robots and opera-

tors. In this study, we propose to use online recognition
of technical gestures to address the issue. We think that
gesture recognition can help the robot to synchronize
its tasks with the actions of operators, can allow the

robot to adapt its speed, and also can make it able to
understand if something unexpected happens. In this
paper, we use the word “gesture” to refer to the ac-

tions needed to perform the tasks on the assembly-line.

The rest of this article is composed of five sections.
In Section 2, we present related works, as well as our

own previous research, on Human-Robot Collaboration
in manufacturing and gesture recognition. In Section 3
we describe our real prototype and use-case, and how

to choose the gesture classes that should be recognized
for ensuring human-robot coordination. In Section 4,
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we summarize our end-to-end methodology to continu-
ously recognize technical gestures in real-time, includ-
ing a method to adapt to a new user our learnt ges-
ture recognition system. All our experimental results

are presented in Section 5. This section also includes in
5.2 new results highlighting the importance of choosing
features that focus on the effective part of gestures i.e.

usually hands movements, and in 5.5.2 new compara-
tive evaluations suggesting that enriching a multi-users
training set can lead to higher precision than using a

separate training dataset for each operator. Finally, we
recapitulate and conclude in Section 6.

2 Related and previous works

2.1 Human-Robot Collaboration in manufacturing

The first robots useful for men have been introduced in

factories in the 1950’s. These robots were able to per-
form repetitive, tiresome, and dangerous tasks. Since
then, industrial robots have been very present on as-

sembly-lines, working on specific areas, away from hu-
man operators. Although these robots are efficient, they
make assembly-lines not very flexible, and cannot be

used on assembling tasks where human presence is re-
quired. Nowadays, manufacturers tend to create mixed
environments, where robots and operators can work
on the same area. This new way of working combines

human skills (intelligence, adaptability and dexterity)
with robot skills (strength and repeatability). The in-
troduction of collaborative robots in factories provides

more flexibility and productivity (Hägele et al, 2002),
and relieves human operators from physically-demanding
tasks and/or from working using undesirable postures,
that can lead to musculo-skeletal disorders. These robots

are designed to be intrinsically safe: their strength is
limited, and they have built-in sensors which prevent
them to hurt operators which are nearby.

Sharing work between an operator and a robot can
be executed in different ways. They can work in col-
laboration on the same task, or on two different tasks

in the same area, in co-presence. Shi et al (2012) pro-
posed different degrees of work sharing. At the lowest
level, robot and operator do not have any contact and
work in two different spaces, but without any barri-

ers between them. On the second level, the operator
can go into the robot space, but this will automatically
halt it. Finally, in the upper level, the robot and the

operator cooperate on a common task. Other studies
have been done to prove the feasibility of collaborative
tasks with a robot, e.g. the assembly and disassembly of
pieces (Corrales Ramón et al, 2012), and the assembly

of constant-velocity joint (Cherubini et al, 2016).

However, sharing work between an operator and a

robot requires an adaptation from the operator. Human-
robot collaboration is not as natural as between hu-
mans, and new ways of communication must be estab-

lished. Hoffman and Breazeal (2007), have shown that
the anticipation on a future task can improve the ef-
ficiency and fluidity of a human-robot collaboration.
Dragan et al (2015), have demonstrated that legible mo-

tions from the robot during the execution of a known
task enable a more fluent collaboration with a human.
(Chen et al, 2015) proposed an approach for recognizing

hand gestures of a human operator during an assembly
task in collaboration with a robot co-worker. Schrempf
et al (2005) proposed a method to synchronize robot
and human actions using a Dynamic Bayesian Network.

Rickert et al (2007) presented a collaborative robot
that is equipped with speech recognition and visual
object recognition, and is able to follow the operator

hands. This robot uses these informations to anticipate
on the next task. Bannat et al (2011) introduced the
term “Cognitive Factory” for industrial environments

with cognitive capacities, in order to make the ma-
chines more autonomous. Lenz et al (2008) created a
smart collaborative workspace with several sensors to
enable the collaborative robot to understand their en-

vironment.

2.2 Gesture recognition

Gesture recognition consists in capturing and interpret-
ing human movements, allowing to understand which

action is being performed. It is a growing research field,
in which new technologies recently brought significant
progresses. Indeed, new sensors (like depth-cameras or

light and small inertial sensors) now enable an easy
and more complete capture of gestures. In the following
parts, we review and describe the usual successive steps
needed for creating a gesture recognition system.

2.2.1 Motion capture sensors

Different types of sensors have been used to recognize
gestures. The oldest, and historically most used, are
RGB cameras. With these cameras, it is possible to have

an almost complete (if few occlusions) understanding of
the scene and to be non-intrusive. Laptev and Linde-
berg (2003), Dollar et al (2005) and Oikonomopoulos
et al (2005) proposed methods to detect interest points

in RGB videos, and use them to describe the filmed
action. Wang et al (2009) proposed to use trajectories
of sampling points in successive frames to describe an

action.
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Depth-cameras are more recent, but already com-
monly used to recognize human actions, because of 3D
information they convey, which makes extraction of ges-
tures easier. Chen et al (2013) proposed a survey on

motion analysis using depth-data, Zhang and Parker
(2011) adapted to depth-video the cuboid RGB video
features, Biswas and Basu (2011) used movement of a

person filmed with a fixed depth-camera to recognize
gestures.

Inertial sensors are also used for gesture recogni-
tion, but are intrusive because they must be fixed onto

the user for capturing his/her movements. Bulling et al
(2014) proposed an “Activity Recognition Chain” to
recognize gestures with inertial sensors. Dong et al (2007)

and Junker et al (2008) used accelerometers to recog-
nize actions.

Data from several types of sensors can be used si-
multaneously to recognize gestures. Chen et al (2016)

used a depth-camera and a wearable inertial sensor to
recognize actions. To fuse the data coming from the
different sensors, a decision level scheme was adopted.

2.2.2 Computing features from sensors

Depending on the sensor that is used for capture of
movements, different types of features can be extracted.
In this section we focus on the extraction of features
from depth-images.

A first group of features are those related to the
global posture of the human, for example his skeleton.
Shotton et al (2011) used a large database, composed

of real and synthetic images maps, to learn a random
decision forest which is then able, using depth differ-
ences between pairs of pixels in the depth-map, to es-
tablish for each body pixel to which body part it be-

longs. Schwarz et al (2012) proposed another method
to find the skeleton of a person filmed with a depth-
camera, but which does not require pre-training on a

large database. They compute geodesic distances of each
point of the body part to the gravity center. Knowing
the standard structure of a human body, they estimate

locations of the body joints. Another group of meth-
ods consists in finding body parts in depth-map with-
out using any global information on the user’s posture.
Migniot and Ababsa (2013) use particles filtering with

a top-view depth-camera to determine the position of a
top human body. However, detection of hands in depth-
videos is still challenging because of the usually rather

low resolution of these sensors: only hands which are
close enough to the camera can be easily segmented.
Chen et al (2011) track the hands’ location and segment
them using a region-growing algorithm. Hamester et al

(2013) detect hands in depth images based on Fourier

descriptors of contours classified using a SVM. Joo et al

(2014) use boosting of depth-difference features for de-
tecting hands in depth images.

2.2.3 Machine-learning algorithm for classification of

gestures

Several machine-learning techniques have been used in
order to train a system to recognize human gestures.

SVMs (Support Vector Machines), HMMs (Hidden Markov
Models), and DTW (Dynamic Time Warping) have been
widely used.

SVMs enable to optimize the separation boundaries
between different classes in a feature space. Ke et al
(2007), Bregonzio et al (2009) and Schuldt et al (2004)

used SVMs to recognize actions in video.

Instead of using a fixed-size temporal window rep-
resented as a vector, HMMs can process inputs as a
flow of successive values. Furthermore, they are able to

recognize gestures independently from their temporal
duration. Yamato et al (1992) used HMMs to recognize
gestures in video. Xia et al (2012) recognized gestures

using the skeletons extracted from depth-video with the
method of (Shotton et al, 2011). Zhu and Pun (2012)
also used depth-images and HMMs to recognize ges-

tures. They track the locations of hands, and use their
trajectories to recognize the gestures performed. Cali-
non and Billard (2004) used HMMs to learn gesture
from demonstration. Aarno and Kragic (2008) proposed

a Layered Hidden Markov Model (LHMM) to model hu-
man skills and classify motions into basic action prim-
itives.

DTW is actually a method for time-series alignment
and similarity measure. For gesture recognition, it is
generally used first for selecting for each class a single

most representative template gesture. DTW similari-
ties with these templates can then be combined with
any similarity-based classification algorithm (a simple
Nearest Neighbor method in many case) for predicting

class of an unlabbeled gesture. DTW has been used for
instance by (Liu et al, 2009) to recognize actions based
on output of accelerometers worn by users. Sempena

et al (2011) similarly recognize actions with DTW, but
applied to 3D joint angles time evolutions estimated by
Kinect built-in skeletization. Reyes et al (2011) have
shown that recognition performance by this method can

be greatly improved by weighting differently each joint
angle depending on its impact on executed gesture.

Other methods are also used. Luo et al (2013) clas-

sified actions with a Bag-of-Visual-Words framework.
More recently, deep Convolutional Neural Networks ap-
proach was adapted to recognize actions in depth-maps:

Wang et al (2016) used weighted hierarchical depth mo-
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tion maps and three-channel deep convolutional neu-
ral networks to recognize actions with a small training
dataset.

2.3 Our previous work

We have been working since 2012 on technical gesture
recognition for collaborative robotics in factories. All
our research is conducted on real prototype ”cells” of
factory collaborative robotics developed by french au-

tomaker PSA (see Acknowledgements). After a feasi-
bility study using inertial sensors worn by operators
(Coupeté et al, 2014), we have conducted a first experi-

mentation of a less intrusive approach: using only a top-
viewing depth-camera for capture of gestures (Coupeté
et al, 2015). We have then highlighted in (Coupeté

et al, 2016b) the significant recognition rate improve-
ment achievable by complementing gesture capture from
depth-camera with data from inertial sensors placed on
tools. Finally in (Coupeté et al, 2016a) we began inves-

tigating the multi-users issue, and proposed a simple
but efficient way of adapting our gesture recognition
module to new operators.

In this paper, we put together all our methods and
algorithms recalled above as a proposed generic method-
ology and pipeline for technical gesture recognition. Fur-
thermore, we compare several feature sets (hands po-

sitions only vs. idem + arms postures, etc...), which
we had not done in our previous work, and show that
best results are obtained with descriptors related only

to the effective part of gestures (i.e. hands movements).
We also conduct new comparative study on user adap-
tation providing new results suggesting that enriching

a multi-users training set can lead to higher precision
than using a separate training dataset for each opera-
tor.

3 Our Human-Robot Collaboration prototype

We work on a real-life scenario where the worker and
the robot share the same workspace and cooperate. The
task is inspired from the assembly of motor hoses on
production-line supplies preparation. Presently, the as-

sembly process of motor hoses has some drawbacks: the
worker has to find the appropriate parts of motor hoses
among other motor parts, which is a lack of time and

increase the cognitive load of the worker. In our set-up,
a dual-arm robot and the worker are facing each other,
with a table separating them, see Figure 1. More details

on this real prototype are given below, and in (Coupeté
et al, 2015) and (Coupeté et al, 2016b).

Fig. 1 On top, our human-robot collaboration prototype. On
bottom, schematic description of our use-case: an operator is
standing in front of a table, taking and assembling parts that
are “handed” to him/her by a robot placed on the opposite
side of the table.

On an assembly-line, the mounting operations must

be executed quickly through a rather strictly-defined
succession of elementary and standardized sub-tasks.
To ensure a natural human-robot collaboration, the robot

has to perform its actions according to the task that the
operator is currently executing, in order to be useful at
the right time, without delaying the worker. In our use-
case, the assembling of motor hoses requires the worker

to take two hose parts respectively from left and right
claw of the robot, join them, screw them, take a third
part from the right claw, join it, screw it, and finally

place the mounted motor hose in a box. The only ac-
tions performed by the robot are giving a piece with
the right claw and giving a piece with the left claw.

The order of these sub-tasks and how the robot and
the operator should be coordinated is presented Figure
2. Such an analysis of the human-robot collaborative
work is essential to determine the gesture types that

the robot needs to recognize.

In order for the robot to be properly synchronized
with the human, it should be able to recognize sev-
eral gesture classes, that can be deduced from Figure

2. The first two are “to take a piece in the right claw”
and “to take a piece in the left claw”. The operator
can screw after the first gesture “to assemble”, or can
chose to screw later during the last assembly sub-task.

Therefore, the robot should be able to recognize “to
assemble” and “to screw”, so as to give at the correct
moment the third motor piece with its right arm. Fi-

nally, at the end of the assembly task, the operator puts
the assembled piece in a box, so it is interesting to rec-
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Fig. 2 Analysis of required coordination between Human
and Robot: on top, state-transition diagram for the oper-
ator tasks; on bottom, sequence diagram of operator-robot
interactions.

ognize this gesture in order to understand that a cycle
has just ended.

The set of gestures classes to be recognized by our
system is therefore rather straightforwardly deduced

from above-mentioned sub-tasks as:

1. to take a motor hose part in the robot right claw

(G1)
2. to take a motor hose part in the robot left claw (G2)
3. to join two parts of the motor hose (G3)

4. to screw (G4)
5. to put the final motor hose in a box (G5)

Note that in this set-up, the operator chooses the
pace during the execution of his sub-tasks, and the
robot adapts to it.

4 Methodology for recognition of technical
gestures

In this section, we detail our end-to-end methodology
for online recognition of technical gestures in real-time.

In the first part 4.1, we present our pipeline (improved
and more general than our first versions already pre-
sented in (Coupeté et al, 2015) and (Coupeté et al,

2016b)) to recognize gestures, from extraction of fea-
tures to the classification algorithm. In part 4.2 we

describe the two criteria we use to evaluate our ges-

ture recognition system. In part 4.3, we explain how we
equipped the scene with an inertial sensor on a tool,
and how we refine output from gesture recognition by

taking into account the tool-movement information. Fi-
nally, in part 4.4, we propose an approach for adapting
to a new user our system, by limited enrichment of the

training database.

4.1 Gesture recognition pipeline

In order to capture the gestures of the operator, we
decided to use non-intrusive sensors, for avoiding any

discomfort to the operators. Moreover, we want to mon-
itor relative positions of the operator and the robot,
while capturing all the operator’s movement without

potential occlusions. For these reasons, we chose to use
a depth-camera, filming with a top-view for capturing
the scene without occlusion. Note that visits on real
assembly-lines, and preliminary work on another proto-

type use-case (door-elements mounting on a continuous
line) have convinced us that this choice of sensor type
and viewpoint configuration is transferable to most fu-

ture human-robot collaborative assembly areas. In this
section, we explain how we extract body-movement in-
formation from the depth-camera.

4.1.1 Posture estimation from depth images

A depth-camera provides information about 3D geom-
etry of the scene: the value of each pixel corresponds to
the distance between the camera and the filmed object

to which the pixel belongs.

In many related work on gesture recognition using
depth-cameras, input features are simply the successive
states of the global human skeleton posture estimation

provided by APIs of Kinect for horizontal viewpoint. In
our approach using a vertical viewpoint from the top, it
was not possible. We therefore needed to extract upper-
body (in particular hands) movements from the raw

depth-video. We make the assumption that, from top
viewpoint, the farthest upper-body parts from the top
of the head, using a geodesic measurement, are the two

hands. Based on this hypothesis, we have designed an
algorithm to locate the operators’ hands and estimate
arms’ postures in the depth-map.

Our algorithm, inspired but significantly modified
from (Schwarz et al, 2012) (in which Schwarz et al.

estimate global posture, but only for facing horizon-
tal viewpoint), is based on estimation of geodesics on
body 3D surface. First, we create a 2D graph of the

upper-body of the person filmed. Each pixel of this
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graph are connected with its eight neighbors. We as-
sociate for each connection a weight equal to the depth
difference between the two pixels, i.e. the difference of
the two pixels values. Then, we use Dijkstra algorithm

(Dijkstra, 1959) to compute the geodesic distance be-
tween each pixel of the upper-body and the top of the
head. We are thereby able to detect the two hands po-

sitions, and also obtain the geodesically shortest paths
between each hand and the top of the head’s (which
can be used as approximations of arms’ postures). Fig-

ure 3 illustrates this algorithm, and we refer readers to
(Coupeté et al, 2015) for further details on our algo-
rithm. One advantage of this approach for localization
of hands is that it is relatively immune to hand occlu-

sion: even when one hand is occasionally hidden from
the depth camera (e.g. by another arm), the forearm
and arm for this hand are generally still visible, so the

geodesic from the head is still properly found and just
stops around wrist instead of hand; therefore with this
method, hand occlusion leads to only slightly erroneous
hand position rather than to absence of information in

the data stream.

(a) (b)

(c)

Fig. 3 Our hands localization and upper-body posture esti-
mation algorithm. (a): depth-map from the camera filming an
operator with a top-view; (b): geodesic distance for each pixel
of the upper-body to the head’s top; (c): estimation of the
head and two hands locations, plus the geodesically-shortest
paths between hands and the head’s top (all produced by our
algorithm).

4.1.2 Choice of features

In most machine-learning and pattern-recognition tasks,
the attainable classification acuracy is strongly depend-
ing on the choice of features extracted from raw data

and fed into the algorithm. In gesture recognition, it is
rather natural and often adopted to use the estimated
movements of body parts and joints as features. How-
ever, not all of them are equally important, depending

on what gesture types should be recognized. Further-
more, it is well-known that inclusion of irrelevant fea-
tures can reduce recognition rate, either by just adding

“noise” to the machine-learning input, or worse by in-
troducing spurious correlations. It is therefore highly
recommended to either perform preliminary features se-

lection, or at least to compare recognition performances
attained with various sets of human-body related fea-
tures.

In our case, as exposed above, our dedicated depth-
image processing algorithm provides as output:

– 3D location of the head’s top;

– estimated 3D locations of the two hands;
– the two 3D geodesically-shortest paths from head

to each hand (providing rough approximations of
approximations of arms’ postures).

We therefore test (which we had not done in our

previous works) five different sets of features, listed in
Table 1 and illustrated on Figure 4. They all contain
3D locations of the two hands, completed with varying
number of other upper-body posture information.

Table 1 Definitions of the five sets of features compared.

featureSet 1
15 samples of each shortest path
+ head and two hands 3D locations

featureSet 2
7 samples of each shortest path
+ head and two hands 3D locations

featureSet 3
3 samples of each shortest path
+ head and two hands 3D locations

featureSet 4 head and two hands 3D locations

featureSet 5 two hands 3D locations

4.1.3 Gesture classification algorithm

To classify the technical gestures performed, we have

chosen to use discrete Hidden Markov Models (HMM).
They are probabilistic models for classification of se-
quential discrete data. Given a continuous-valued vec-

tor of features deduced from estimated top-viewed pos-
ture (see part 4.1.2), we first need to quantize these data
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Fig. 4 Illustration of our five sets of features tested and compared for recognition of technical gestures (see 4.1.2 for their
definition).

in order to obtain discrete-valued observations. For this
step, we use K-Means clustering. This method aims at
partitioning observations into a fixed number K of clus-

ters. Each observation belongs to the cluster with the
nearest centröıd. For our study, as already described
in (Coupeté et al, 2015) and (Coupeté et al, 2016b),
we partition all computed posture-estimation feature

vectors into K clusters, so each cluster corresponds to
an approximate top-viewed posture. After clustering, a
gesture is represented as a temporal sequence of clus-

ter IDs, corresponding to a sequence of approximate
postures.

We use these quantized data to train our discrete
HMMs, one HMM for each gesture class. For recogni-

tion, each feature vector extracted from depth-image
is quantized by the previously learned K-Means, and
the obtained labels are afterwards used as input for the

discrete HMMs to determine which gesture is currently
being performed. The recognized gesture is the one as-
sociated to the HMM which has the highest probability

to have generated the observations. To train our HMMs,
we use the Baum-Welch algorithm, and for the recog-
nition we use the Forward algorithm. They are both
implemented in the GRT1 open library. Figure 5 illus-

trates our methodology.

4.1.4 Online gesture recognition in real-time

We want to continuously recognize gestures in real-time
while the operator is working, performing the techni-

cal gestures one after the other naturally (i.e without

1 http://nickgillian.com/grt/

any pause between successive gestures). To this end,
we use a temporal sliding window of length T. Using
the Forward algorithm, we compute the likelihood for

each HMM to have produced the T last observations.
To filter out transient errors, we finally output as rec-
ognized gesture class the one which has been the most
recognized during the 10 last positions of the sliding

temporal window.

To evaluate the performance of our real-time recog-
nition system, we use the five standard metrics listed
below:

R =
#(gestures correctly recognized)

#(gestures performed)
(1)

Ri =
#(gestures i correctly recognized)

#(gestures i performed)
(2)

P =
#(gestures correctly recognized)

#(gestures classified)
(3)

Pi =
#(gestures i correctly recognized)

#(gestures classified i)
(4)

F = 2
P ×R

P +R
(5)

in which:

– #(gestures performed) represents the total number

of gestures of all classes performed by the operators
– #(gestures i performed) represents the number of

gestures of class i performed by the operators

– #(gestures correctly recognized) represents the num-
ber of gestures correctly recognized by our system.
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Fig. 5 Gesture recognition pipeline: input gesture (left) is a temporal sequence of feature vectors of same dimension F; each
continuous-valued feature vector is quantized by K-means into a discrete-valued “approximate posture” label (middle); the
obtained temporal sequence of successive posture labels is fed one after the other into G discrete HMM (1 per gesture class);
for each time-step, our system outputs the most probable current gesture class, by selecting the HMM which has current
maximum likelihood.

– #(gestures i correctly recognized) represents the num-

ber of gestures of class i correctly recognized
– #(gestures classified i) represents the number of ges-

tures classified with the label i.

– #(gestures classified) is equal to the sum of all the
value of #(gestes classified i) among all the classes

The average recall R provides a global information
on the capacity of our system to detect the gestures.
The values Ri detail the separate detection ability for

each class of gestures. The values Pi indicate the accu-
racy of our system when it outputs the corresponding
gesture class ID. The average precision P is the aver-
age of all precisions, Pi. Finally, the F-score F is the

harmonic mean of average precision and average recall,
and provides a global recognition performance index.

4.2 Evaluation criteria

To evaluate our system of gesture recognition, we use

two criteria. The first one, called jackknife, estimates
the future performance of our system for a new user,
from whom no gesture was used to learn K-Means and

train HMMs. Our second criterion, called 80%-20%, es-
timates performances of our system for users of whom
example gestures are included in the training set. These
two criteria are illustrated on Figure 6.

4.2.1 Jackknife

Our database contains recorded technical gesture ex-
amples from N operators. To evaluate our system for

Fig. 6 Illustration of our two evaluation criteria. Each color
represents an operator, and each dot a gesture example. (a):
Jackknife, (b): 80%-20%

an unknown user, we train it with a database composed
of gesture examples from N−1 operators, and estimate

recognition rate on gesture examples performed only by
the last operator (not included in training set). We test
all possible combinations of N−1 operators for training

and 1 operator for recognition estimation. This evalua-
tion criterion is illustrated on Figure 6(a).

4.2.2 80% - 20%

For this evaluation criterion, we randomly divide our
database in two parts. The first part is used for train-
ing and contains 80% of all gestures by all operators

in our database. The second part is used for testing
recognition, and is composed of the remaining 20% of
our database. This evaluation criterion is illustrated on

Figure 6(b). The main difference with the jackknife is
that with the 80%-20% criterion, the system uses exam-
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ples of gestures from the same operators in both train-
ing and testing databases, so it estimates recognition
performance for “known” operators, i.e. included in the
training set.

4.3 Use of inertial sensors placed on tools

To get more information on executed gestures, it can be

interesting to equip the scene with additional sensors.
In particular, valuable and complementary information
can be obtained by placing inertial sensors on the tools
that are used by the operator. Thus, as already reported

in our previous work (Coupeté et al, 2016b), we have
put an inertial sensor on the screwing-gun2 . We use
this additional data source with a “late-fusion” scheme:

output of vision-based HMMs are first computed, and
movement information from the tool is used only after-
wards to deduce the final gesture classification result.
We chose the “late-fusion” method because these data

will only be used to distinguish one particular gesture
class (“screwing”) against another one (“assembling”).

The screwing-gun is supposed to move only when
the worker is using it to screw together two parts of

motor hose. There is a conflict with the result of the
HMMs classification in two cases:

– case 1: when gesture G4 (“screwing”) is recognized,

while the screwing gun does not move
– case 2: when a gesture which is not G4 is recognized,

while the screwing gun did move

For the first case, if we suppose that the inertial sen-
sor cannot be broken, it is not possible to screw without

moving the screwing-gun. Therefore, if the likelihood of
the HMM for the gesture “to screw” is above a thresh-
old, we decide that this gesture has been executed, oth-
erwise no gesture is recognized (zero output).

For the second case, it is possible that the screwing-

gun moved without being used, if the worker wants to
move it from one side of the table to another for exam-
ple. In this case we also look at the output likelihood of

the HMM matching with the gesture “to screw”. If this
likelihood is above a threshold, we replace the gesture
previously recognized by “to screw”, otherwise we keep
the gesture associated to the HMM with the highest

likelihood.

With this method, we want to make our system
more robust by correcting confusion errors that can eas-
ily occur between rather similar gesture classes.

2 Note that in modern factories, many tools such as screw-
ing guns are actually connected to the assembly-line infor-
mation system, so that binary information such as “moving”
or “in use” can be readily available even without having to
place inertial sensors on them.

4.4 Adaptation to a new user

As already unveiled in (Coupeté et al, 2016a), we stud-
ied the adaptation to a new user of our system. For

this purpose, we experiment adaptation of the training
dataset to this new user. We think that it is quite feasi-
ble in practice, and worth considering, when an opera-
tor learns to perform a new human-robot collaborative

task, to record several repetitions of his gestures while
he is experimenting his new task. We could have tried
to apply an incremental learning algorithm: starting

from the HMMs pre-trained on other users and fine-
tune them with gesture examples from the new user.
However, because in our case HMM training is rather

fast, we decided to proceed by re-training from scratch
on training database enhanced by addition of some ges-
ture examples by the new user. As already reported in
our previous work (Coupeté et al, 2016a), we also in-

vestigate the impact on recognition performance of the
number of gesture examples from the new user added
to original multi-users database. Figure 7 illustrates our

methodology. Furthermore, in our final application, it
could be possible to switch between user-specific ges-
ture classifiers depending on the identity of current op-
erator. We therefore perform and present here a new

evaluation to compare with performance of classifiers
trained only on other gesture examples of the same new
user.

Fig. 7 Our method for adaptation to a new user: the initial
multi-users training set is complemented by a few gesture ex-
amples of the new user, and retrained “from scratch”. Evalu-
ation is performed only on independant gesture examples of
the same new user.

To evaluate this method, we add to the previous
database a growing number of sets of gesture examples

recorded from the new operator. One set is composed
of one gesture of each class.

As for the jackknife criterion, we test all possible

combinations of gesture examples from N − 1 opera-
tors + ε gesture examples of the last operator to create
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the training database, and remaining gestures examples
by the last operator to create the test database. Also,
to avoid potential bias due to varying size of training
set, we take care of maintaining a constant number of

gesture examples in our databases (training and test),
whatever the added number of new user gestures’ sets.

5 Experiments and results

In this section, we present our results. In a first part,
5.1, we explain how we recorded the gestures to cre-
ate our dataset of examples. In a second part, 5.2, we

present our study to choose optimal set of features de-
scribing technical gestures. Afterwards, we provide and
justify our choices of parameters (part 5.3), and then
present our online gesture recognition results (part 5.4).

Finally, we provide and analyze our gesture recognition
performances after adapting our system to a new user
by training set modification (part 5.5); those results

are also compared with performance attainable when
training our system with gestures from only the new
user (part 5.5.2).

5.1 Data acquisition protocol

To have a sufficiently large dataset for testing our method,
we recorded 13 “näıve” operators (among which 2 women
and 11 men) aged from 25 to 60 years old (47 years old

on average). Each operator has executed between 20
and 25 assembly tasks. For each assembly, between 7
and 8 successive gestures are performed by the opera-

tor. Note that operators did not have any prior knowl-
edge or experience on the task: they were only shown
how to assemble pieces together, and told that the robot
would handle pieces to them, but absolutely no instruc-

tion was given to them on detailed way to execute the
technical gestures; this implies that operators were ac-
tually performing the assembly task for the first time

during recording, thus increasing variability even be-
tween cycles executed by same operator.

5.2 Comparison of feature sets

As explained in 4.1.2, instead of using directly as fea-

tures all the body posture information that our depth-
image processing algorithm provides, we try and eval-
uate five different sets of features (see Table 1 for their

definitions and Figure 4 for their illustrations).

Table 2 shows the results obtained with these dif-

ferent sets of features, which is a new finding not in-
vestigated in our previous works. We can observe that

Table 2 Rates of correct gesture recognition obtained de-
pending on set of features. Recognition on isolated gestures,
jackknife criterion.
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65% 70% 72% 74% 79%

best result of correct gesture recognition, 79%, are ob-

tained when we use only the two hands 3D locations.
When we add information which are not directly linked
with the effective part of gestures, the recognition rates
decrease. Indeed, samples from the shortest paths and

head location provide information about the operator’s
posture, but they can vary significantly from one oper-
ator to another, and even between several executions of

the same gesture by the same user. Furthermore, this
finding is coherent with the results of (Chen et al, 2015)
in which very good recognition rates using only hand
movements as features are reported, for gestures of an

operator in a set-up similar to ours.

For the rest of presented results, we use as features

only the set of two hands 3D locations.

5.3 Gesture classification algorithm parameters

As described part 4.1.3, we use a combination of K-

Means and discrete HMMs to learn and recognize tech-
nical gestures. Both these algorithms have parameters
that we must determine: the number of clusters for K-

Means, and the number of hidden states for the HMMs.
We have tested different combinations of parameters
(which we had not reported in our previous publica-

tions) to determine and choose the values providing the
best results. These tests are conducted on isolated ges-
tures, i.e. gestures which are already segmented, and
using jackknife criterion. Results are presented in Ta-

ble 3.

We can observe that, when the number K of K-
means clusters increases, the rate of correct gesture

recognition gets clearly better, until K reaches 20 or 25.
This was somewhat expected because more clusters im-
plies a finer discretized description of hands postures,

allowing a better distinction between different classes
of gestures; and conversely when quantization is suf-
ficiently fine, further increase of K cannot bring more

improvement. As highlighted in Table 3, the recognition
rate reaches a maximum of 82% of correct recognitions
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Table 3 Correct gesture recognition rates as a function of
number K of K-means clusters, and number S of HMM states.

Number S of HMM states
5 7 10 12 15 20

N
u
m
b
e
r
K

o
f

K
-m

e
a
n
s
c
lu

st
e
r
s 10 74% 75% 73% 72% 74% 73%

15 76% 78% 78% 79% 78% 79%

20 77% 80% 77% 78% 79% 78%

25 76% 77% 79% 82% 81% 80%

30 77% 78% 78% 80% 80% 79%

for K = 25 clusters and using HMMs with S = 12 hid-

den states. For the rest of this study, we use 25 clusters
for K-means and 12 hidden states for HMMs as param-
eters of our gesture classification algorithm.

5.4 Online recognition perfomances

We need to recognize gestures while they are performed

by the operator, and ideally even before they are fin-
ished.

Figure 8 illustrates two examples of output by our
online continuous gesture recognition, each one during a
complete assembly task executed by an operator. The

blue line and the colors on the background represent
the ground truth, i.e. the gestures which are currently
performed by the operator. The red line represents the

real-time output of our system.

On top of Figure 8, during the execution of the first
gesture 1 “take a motor hose part in the robot right
claw”, from 0 to 2 seconds, our system is still recogniz-

ing the previous gesture 5, “to put the assembled piece
in the box”, but finally recognizes gesture 1 roughly 0.5
seconds before the end of its execution. All the following
gestures are correctly recognized before they end (most

of the time between 0.5 and 2 seconds in advance). Dur-
ing this assembly, our system wrongly recognizes ges-
ture 3, “to join two parts of the motor hose”. During

this time the operator has his two hands in front of him,
while waiting for the robot to bring him the next motor
piece. This posture is similar to the one observed dur-
ing execution of gesture 3, this is why we can observe

this mistake.

On bottom of Figure 8, one can also observe that
our system correctly recognizes technical gestures per-
formed by the operator. In this case, it can be noticed

that our system sometimes outputs zero instead of a
gesture class ID. This occurs when current gesture is
not well-enough recognized, and our system returns a

zero value, rather than risking to output a false recog-
nition.

In the two next sections, we present our results of

online gesture recognition evaluated with our two cri-
teria, jackknife and 80%-20%.

5.4.1 Jackknife

We first evaluate with jackknife criterion the result of
our system continuously recognizing gestures in real-
time. The performances, depending on duration of the
temporal sliding window, are presented in Table 4 for

recall rates and in Table 5 for precision rates.

For recall, best results are obtained with medium
duration of temporal sliding windows: 1 second and 1.5
seconds. For both window lengthes, we have a R score
of 77%. With the window duration of 0.5 second the R
score is lower, 65%. This window is not long enough to
contain sufficient information to correctly recognize the

technical gestures. For the longest sliding window, 2 sec-
onds, we obtain a R score of 74%. With this duration,
short gestures can be drowned with other information,

inhibiting their correct recognition.

Table 4 Recall for online continuous recognition of technical
gestures using data from the depth-camera and from inertial
sensor on the screwing-gun. Evaluation criterion: jackknife,
number of states: 12, number of clusters: 25

Length of Recall

temporal R R1 R2 R3 R4 R5

sliding
window

0.5 s 65% 54% 62% 38% 94% 83%
1 s 77% 68% 79% 60% 95% 87%
1.5 s 77% 67% 75% 64% 95% 84%
2 s 74% 65% 64% 64% 95% 82%

We observe for precision a trend similar to the one
obtained for recall. Better results are obtained with

longer temporal sliding windows, and the best one is
obtained with a window duration of 1 second, reaching
a P score of 84%.

Table 5 Precision for online continuous recognition of tech-
nical gestures using data from the depth-camera and from in-
ertial sensor on the screwing-gun. Evaluation criterion: jack-
knife, number of states: 12, number of clusters: 25

Length of Precision

temporal P P1 P2 P3 P4 P5

sliding
window

0.5 s 79% 57% 81% 71% 92% 80%
1 s 84% 68% 87% 79% 92% 86%
1.5 s 83% 67% 87% 76% 92% 84%
2 s 83% 53% 76% 77% 98% 90%
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Fig. 8 Examples of online continuous gesture recognition. Blue line and colors on the background: ground truth, Red line:
our system output. Note that, in order to avoid false recognitions, our system sometimes ouputs ’0’ (as can be seen on second
example) instead of a gesture class when it is unsure about the type of currently executed gesture.

5.4.2 80% - 20%

We also evaluate our system using the 80%-20% crite-
rion. The results are presented in Tables 6 and 7 for

recall and precision respectively.

These results follow a trend similar to that observed
with jackknife criterion. The best results of recall are
obtained for medium-sized temporal sliding windows,

with a duration of 1 second and 1.5 seconds. For these
windows, we reach a recall of 85% and a precision of
82%. As expected, we can observe that recall is higher

when using the 80%-20% criterion than with jackknife.
Indeed, with the 80%-20% criterion, the system already
“knows” the operator, i.e. some of his gesture examples
were used to train the HMMs. These results motivated

us to explore a method to adapt our system to a new
user by modifying the training set.

5.4.3 Recognition delays

As can be seen on Figure 8 by comparing change in-

stants of blue and red lines, our algorithm performs
early recognition of gestures, in the sense that the op-
erator’s action is often correctly classified BEFORE the

gesture is finished, and even sometimes a rather short
time after it is initiated. We also have quantitatively

Table 6 Recall for online continuous recognition of technical
gestures using data from the depth-camera and from inertial
sensor on the screwing-gun. Evaluation criterion: 80%-20%,
number of states: 12, number of clusters: 25

Length of Recall

temporal R R1 R2 R3 R4 R5

sliding
window

0.5 s 80% 38% 85% 76% 95% 77%
1 s 85% 44% 87% 87% 96% 80%
1.5 s 85% 55% 86% 80% 95% 86%
2 s 81% 64% 88% 80% 95% 81%

Table 7 Precision for online continuous recognition of tech-
nical gestures using data from the depth-camera and from in-
ertial sensor on the screwing-gun. Evaluation criterion: 80%-
20%, number of states: 12, number of clusters: 25

Length of Precision

temporal P P1 P2 P3 P4 P5

sliding
window

0.5 s 74% 68% 95% 55% 92% 89%
1 s 80% 70% 94% 75% 92% 89%
1.5 s 82% 70% 91% 77% 92% 89%
2 s 73% 67% 77% 76% 92% 89%
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evaluated these delays between initiation of an action
and the instant when it is correctly recognized by our
system. As shown in Table 8, this delay is typically be-
tween 1 and 1.5 seconds, to be compared with gestures

durations which vary between 1.5 s and 3 s; it is in-
teresting to note that for gesture classes G3 and G4,
recognition occurs on average respectively 0.9 s and 0.6

s before the end of the gesture.

Table 8 Time delay between gesture initiation and its recog-
nition (averages and standard deviations, in seconds), com-
pared to gesture average duration (in seconds)

Gesture mean mean
class gesture recognition St.Dev.

duration delay

G1 1 s 1.1 s 0.4 s
G2 1.1 s 1.3 s 0.6 s
G3 2.5 s 1.6 s 1.2 s
G4 2 s 1.4 s 0.6 s
G5 1.7 s 1.6 s 0.6 s

5.4.4 Comparison with Dynamic Time Warping
(DTW)

In order to assess if our particular recognition method
(K-means+discrete-HMMs) has an important contribu-
tion to our final results, we have also conducted tests

using DTW (Dynamic Time Warping) instead. As men-
tioned in section 2.2.3, DTW is a very commonly used
technique for gesture recognition, so it provides a useful

baseline result. As can be seen in Table 9 the recogni-
tion performance is much lower with DTW than with
K-means+HMMs. This can be explained by the quite
large intra-class variability of gesture execution in our

application, because DTW models each gesture class
by one single template, which makes it less suitable for
our technical gestures. This hypothesis is confirmed by

the fact that the drop of recognition rate for a new user
(Jackknife criteria) compared to a “known” user (80%-
20% criteria) is much higher with DTW (−10%) than

with K-means+discrete-HMMs (−3%), which means our
recognition method is clearly more robust to gestural
variability.

5.5 Adaptation of gesture recognition to a new user

5.5.1 Adaptation of training dataset

We can observe on results presented above that our

rates of correct gesture recognition are better when the
system “knows” the user, i.e. was trained with a dataset

Table 9 Comparison of gesture recognition performance be-
tween DTW and K-means+discrete-HMMs): average F-score,
average Precision and average Recall

Algo (evaluation criteria) F P R

DTW (Jacknife) 39% 47% 34%
DTW (80%-20%) 50% 59% 44%

K-means+HMMs (Jacknife) 80% 83% 77%
K-means+HMMs (80%-20%) 83% 82% 85%

containing at least some gesture examples performed by

him. Indeed, we obtain better results with the 80%-20%
criterion than with jackknife. This observation moti-
vated us to adapt the training database to a new user,
as explained in part 4.4.

Our approach consists in adding one or several sets
of gesture examples executed by the new operator to

the training database. For the comparison to be fair,
we randomly remove gestures from the original multi-
operators dataset when we add gestures by the new
operator, in order to maintain the same size of training

and testing datasets for all tests.

The results (using a 1 second long temporal sliding

window) are compared on Table 10. Both recall and
precision increase to reach 89%, when 15 sets of gesture
examples have been added. Table data are plotted on

top-left of Figure 9, showing recall precision and F-score
as a function of the number of sets added in the training
base.

Table 10 Precision and recall of technical gestures for online
recognition, after an adaption of the training base with an
increasing added number of gesture examples from the new
user. Data from the depth-camera and inertial sensor on the
screwing-gun.

Number of sets of gesture added
1 2 3 4 5 7 10 12 15

P (%) 84 84 86 85 86 85 86 86 89

R (%) 84 84 87 87 86 87 88 88 89
F (%) 84 84 86 86 86 88 86 87 89

The maximum improvement is quite large (+12%

of recall and +5% of precision, compared to the initial
jackknife results in Tables 4 and 5). Interestingly, it
appears that even when adding only a small number
(≤ 5) of gesture sets, the improvement is significant

(+9% recall and +3% precision). It can also be seen
on curves plotted on top-right of Figure 9 that the first
5 added sets bring significantly more improvement by

set. The recall and precision continue to increase when
more gesture sets are added, but the impact of each set
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Fig. 9 Adaptation of gesture recognition to new user. On top, results obtained by training on multi-users database enriched
by addition of some gesture examples from a new user (left: recall, precision and F-score as a function of the number of gesture
sets added; right: improvement contribution brought by each new added set). On bottom, comparison of recall (on left) and
precision (on right) between the performances attained by adding gestures example sets by new user to multi-users training
database (red lines), and the result of training with gesture examples ONLY by the new user (blue lines).

decreases and converges around 1% of improvement for
each new set added.

These observations show that adding to the training
dataset a relatively small number of gesture examples
from a new user can, after full retraining, significantly

improves gesture recognition performances for this new
user. Using operator-specific personalized gesture clas-
sifiers is therefore desirable, and easily feasible by re-
training from scratch after very slight augmentation of

an initial multi-users training database.

5.5.2 Comparison with training on mono-user datasets

Since we test a system adapted to a new user by modi-

fying the training base, one can wonder what would be
the performances of a system trained on gesture exam-
ples recorded only from this new user. We therefore also
evaluate gesture recognition results, in case our system

is trained and tested on databases composed only of
gesture examples from the same operator. We conduct
this evaluation, which is a new study compared to our

previous work, for an increasing number of gestures in
training set, the size of the test database being constant.

Results are shown in Table 11. Not surprinsingly, recog-
nition performances strongly increase when the number

of gesture sets grows, particularly from 1 set (F-score =
80%) to 7 sets (F-score = 89%). Improvement is much
slower for further addition of gesture sets.

Table 11 Precision, recall and F-score of technical ges-
tures online recognition with mono-user training and testing
databases. Data from the depth-camera and inertial sensor
on the screwing-gun.

Number of gestures sets in training
1 2 3 4 5 7 10 12 15

P (%) 86 85 87 88 87 88 88 86 88

R (%) 75 87 87 88 88 91 89 88 89
F (%) 80 86 87 88 88 89 89 87 88

Plots on bottom of Figure 9 compare recognition

performances attained by using mono-user training data-
set with those presented in 5.5.1, where a multi-users
training database was enriched with a few gesture ex-

amples by the test user. For recall (graph on the bottom-
left), results of the mono-user-trained system are glob-
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ally better than those obtained from the multi-users
adapted system; however recall rates become quite sim-
ilar for higher number of gesture sets. For precision
(bottom-right graph), results for the mono-user system

and the multi-user adapted system are globally very
close. However, above ten sets, the precision from the
system based on a multi-users adapted training base are

better than those obtained with the mono-user system.
These results of precision and recall suggest that a

multi-users adapted system can be more robust than a

mono-user system, which is a new finding. This could be
explained by the fact that a multi-user adapted train-
ing set contains a greater quantity of ways to perform
the same gesture than a same-size mono-user database.

Hence the learnt HMMs are more general, allowing a
better precision during recognition.

6 Conclusions and perspectives

In this study, we presented an experiment on a real pro-
totype in which we continuously recognize, online and

in real-time, technical gestures performed by operators
on an assembly-line. This study highlights the feasibil-
ity to recognize technical gestures in such context using

only non-intrusing sensors.
We use a depth-camera with a top-view to minimize

possible occlusions on the collaborative task. We choose
the gesture classes to be recognized so as to optimize

coordination between the robot and operator.
We propose an algorithm for estimating upper-body

posture (especially hands positions) using geodesic dis-

tances between upper-body pixels and the head’s top.
We highlight that features directly linked to the effec-
tive part of gestures (hands movements) lead to better
recognition results than using user’s upper-body global

posture.
We show that our system can recognize technical

gestures in real-time, even for users not included in

training database examples. We also propose a method
to adapt gesture classification to a new user, by mod-
erate enrichment of the training set. We reach 91% re-

call and 88% precision during online multi-users gesture
recognition.

Furthermore, we highlight that training on a dataset
adapted to a new user by addition of rather few gesture

examples can lead to better precision of gesture recog-
nition than learning a totally user-specific classifier for
each operator, trained with only his own example ges-

tures. This could be due to the fact that a multi-users
database includes more variability of gestures’ execu-
tion, leading to more robustness.

As for perspectives, we currently work on handling

parasite gestures, which can be performed by operators

while they are working, but are not technical gestures.

We also plan to investigate use of different lengthes of
temporal sliding windows for each gesture class, to take
into account their unequal average durations. It could

also be interesting in a future work to analyze if there
could be a relation between situation of actual hands
positions 6D vector within clusters along the gesture
trajectory, and success or failure of the gesture recog-

nition by the HMMs.

Finally, since our gesture recognition methodology

(choice of feature set, classification pipeline, adaptation
to new user) is rather general, it could be used in ap-
plication contexts other than manufacturing assembly-

lines, for example in assistance and service collaborative
robotics.
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This research has been conducted in the context of the ArtiMuse project that aims at the 
modeling and renewal of rare gestural knowledge and skills involved in the traditional 
craftsmanship and more precisely in the art of the wheel-throwing pottery. These 
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diverse expertise founded and propagated over the centuries thanks to the ingeniousness 
of the gesture and the creativity of the human spirit. Nowadays, this expertise is very 
often threatened with disappearance because of the difficulty to resist to globalization and 
the fact that most of those "expertise holders" are not easily accessible due to 
geographical or other constraints. In this paper, a methodological framework for 
capturing and modeling gestural knowledge and skills in wheel-throwing pottery is 
proposed. It is based on capturing gestures using wireless inertial sensors and statistical 
modeling. In particular, we used a system that allows for online alignment of gestures 
using a modified Hidden Markov Model. This methodology is implemented into a 
Human-Computer Interface, which permits both the modeling and recognition of expert 
technical gestures. This system could be used to assist in the learning of these gestures by 
giving continuous feedback in real-time by measuring the difference between expert and 
learner gestures. The system has been tested and evaluated on different potters with a rare 
expertise, which is strongly related to their local identity. 

General Terms: Technical gestures, Know-how, Modeling, Recognition, Wheel-throwing 

Additional Key Words and Phrases: Perception, HCI, Inertial sensors, Machine-Learning  

____________________________________________________________ 

1. INTRODUCTION  
Cultural expression is not limited in architecture, monuments, collection of objects, or 
music. It also includes fragile intangible live expressions, which involve knowledge and 
skills.  Such characteristics can be human gestures, the color of our voice or facial 
expressions. They are controlled by the intelligence of the human creativeness depicted in 
music, dance, singing, theatre, human skills and handicraft.  This kind of culture has been 
termed Intangible Cultural Heritage (ICH), which is manifested inter alia in oral 
traditions and expressions, performing arts (music, dance, theatre etc.) social practices, 
knowledge and practices concerning nature, universe and the traditional craftsmanship 
[Unesco 2003]. In traditional craftsmanship, the rare gestural knowledge primarily 
consists of hand and finger motions.   
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The project “ArtiMuse” aims at proposing a multidisciplinary research approach for 

the gesture recognition methodologies applied in musical and handicraft interactions. In 
order to preserve these gestural skills that require high expertise it is necessary to 
identify, record, analyze, model and recognize them. This paper presents the development 
of a methodology for the modeling of kinematic aspects of technical gestures using 
gesture recognition technologies based on wireless inertial sensors. This methodology has 
been implemented, applied and evaluated on the gestural skills of two expert potters for 
simple objects, such as bowls. The Human-Computer Interface called “ArtOrasis” has 
been developed for gesture capturing, modeling and recognition of expert gestures. It also 
proposes the time alignment of a gesture compared to a model gesture, which is a quite 
promising perspective for a performance comparison between expert and learner.  

 

2. STATE OF THE ART 
The study of human gestures has been of special interest in different research fields. In 
the ICH domain in particular, body and hand gestures are important means of 
communication, of expression and of creativity. Preservation and transmission of 
handicraft skills is often done by studying and analyzing recordings, verbal descriptions 
and documents. However, the important role of gestures has lead several researchers to 
model them using motion capture and gesture recognition technologies. 

 
2.1 E-DOCUMENTATION AND DIGITAL ETHNOGRAPHY 

Most existing methods for skill preservation are based on verbal descriptions of 
movements, often in conjunction with multimedia content such as graphic / photographic 
material [D. Chevallier, 1991]. Another widespread method is the video recording of 
skills and techniques of the gesture accompanied with verbal commenting. This method 
was applied to preserve knowledge of technical gestures in power stations in France 
during the manipulation of different technical tools. A video camera has been placed on 
the helmet of the workers to record their movements [Le Bellu 2012]. 

In the field of ICH, for many years, ethnologists have studied the characteristics (arts 

and techniques, oral traditions and living expressions) of groups and communities in 
their surroundings. [D. Chevallier, 1991]. Enora Gandon worked on wheel-throwing 
gestures in a cultural context. She studied the impact of the cultural background of the 
human on the development of motor skills in Wheel-throwing art [E. Gandon, 2011]. 
Kuo-An Wang studied the case of weaving Chinese traditional items with Bamboo 
[Kuo-An Wang et. al, 2011]. He created a digital archive with approximately1200 objects 
accompanied by images and videos presenting the gestures involved in the creation of the 
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objects. Through meetings and interviews conducted with the craftsman, Kuo-An Wang 
has identified a set of 20 basic gestural patterns of weaving. Then, he connected each of 
the digitized objects file with a combination of those patterns. 

However some significant limitations can be identified in these methods. While 
describing a gesture on a piece of paper using photos or figures, the gesture is limited in 
two dimensions and it does not represent any realistic information about how the gesture 
has been performed. In the case of video recording, the gesture is also represented in two 
dimensions but still limits the information that can be extracted.  

 
2.2 MOTION CAPTURE AND GESTURE RECOGNITION 

The use of innovative technologies for motion capture permit to overcome some of the 
limitations mentioned above, to achieve a faithful record of the gesture and model it 
stochastically. A significant number of studies have been based on various techniques for 
modeling and recognition of gestures based on motion capture. These technologies can be 
subdivided in 3 categories: a) marker-based, b) marker-less and c) inertial motion 
sensors.  

Marker-based approaches use optical-markers and active computer vision, which 
require expansive commercial systems, such as Vicon Peak or Optitrack. This type of 
sensor has been used for the modeling of music performances of a violin player 
[Rasamimanana N. et al. 2009, Demoucron M. et al., 1994]. One of the most important 
limitations of the marker-based gesture recognition systems is that they are not robust to 
occlusions.  

Marker-less technologies do not require subjects to wear special equipment for 
tracking and are usually based on passive computer vision approaches. For example, 
Microsoft Kinect is a low-cost depth camera that provides good results for the 
recognition of global body postures, such as dance gestures [Raptis, 2011]. It provides 
Cartesian representation of the human motion and it is usually used for tracking joints of 
the body. Nevertheless, it is less precise for hand gestures. To solve this problem there is 
an ongoing research aiming at the creation of a hand skeletal model for finger detection. 
A hand skeletal model for depth images, provided by the PMD CamBoard Nano time of 
flight camera, has been applied to capture music-like finger gestures [Dapogny et al., 
2013] based on Shotton’s algorithm and pixel wise classification through Random 
Decision Forest. This model is currently being developed and adapted for pottery-like 
finger gestures, as a training database is required. An elaborated algorithm is also 
necessary for scene and object segmentation in the case of technical gesture recognition 
in wheel-throwing art of pottery. Moreover, the depth cameras are self and scene 
occlusion-dependent and the development of hand/finger skeletal model for the capturing 
of finger gestures in pottery is a challenging approach in a medium term vision. 

Inertial Motion Sensors [R. Aylward et al., 2006, T. Coduys et al., 2004, T. Todoroff, 
2011, E. Fléty et al. 2011] or commercial interfaces, such as the Wii joystick 
[D. Grunberg, 2008], permit to track gesture features continuously and in real-time. 
These sensors have been tested and used in dance and music performances [Bevilacqua et 
al., 2007, 2010]. For example, inertial sensors have been used for motion capture aiming 
at the archaeological reconstruction, understanding and interpretation of different 
possibilities of use of an ancient Iron Age roundhouse [S. Dunn et al, 2011].  
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2.3 PRESSURE MEASUREMENT AND MECHANICAL STRESS 
In case of wheel throwing pottery, a study has been conducted to evaluate potters’ skills 
by taking into consideration the mechanical characteristics of the objects created by the 
potters. The Von Mises stress index [J. Lemaitre et al., 2004] has been used to measure 
the mechanical stress operating in the object and it has been related to the throwing 
difficulty, proposing thus an idea for potters’ skills assessment [E. Gandon et al., 2011]. 
In this object-oriented approach, the pressure is measured by analyzing the mechanical 
characteristics of the created object after completion, and not in real-time during the 
creation of the vessel. Therefore, despite its interest, this mechanical stress estimation 
cannot easily be used to build an interactive pedagogical tool, because interactivity 
requires real-time analysis of the gesture performed. Since designing this type of tool is 
one of our final goals, our approach for the preservation and modeling of gestural skills is 
based on the analysis of the kinematic aspects of the gesture required for the creation of 
the object, which can be easily captured and analyzed in real-time. 
 

 
3. METHODOLOGY 
In the methodology proposed below, the goal is not a simple video recording with verbal 
descriptions, nor just the digitalization of information. The objective is to study and to 
model rare gestural know-how involved in handicrafts, to gather data about different 
biomechanical, kinematic aspects of a technical gesture (distances between the hands, 

angles of the vertebral axis, rotations of the joints, gesture’s trajectory etc.), as well as 
the body postures and to create information about its various parameters. The modeling 
of the gestural know-how and the effective recognition of gestures have been done in 
different methodological phases as described below and represented in the figure 1.  
 

 
 
 

 
 
 
Fig. 1. Gesture recognition pipeline based on the Animazoo suit of wireless motion sensors for the upper-part of 

the potter’s body. 
 

Capturing, modeling, online recognition and time alignment, are fundamental stages 
and extensions towards the creation of an interactive pedagogical tool for the 
transmission of gestural skills based on sensorimotor learning. This comparison could be 
done in real time in order to provide a sonic or optical feedback to the learner, and thus 
drive him/her to correct his/her gestural errors.  
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3.1 HANDICRAFT AND EXPERT SELECTION 
The first step is to select the type of handicraft and the craftsman to be studied. The 
handicraft selected should respect some criteria and be compatible with the goal of the 
research and with its’ technical conditions and constraints. Since we are using gesture 
capture technologies, one of the important criteria for technical feasibility and application 
of the methodology is to avoid use of specific tools during gesture execution. 
 

3.2 IDENTIFICATION OF THE EFFECTIVE GESTURES 
The second phase concerns the identification of effective gestures. Effective gestures 
have a direct impact on the material and it is important to identify them and to distinguish 
them from other auxiliary gestures. This goal can be achieved in interaction and 
collaboration with the expert, by conducting interviews and observing him while 
working. He should show and describe a complete sequence of gestures, effective and 
auxiliary, in order to define a dictionary �� = �����∈ℕ of his/her effective gestures. 

 

  3.3 GESTURE CAPTURING 
In the context of expert technical gestures, a possible simplification of the complexity of 
the human body can be based on rotation of segments, which is the case of the data 
stream (observation vector) provided by the sensors. Therefore, the expert’s body 
segments are tracked and the sensor captures kinematic properties about angle rotations 

in 3D space and record them as a sequence of observation vectors �0:� = �1 … �	��∈ℕ, 

where � �∈ℕ
	is one observation vector and � the total number of observations. The vector 

� = �1
� … �

� �
�,�∈ℕ

 represents the � kinematic descriptors for a given time stamp �.  

 

3.4 GESTURE MODELING AND MACHINE-LEARNING 
 
3.4.1 GESTURE REPRESENTATION 

Once the data acquisition is completed, then ��:�	should be normalized. Euler angles, 
Quaternions are possible rotation representations of the motion. Euler rotation is a 
rotation about a single Cartesian axis. According to the Euler’s Rotation Theorem, every 
orientation can be described as a rotation from some other reference orientation as a 
sequence of three elemental rotations (precession, nutation, and intrinsic rotation).  
Quaternions are representing orientations and rotations of objects in 4D, where there is 
one real axis and three imaginary axes (i, j, and k). Another way to model the rotations of 
the motion of the human body is the Direction Cosine Matrix (DCM), which is based on 
a triad of unit vectors. The rotation is described by specifying the coordinates of the triad 
of unit vectors in its current position, based on a non-rotated coordinate axes that is used 
as a reference. 

 
3.4.2 GESTURE MODELING AND ONLINE 

CHARACTERISATION 
One of the difficulties in gesture recognition is that the same gesture can be performed in 
a variety of ways, in particular the change in speed of execution. For this reason, one of 
the authors has developed a system called “Gesture Follower” that can be seen as a 
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hybrid approach between Dynamic Time Warping (DTW) and Hidden Markov Models 
(HMM) [Bevilacqua 2007, 2010]. This system is a template-based method, which allows 
the use of a single gesture to define a gesture class. This requirement is necessary due to 
the limited access of gesture data in our application. Nevertheless, we use a HMM 
formalism to compute in real-time computation measures between the template and the 
incoming data flow. 

As described by Rabiner (1989), Hidden Markov Model can be used to model 
recorded time series (training procedure) and to compute the likelihoods (one per HMM) 

that the hidden state sequence �0:� = ��1 … ��	��∈ℕ  , generated the new observation 

sequence �0:� = �1 … �	��∈ℕ. In our case, we are interested in the following 

information: 
• The likelihood ���, � that the observation sequence was produced by the 

different models. The sequence with the maximum likelihood � !"  to generate 
��:� indicates the gesture �� from the gesture dictionary �� = �����∈ℕ. 

• The likeliest state sequence ��:� of the observation sequence ��:�. This state-
sequence allows for obtaining a time-warping between the model and the 
observed sequence. 

 
In order to greatly simplify the learning procedure and to guarantee a high temporal 

precision in the gesture modeling, we associate each template to a state sequence. We 
define one state for each sample data of the template (applying a constant sampling rate). 
We compute the different likelihoods in real time using the well-known for-ward 
procedure that return the results incrementally, and that can be implemented efficiently 
even in the case of models with a large number of states [Bevilacqua 2010]. 
 
 

4. CASE STUDY  

4.1 SELECTION OF THE WHEEL-THROWING POTTERY AND OF THE 
POTTERS 

For the implementation of this methodology the wheel-throwing pottery has been chosen 
mainly for two reasons. First of all, because of the high social and cultural value of this 
traditional profession for the local communities of the Macedonia Region in northern 
Greece (community of the potter A) and of the French Riviera (Côte d’Azur) in Southern 
France, (community of the potter B) which is also famous for the large number of 
ceramists working there. An important number of associations and independent experts 
are actively promoting this handicraft in these regions. A list of candidate craftsmen has 
been established.  Two experts from the regions above have been selected. They detain a 
very high level of expertise in wheel-throwing pottery art and also important pedagogical 
experience. The potter A is teaching this handicraft in a centre for therapy and social 
reintegration of people with substance dependencies and the potter B is a senior 
craftsman with more than twenty years of experience in practicing wheel-throwing 
pottery. The second criterion is more technical and linked to our system’s technical 
characteristics. The wheel-throwing pottery is based on gesture control of the material. 
There should be no interference of the hands of the potter and his material with specific 
tools or other intermediate mechanisms.  
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4.2 BASIC GESTURES FOR THE CREATION OF A BOWL 
The two selected expert potters presented to us a complete sequence of gestures that are 
used to create a bowl with a simple shape (a bowl) with different quantities of clay.  

It has been asked to the potter A to create 5 bowls of 18-20 cm of diameter, 10 cm of 
height, with approximately 1.3 kg of clay.  Additionally, it has been asked from the potter 
B to create bigger bowls of the same shape of those created by potter A, with 20-23 cm of 
diameter and 13 cm of height with 1.75 kg of clay. 

After meticulous observation of video recordings of the gestures of the two potters 
and after the interviews conducted with them, we have concluded on the following 4 
basic gestural phases of creating a simple bowl (Figure 3). 
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Fig 3. Basic phases and gestures per potter for the creation of a bowl 

 
 

Since the dimensions of the bowls created by the two experts are different, the 
required gestures inside the gestural phases are also different. Obviously, there is a 
common track between the gestures of the two experts, even if the dimensions of their 
objects are slightly different. The bigger an object is, the more gestural work it requires. 
Consequently, since the object of the potter A is smaller, the 4 basic gestures that we 
have identified correspond exactly to the 4 basic gestural phases presented above. For the 
bigger object, the potter B has more clay to manage and he is paying more attention to 
shape refining. 

They are also considered as representative of the high-level wheel-throwing pottery 
skills, since the creation of the object takes in case of the potter A only 60-75 sec and for 
potter B 120-140 sec. The fluidity and the speed of potters’ gestures as well as the hand 
coordination are elements that constitute the basis of the rare know-how and gestural 
skills. 
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All gestures have duration of 15-25 seconds. The centering and bottom opening 

11	consists of fixing of the clay on the wheel, hands are pressing steadily on the material 
aiming at the opening of the bottom. Then, the potter’s hands are picking up the clay, 

defining the height of the bowl through the second gesture,	12 the raise of the clay. 
Then the body posture is changing, slightly turning on the right or on the left side for the 

first configuration of the shape, for 13. Precise finger gestures are specifying the basic 
form of the object. The fingers of the one hand are fixing the clay and of the other are 
forming the object. His hands are too close to each other, touching the inner and outer 
sides of the clay respectively. After this stage, the potter is making the final configuration 

of the shape 14. His fingers are controlling and equalizing the bowl thickness and at the 
end the potter passes a very fine wire between the bowl and the wheel in order to take the 
bowl.  

 
4.3 EXPERIMENTATIONS: CAPTURING THE POTTER’S GESTURES  

After the definition of the above effective gesture the potters are asked to put the inertial 
motion capture suit that can easily provide real-time access to motion information and 
permits the data acquisition (Figure 4).  

This suit contains 11 inertial sensors (gyroscopes and magnetometers) and it is 
covering for the upper part of potter’s body, his wrists, his neck and his head. It provides 
an automatic filtering for the correction of magnetic disruption. It has been selected for 
the gesture capturing and the implementation of the methodology described below. It is 
occlusion-independent and it provides a high precision rotational representation of body 
segments. 

The 11 sensors are integrated in the suit and after the calibration they provide and 
capture information related to the XYZ axis rotations with the use of integrated 
gyroscopes, accelerometers and magnetometers. The posture of the upper-part of the 
potter’s body can be derived by the data obtained from the suit but it is not the case with 
his position in 3D space. These data are recorded following a hierarchical structure and 
more precisely the Bounding Volume Hierarchy (BVH). 

Since magnetometers are used among other sensors in the suit with the inertial 
sensors, the quality of data captured can be influenced by magnetic disturbances. During 
the first day of data acquisition with the potter B these disturbances were very strong 
since he was using an old model of wheel, containing many metallic devices. Despite the 
fact that data are online corrected by the system if weak magnetic disturbances are 
identified, the data acquired at the first day were of a very bad quality. For this reason 
another data acquisition session has been realized with the use of a more modern wheel 
with less magnetic disturbances. 

The following table I, lists the different parts of potter’s body, which motions have 
been captured for the preservation of his gestural know-how. Some of them may play a 
more important role in the technical gesture depending on the type of handicraft, but all 
the following body articulations are involved in the performance of the gesture of the 
craftsman. We are also aware about the important role of fingers in wheel-throwing 
process. Finger tracking constitutes an important step and we are currently working on 
the creation of a skeletal model trained on the potter’s finger gestures. 
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(a) (b) (c) 

Fig 4. (a) The potter A,  Theodoros Galigalidis, pottery teacher at the “Therapy Center for 

Depending  Individuals” in Thessaloniki, is performing the �, (first configuration). (b) Skeleton 

reconstruction. (c) The potter is wearing the suit with the inertial sensors for preliminary analysis. 
 

 
4.4 POTTER’S GESTURE MODELLING WITH THE ARTORASIS 
SYSTEM 

After the gesture capturing using the inertial sensors, the data is normalized in [-1, 1] 
using Euler angles, Quaternions and Directors Cosine Matrix as described in the 
methodology.  

A prerequisite for the creation and the application of our methodology was to design 
the ArtOrasis system and interface (Figure 5). This gesture recognition system is entirely 
implemented in MaxMSP, an interactive programming environment that uses the Jitter 
toolbox and it aims at the recognition of technical gestures. ArtOrasis can also be used for 
capturing, modeling, and recognition. It also provides functionalities for the visualization 
of the skeleton of the craftsman.  

The machine learning engine of the ArtOrasis is based on a hybrid Hidden Markov 
Model and Dynamic Time Warping approach, which is implemented into the Gesture 
Follower (GF) [Bevilacqua et Al. 2007] patch for MaxMSP (developed by the IMTR  
research team of IRCAM). 

Table I. Body segments and gesture descriptors for rotations in 3D space 

Body segments Gesture descriptors (�
�� 

- Spine 
- Right Shoulder 
- Right Arm 
- Right Forearm 
- Right Palm 
- Left Shoulder 
- Left Arm 
- Left Forearm 
- Left Palm 
- Hips 
- Head 

 
 

- Direction Cosine Matrix, 99
�

 

 

- Euler angles, 33
�

 

 

- Quaternions, 44
�
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Fig 5. Screenshot of the interface of the ArtOrasis system presenting the learning and recognition phases 
 

In case of wheel throwing pottery 11 segments of the human skeleton listed in the 
table below have been selected and used for the training of ArtOrasis system. Concerning 
the different gestures separation, the training has been based on the 4 effective gestures 
identified during the second stage. 

According to the model defined previously the user (researcher, potter, learner) of 
ArtOrasis can define and choose which are the most important parts of the body that 
participate in the execution of a technical gesture and train the system based on ones. 
This stage corresponds to the machine learning phase of the methodology. The training of 
the gesture recognition system is also based on the effective gesture separation defined in 
second methodological step. After the training of the system the last step is the gesture 
recognition that is evaluated below. 

 

5. EVALUATION  
One of the final goals of our research is the design of a real-time pedagogical tool that 
can help transmission, and thus preservation of gestural know-how. To attain this goal, 
we need to compare gesture realization by an apprentice with the recorded and modeled 
gestures by experts. A pre-requisite before estimating such similarity, is the automated 
recognition by the system of what particular step the apprentice is trying to perform. For 
this reason we are convinced that online technical gesture recognition is essential for the 
comparison of handicraft skills between apprentices and expert. Furthermore, the 
segmentation of the data captured into a set of specific gestures, and the training of 
models, provides the data with a semantic dimension.  

In order to validate our approach, and evaluate the recognition accuracy of the system 
for all the 1� , it has been asked to each of the expert potters to create five bowls. All the 
gestures ��

* from the potter A and ��
. from the potter B that are involved in all the four 
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phases 1�  have been recorded in real conditions (co-articulated gestures and without 

rest). It has to be mentioned that very often, expert craftsmen are not available to create 
many copies of exactly the same object since this procedure is considered as a creative art 
process or because of ageing. Nevertheless, in case of the potter A the repeatability of his 
gestures can be considered as being of a high level, since he was very concentrated and 
careful in the way he performed the gestures. In case of the potter B the repeatability is of 
a medium level since he is easily disturbed in his everyday work by external elements 
(neighbors visiting his atelier, etc.) 

The gesture recognition rates have been evaluated based on the « jackknife » method 
[Abdi, Williams 2010]. In our case, jackknifing means estimation of the recognition 
accuracies for manually segmented gestures (isolated gestures) by using subsets of the 
available gestural data. The basic idea behind the jackknife variance estimator lies in 
systematically recomputing the statistic estimate leaving out one or more observations at 
a time from the sample set. 

Practically, a dataset contains observations of all the ��
* and ��

.. In total, five 
observations for each gesture have been recorded and distinct databases for learning and 
test have been used in five iterations. For each iteration, one dataset is left out to be used 
as the learning database and train one model 6� per gesture �� until all the data sets are 
used once and the four remaining datasets are used as a database for testing. Two metrics 
have been used to evaluate the system: 
 

1789:;:<� =
#	<>	?7@8_B89<C�:D:<�;

#	<>	?7@8_B89<C�:D:<�;	 + #	<>	FGH;8_B89<C�:D:<�;
			�1� 

 
 

B89GHH =
#	<>	?7@8_B89<C�:D:<�;

#	<>	?7@8_B89<C�:D:<�;	 + #	<>	6:;;8I_B89<C�:D:<�;
	�2� 

 
So, for the potter A, the first evaluation phase has been done using Euler angles after 

normalization for training the HMMs 6�
*. For each of the eleven body segments, one 

Euler angle per axis has been computed. The table II shows the results of the five 
iterations of the jackknifing as well as the Precision and Recall per gesture of the potter 
A. Twelve queries for recognition per ��

* have been asked to the 6�
*. Both Precision and 

Recall were at 100%. 
  



9: 12 ● S. Manitsaris, A. Glushkova, F. Bevilacqua, F. Moutarde 
 
 

 
ACM Journal on Computing and Cultural Heritage, Special issue “Interacting with the past” 

  

 
The Quaternions and the Direction Cosine Matrix have also been used for the training 

of the MK models. For both Quaternions and Direction Cosine Matrix, all the observations 
��:� from �+* and �,* that have been given as query to ArtOrasis gave true recognized 
(Recall) but there are some cases where 6+* and 6,* gave maximum likelihood for false 
recognitions (Precision). In table III we can see that all three ways of the motion 
representation give excellent results for the recognition of all the effective gestures.  

This first experimental case shows that, at least for the creation of simple objects in 
wheel throwing-art, online gesture recognition based on machine-learning can be 
successfully applied, and can therefore be used as a first step for “capturing of gestural 
skills” related to pottery. 

 
Table III. Comparative table for Precision and Recall of Euler, Quaternions and 

Direction Cosine Matrix (DCM) representations 

 Euler Quaternions DCM 

 Precision Recall Precision Recall Precision Recall 

�)* 100% 100% 80% 94% 100% 85% 

�+* 100% 100% 100% 90% 87% 100% 

�,* 100% 100% 100% 87% 95% 100% 

�-* 100% 100% 85% 100% 100% 95% 

Total 100% 100% 91% 92% 96% 95% 

 
More precisely, the Direction Cosine Matrix needs the most computational power 

since a 3x3 matrix has to be calculated and sent as an input to the HMMs, which may be 
a very important constraint for real-time applications. Taking into consideration the fact 
that only the upper part of the potter’s body contributes in a direct way to the creation of 
the object while he/she is seating on a chair in front of the wheel, we can conclude that 
the degrees of freedom of his/her body are really reduced. Additionally, DCM are widely 
used on animation but not for analysis, recognition or modeling of rotations. Quaternions 

Table II. Precision and Recall per gesture from the potter A based on five iterations of 
jackknifing using Euler angles. 

   Maximum likelihoods (�LG�)  

  6)* 6+* 6,* 6-* Recall 

Observa

tions 

(��:�
* � 

�)* 20 - - - 100% 

�+* - 20 - - 100% 

�,* - - 20 - 100% 

�-* - - - 20 100% 

Precision 100% 100% 100% 100%  
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impose the non-Euclidean space, which cannot be easily interpreted by humans and 
consequently they cannot be meaningful for learning purposes. 

With regards to the potter B, we have also evaluated the recognition accuracy based 
on jackknife method. In the table IV, the precision and recall for his ��

. are presented. 
During this test we use Euler angles since they have been previously identified as the 
most relevant descriptor. Like in the previous example 20 queries for recognition per GK 
have been asked to the 6�

..  The precision and recall are perfect for �). to �-.. For �/., 
there is one false recognition since �-. and �/. are very similar. 

The difference between �-. and �/. is that, in �/. the potter B defines the shape with a 
tool and a sponge but in �-. he defines the shape without any tool, just with his hands. 
Gesture G0 has the lowest recognition rate because the potter was very disturbed. The 
repeatability of this gesture is low and it has a direct impact on its recognition rate. Even 
if the number of ��

. is increased compared to ��
*, the Precision and Recall are still 

excellent. 
 

 
The possibility to do cross-potters evaluation has been rejected since it is not 

meaningful to compare discrete gestural skills of a rare expertise, which are strongly 
related with the local identity of each expert. 

The recognition rate is very high but is effective after a latency of 80-120 frames (1.5 

to 2 seconds). This latency corresponds to the time that is needed to separate the different 
HMM models based on their associated maximum likelihood. Co-articulation has an 
impact to the computation of the instant likelihood and this effect usually becomes more 
important during the transitions between gestures. It lasts short time periods and the 
gestures are not clearly recognized during these periods. More precisely, co-articulation 
can be defined as the fusion of distinct actions into larger and holistically perceived 
chunks [Hardcastle et al., 1999]. 

On the left of figure 6 for example, �+* is given to ArtOrasis. At the beginning, there 
is a maximum likelihood alternation effect between the 6�

*. After the first 1.5 seconds, 

Table IV. Precision and Recall per gesture based on 5 iterations of jackknifing using 
Euler angles-Potter B. 

   Maximum likelihoods (�LG�)    

  6). 6+. 6,. 6-. 6/. 60. Recall 

��:�
. � 

Obser

vatio

ns 

�). 20 - - - - - 100% 

�+. - 20 - - - - 100% 

�,. - - 20 - - - 100% 

�-. - - - 20 - - 100% 

�/. - - - 1 19 - 95% 

�0. 2 - - - - 18 90% 

Precision 91% 100% 100% 100% 95% 90%  
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6+* has the maximum likelihood until the end of the observations. As we can see, the 
likelihood of 6+* is very high comparing to other models and this can be justified by the 
fact that the expert repeats the gestures in a very precise way. 

 

 

 

(a) 

 

(b) 

Fig 6. Instant likelihoods per frame using Euler angles. (a) On the left �+* and (b) on the right �,* are given as 
test inputs to the models. 

On the first figure a) of the figure 6, there is still a latency of about 1.5 second before 
6,* becomes the maximum likelihood. Then, this effect is normalized and almost 
instantly the 6, gives the maximum likelihood for about 1040 frames. Just after the 
frame 1121, the maximum likelihood starts to alternate between 6+* and 6,* due to co-
articulation. In �+* (the raise), the potter needs to clean his hand before to take a small 
tool and starts the first configuration of the shape.  During the co-articulation phase, the 
right hand goes under the left and vice-versa, which is a common phase with the gesture 
�+* also. 

In parallel, we applied a Levene’s test in order to detect the equality of variances 
between the Euler angles for the potter A. According to this test, the variances of the four 
gestures in three axis are not equal. By applying the One-Way-ANOVA test, we observe 
that the mean values for all the four gestures are not equal on the axis X by comparing 
pairs of gestures. Also, equalities are extracted between �)* - �+* on the axis Z and �+* - 
�,* on the axis Y. The conclusion of the statistical analysis is that the four gestures are 
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different in terms of means and this fact contributes to the very high recognition rates. 
The results of the One-Way-ANOVA for the potter B are very similar to those of the 
potter A. 

As it has been discussed before, the recognition is useful for the system in order to 
distinguish the gestures between them. But when the gesture is correctly recognized then 
it is important to have information about its temporal evolution (time index) compared to 
its model. This can be used not only to measure the different performances of the same 
potter, but also as a way to measure the distance between the performances between 
expert and learner in real-time. To do this, a temporal rescaling or time warping of the 
gesture can be directly obtained from our hybrid DTW-HMM approach. Time alignment 
experiments have been done for the right palms of the two potters. In figure 7, the time 
alignment of �). for the potter B is shown.  

 

 

 

Fig.7 Example of aligned data from the right palm of the potter B for �). (Opening the Bottom)  
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Normalized rotations of the first bowl for the right palm have been given to ArtOrasis 
as a learning sequence. Then, the normalized rotations of the second bowl have been 
given both as recognition and time alignment sequence. The results presented above 
show that for the �). the aligned sequence fits well with the one that has been used for the 
learning of the HMMs for all three axis. Finally, from this alignment, it is possible to 
examine precisely where the main differences occur between the different sequences. . As 
previously mentioned, such difference could be displayed in real-time and offered thus 
feedback to the potter. 

 

CONCLUSION 
Conscious of the need for transmission of the ICH and for its preservation, we proposed a 
methodology for wheel-throwing gestural know-how preservation through capturing, 
modeling, online recognition and time alignment of different performances for the most 
fundamental gestures. In order to validate this methodology, the technological prototype 
ArtOrasis has been developed. It is able to capture rotations of body segments using 
inertial sensors and recognize the expert postures and gestures based on machine learning 
techniques. Both methodology and system have been evaluated on basic expert gestures 
for the creation of a bowl with the help of different gesture descriptors. Through 
experiments conducted on two different case studies of rare expertise, we show that 
gesture recognition with machine-learning can be successfully applied to the creation of 
simple objects in wheel-throwing pottery. This illustrates that technical gesture 
recognition can be used for modeling of gestural skills, which is a first required step for 
“capturing of ICH” in a form facilitating its transmission by interactive pedagogical tools. 
The high level of recall and precision of gestures recognition is justified by the fact that 
there are no equalities of variance but also by the expertise of the potters, who repeated 
the gestures in a very precise way. 

The long-term goal of this research is the development of the appropriate 
methodology and technology for collecting, recording, classifying and modeling of hand 
gestures that constitute a rare know-how in various types of handicrafts. Since the role of 
finger touching on the material is very important, a future goal of this research is to 
extend the current methodology by combining it with computer vision in order to capture 
finger movements as well. To propose a completed methodology it would be also 
interesting to combine kinematic data (upper part of the body and fingers) with kinetic 
information about the pressure brought on the clay. But also the object detection and 
scene segmentation would give precious information about the evolution of the creation 
process and also about the progression of the gesture. The results of this study will not 
only contribute to the preservation of this gestural know-how but also to the development 
of a system aiming at the transmission. These results could be also used for renewal of 
ICH by proposing gestural metaphors for the creation of augmented musical 
performances based on handicraft gestures. 
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Abstract
This paper presents a methodological framework for the use of gesture recognition technologies

in the learning/mastery of the gestural skills required in wheel‐throwing pottery. In the case of

self‐instruction or training, learners face difficulties due to the absence of the teacher/expert

and the consequent lack of guidance. Motion capture technologies, machine learning, and gesture

recognition may provide a way of overcoming such issues. The proposed methodology is used to

record and model expert gestures and then to compare this model in real time with the gestures

performed by the learner. Differences in kinematic aspects such as hand distances are detected,

and optical/sonic sensorimotor feedback is provided to the learner by the system, alerting him/

her when errors occur and guiding him/her to achieve better results. In the case described here,

the system was evaluated with 11 learners. With the use of our system, the gestural performance

of learners during self‐training has been improved in comparison to cases of self‐training without

computer assistance.

KEYWORDS

augmented multimedia feedback, embodiment, gesture modelling and recognition, interactive

learning and training, motor skills, sensorimotor learning

1 | INTRODUCTION

Manual professions are not limited to a set of tools or special devices;

they also demand experience that involves gestural know‐how that is

controlled by hand movement intelligence and human creativity. Such

experience is not limited only to the implementation of simple manual

tasks but coexists with tacit knowledge. This tacit knowledge and the

necessary motor skills are diffused within communities of practice,

which interact with each other and ensure that the necessary knowl-

edge and skills are transmitted from one generation to the next. Motor

skills may include specific body postures to make preparatory adjust-

ments as well as the manipulation of tools, objects, or materials used

by the hands and fingers. Gestural know‐how is considered at one

and the same time to be traditional, contemporary, and living because

it not only refers to past knowledge but also to contemporary experi-

ence that evolves through time. This transmission of experience and

knowledge has an economic, social, and cultural value, because it

affects not only the well‐ being of the job holder or artisan but also

the sustainable development of society in general.

Within this context, the transmission of gestural know‐how is typ-

ically made person‐to‐person by establishing a mirroring system

between the expert and the learner. Using this “me‐to‐you” observa-

tion system (“me” as expert and “you” as learner), the learner perceives

and understands the movements of the expert as meaningful action

and not simply as displacement of space. Nevertheless, access to this

expertise of gestural skills as professional know‐how can sometimes

be difficult to achieve due to geographical or time constraints or due

to the limited number of experts that hold these skills. Within industry

especially, the availability of experts for teaching or training purposes

may be limited due to lack of time, in the sense that extracting an

expert from his/her everyday workspace may impact on productivity.

Also, in relation to craftsmanship, a number of craft traditions may

include “secrets” that have been transmitted not only from one gener-

ation to another but also to a limited number of people within a partic-

ular community.

Gestural know‐how transmission remains incomplete if there is

no “learning‐by‐doing” symbiosis between the learner and his/her

objects, tools, or instruments. According to the learning continuum
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presented by Ε. Dale (1969), people memorize 90% of what they are

doing, 70% of what they are writing/saying, 50% of what they are

watching and hearing, and 10% of what they are reading. The learn-

ing‐by‐doing is thus the most efficient method to acquire precise

know‐how. It is also important the learner to become the actor and

not the observer of the situation. When learning gestures, embodied

cognition requires a dynamic environment that includes interaction

and manipulation (Malamed, http://theelearningcoach.com). Recent

technological advances permit to imply and motivate learners, to give

them this active role through serious games, simulation systems, and

interactive environments (Rieber, 1996).

Depending on the type of profession, whether artistic or techni-

cal, gestures can be characterized either by expressiveness and

variability or repeatability and precision. In both cases, this expertise

is obtained after a long period of accumulated experience and

extensive practice of gestures, whereas the expert plays an essential

role in motor skills transmission. Thus, “in‐person” transmission

and sensorimotor learning‐by‐doing are closely linked notions

that cannot really be dissociated. Consequently, a challenge that

needs addressing is the achievement of the necessary in‐person

transmission and learning‐by‐doing, even when the expert is not

present.

This paper aims to present a methodological approach and a

technological paradigm for enhancing autonomy in the learning of

the kinematic elements of motor skills through self‐training. Motion

capture, machine learning, gesture recognition technologies (GRT),

and augmented multimedia feedback constitute the key elements in

creating the digital metaphor of in‐person transmission. In this paper,

we call GRT the motion capture technologies and machine learning

algorithms and their use to recognize time series of gestural data.

The proof of concept is based on a series of experiments made in

the wheel‐throwing art of pottery.

2 | LITERATURE REVIEW

During the last century, psychologists and physiologists have stud-

ied the processes of motor skills learning and transfer. According

to Newell (Newell, 1991), they are generally distinguished from per-

ceptual, cognitive, communicative, and other skills categories. They

rely on sensorimotor intelligence permitting the motor control,

coordination, and action. This embodied intelligence is acquired

not through cognitive processes but through senses, experiences,

and consequent ambient reactions (Piaget, 1976). New mappings

between motor and sensory variables are created (Wolpert,

Diedrichsen, & Flanagan, 2011). When we try to obtain new motor

skills and kinematics, we must also be able to link this learning to

appropriate contextual cues such as objects, tasks, or environments.

Roger Schank (Schank, 1997), a cognitive psychologist and an artifi-

cial intelligence theorist explains that learning from failure com-

pletes the sensorimotor learning process and permits to achieve

this mapping. When a person receives feedback from his errored

performance in the end, his error can also lead him to the expected

correct result. The learner will thus continue trying by committing

errors until the feedback conducts him to the correct performance.

This idea is used for the development of the learning system pre-

sented below.

Before the transmission takes place, it is important to identify

knowledge perimeters, their characteristics, and the knowledge object

to be transmitted. This stage corresponds with the extraction of

know‐how. For many years, anthropologists, ethnologists, and experts

in manual/traditional professions have been creating multimedia con-

tent, such as photographs, videos, and audio recordings in order to be

able to study and transmit know‐how (Chevallier, 1991). Researchers

have studied expert gestures by analysing their parameters, such as

trajectory and acceleration through videos and visual representations

(Bril, 2011). In China, a digital archive has been created, presenting a

traditional method of weaving with bamboo (Wang et al., 2011). Sim-

ilar studies have been conducted in order to preserve rare dancing

techniques (Kim, 2011). In the project, ChoreoSave, an important

number of dances were video‐recorded and the choreography was

disseminated into smaller elements such as steps and figures. The

preservation of gestural skills has also been studied in a more indus-

trial context, in an electric energy production plant, where a video

camera was placed on the helmet of a worker to record his gestures.

These videos were used to create training material (Le Bellu & Le

Blanc, 2010). Nevertheless, preserving and transmitting know‐how

through the use of multimedia content has considerable limitations

due to the fact that (a) recordings of gestural information that are

two‐dimensional—because recording the video reduces the move-

ment to two dimensions and contains limited information about the

physical parameters and (b) pedagogical multimedia materials do not

permit the learner to interact with them, there is little in the way

of evaluation and guidance for the learner to be able to adjust move-

ments and eliminate his/her errors.

Motion capture technology, on the other hand, overcomes some

of these limitations because it provides precise information about the

biomechanical aspects of a gesture such as the positioning of body

joints and their rotation. At the same time, machine learning and

GRT may be used to offer a more interactive learning experience.

For example, in the artistic fields, a violin player0s performance was

captured with marker‐based computer vision (Rasamimanana &

Bevilacqua, 2009), an expensive and occlusion‐dependent technology.

In another instance, a much more accessible depth camera, Kinect,

was used to capture joint positions while performing dance move-

ments, by Raptis, Kirovski, and Hoppe (2011). Moreover, segment

rotations may be captured by inertial sensors, which generally provide

occlusion‐independent, robust data. Sensors such as the MotionPod

IGS‐180 of Movea, or Animazoo Synertial, are suitable because they

cover all the body segments with 18 sensors, or the upper body with

11 sensors. This type of sensor was used to capture, model and

recognize expert gestures in wheel‐throwing pottery (Manitsaris

et al., 2014); however, inertial sensors can be conceived as invasive,

and the quality of data they provide may be influenced by magnetic

disturbances.

The examples mentioned above refer mostly to the use of new

technologies for the preservation of know‐how. They have also

been used to assist learning in the arts or even in sports and

medical training. In the i‐Maestro project, which uses the system

proposed, the violin player0s movements are analysed and provide
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instructive optical feedback to help him/her to improve his tech-

nique (Ng et al., 2007). In speed skating on ice, sonic feedback is

given to the skater, assisting him in the correction of a regular error

observed in his performance (Godbout & Boyd, 2010). In the med-

ical field, the BirthSim simulation system has been proposed

(Herzig, Moreau, & Redarce, 2014). Its goal is to help obstetricians

and midwives to train and improve their skills during childbirth

delivery. Systems based on sensorimotor feedback have also been

developed for rehabilitation purposes, using optical indications

(Jégo, Paljic, & Fuchs, 2013) or continuous auditory feedback, for

learning in interactive systems (Boyer, 2015). In most existing

studies where feedback is used for learning purposes, the

reference gesture to be learned consists of simple trajectories or

is characterized by periodicity. The feedback thus provided is based

on the tracking of body joints. In the present case, the reference

gestures have precise kinematic features that are modelled with

the use of machine learning techniques and are compared in real

time with the learner0s actual gestures.

3 | RESEARCH PURPOSES AND QUESTIONS

The purpose of the research was to test a novel and highly interactive

embodied pedagogical system as a means to support self‐training and

transmit gestural know‐how. Its specific aims were to study whether

sensorimotor feedback can have a positive influence on the process

of learning motor skills. In order to achieve this goal and to provide

scientific evidence about our stated aims, three research hypotheses

are proposed:

Hypothesis 1. GRT contributes to the capturing and

modelling of kinematic aspects of expert technical

gestures.

In order to confirm this hypothesis, a number of experiments were

conducted in order to test whether the machine is able to recognize

expert gestures with high accuracy when a number of gestural data

sets are provided. After the extraction of the know‐how, it is necessary

to study the relations that are established between the expert and his/

her learner during the in‐person transmission, as well as the difficulties

the learner faces during self‐training.

Hypothesis 2. GRT can contribute to the evaluation of

the learner0s gestural performance during self‐training

without any sensorimotor feedback.

To confirm or refute this hypothesis, a number of metrics that

evaluate learning progress are defined, these being based on both

the spatial and temporal properties of the gestures. The experiments

were performed after in‐person transmission and without the pres-

ence of the expert.

Hypothesis 3. The sensorimotor feedback has a posi-

tive impact on self‐training.

To test this hypothesis, the metrics from H2 were used to evaluate

whether the gesture performances improved when sensorimotor feed-

back was given/offered.

4 | METHODOLOGY

The methodology used is based on five stages (Figure 1), which are as

follows:

1. defining the scenario and capturing the gestures;

2. gesture analysis and modelling;

3. study of the in‐person transmission and self‐training;

4. recognition and comparison; and, finally,

5. sensorimotor feedback.

The first two steps cover the extraction of (expert) know‐how and

permit the creation of the gesture models. Firstly, the aim was to

define the gesture vocabulary in collaboration with the expert, in order

to be able afterwards to record kinematic aspects of gestures using

motion capture technology. Then, the data were preprocessed and

normalized in order to be ready for use as input for our machine learn-

ing approach, which is based on hidden Markov models (HMM) and

dynamic time warping (DTW; Bevilacqua et al., 2009). The main instru-

ments for this step were semiconductive interviews for the definition

of the scenario and motion capture sensors for data acquisition.

In the second methodological step, the data preprocessed must be

modelled and analysed. As explained in Manitsaris, Glushkova,

Bevilacqua, and Moutarde (2014) and Glushkova and Manitsaris

(2015), for each gesture, a single sample was used to define a gesture

class. HMMs calculated in real‐time computation measures between

the models and the incoming data and defined the likelihood that the

hidden model would generate the incoming observation sequence.

The ability of the machine to recognize different gestures would con-

firm or refute the first hypothesis. This ability was evaluated using

the Jackknife method, and precision and recall metrics were also calcu-

lated. The modeled gestures constituted points of reference for the

learner because she or he would be asked to “perform” them. In order

for the machine to be able to continuously understand whether the

learner is performing the gesture correctly or not, one intra‐expert tol-

erance per gesture should be calculated. Reasonable tolerance/flexibil-

ity of the expert gesture should also be taken into consideration when

the models are used for human learning. The exact value of this toler-

ance is calculated by using several expert repetitions of the same ges-

ture. The goal here is to evaluate expert0s degree of repeatability and

to define the threshold, beyond which some parameters of the gesture

are considered as incorrect. For this, we use the average or maximum

of the standard deviation of 5 repetitions and use the result as an addi-

tional tolerance threshold for the learner0s executions. The instruments

used during this methodological steps were machine learning tech-

niques, such as HMM and DTW, and statistical analysis notions such

as standard deviation calculation.

The third step corresponds to (a) the study of expert–learner rela-

tion during the in‐person transmission (expert–learner), (b) definition of

the evaluation mechanism, and (c) the evaluation of the learner0s per-

formance after the in‐person transmission and during the self‐training,

without any assistance (learner alone). Step 3a provides input for the

design of the sensorimotor feedback because it must be based on

the natural interaction of the learner with his or her environment
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(Piaget, 1976). Through interviews and observations (instrument used

for this step), the natural interpersonal interaction is transformed into

a schema where the learner plays passive or active roles, uses his or

her senses and his or her perception. The evaluation mechanism, based

on the threshold defined before, is developed at this stage and used for

the evaluation of the learner0s performance. Learning difficulties and

errors are thus identified.

The fourth step in our methodology compares the expert0s gesture

model with the learner0s gesture performed in real time, using machine

learning techniques (HMM and DTW). It temporally aligns the two ges-

tures and permits the identification of the main differences. During the

alignment, the evaluation mechanism is activated: it checks whether

learner0s gesture0s parameters are within the threshold defined. This

comparison provides input for the mechanism of sensorimotor feed-

back activation for the assistance of the learner (learner–computer). In

this methodological step, HMMs are used to recognize the gesture

performed by the learner, because the gesture vocabulary may include

more than 1 gesture. And the DTW is used for the temporal alignment

of two time series (Manitsaris et al., 2014).

Finally, the aim of the last step was to define the sensorimotor

feedback that consists of optical and sonic indications, implicit, or

explicit that help the learner to adjust his deviations and errors. They

are designed on the basis of the conclusions from the study of the

in‐person transmission conducted through observation and interviews.

These indications are activated by the evaluation mechanism. In this

paper, we describe the results from the application of this methodol-

ogy in wheel‐throwing pottery.

5 | APPLICATION OF THE METHODOLOGY
IN WHEEL‐THROWING POTTERY

5.1 | Extraction of pottery gestural know‐how

In order to study if expert gestures in wheel‐throwing pottery can be

captured, analysed, and modelled we conducted an experiment with

the initial participation of two potters, as described in a previous paper

(Manitsaris et al., 2014). The scenario selected was the creation of a

simple bowl (18/23 cm diameter) and the gesture vocabulary defined

contained four or six gestures (G1 for the first gesture, etc.), depending

on the object size and the quantity of clay used. Each gesture has been

repeated and captured with inertial sensors 5 times. Consequently, the

raw data were normalized, and the appropriate descriptors were used.

One problem encountered is that inertial sensors provide informa-

tion about segment rotations expressed in angles that are difficult to

interpret in the learning process. For example, informing the learner

that his hand was lower than that of the expert0s at a precise moment

and differed by 32° cannot be easily assimilated from a pedagogical

point of view. For this reason, we completed the technological set‐up

used for the experiment by implementing the depth camera Kinect to

FIGURE 1 The global methodology for enhanced learning of gestural skills through gesture recognition technology [Colour figure can be viewed at
wileyonlinelibrary.com]
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provide joint positions in 3D space for nine articulations of the upper

body. The same four gestures, performed by a third potter, were thus

recorded with the camera. The difference, in comparison with the pre-

vious recordings, consisted of the fact that here, the gestures had been

performed virtually (Figure 2), with the wheel placed to the potter0s

left. This is a different wheel‐throwing technique that facilitates data

acquisition and permits the avoidance of occlusions; thus, the four ges-

tures performed are the same for all three potters.

5.2 | Learning wheel‐throwing pottery

5.2.1 | From in‐person transmission to self‐training with-
out assistance

After the identification of expert gesture models, we proceeded to the

observation of the in‐person transmission. The learning process starts

with the active role of the expert, who performs the gestures in real

conditions with clay, and the more passive role of the learner who

receives and interprets the visual information by observing the master

potter (the sense used is vision). In parallel, the learner tries to imitate

the presented four gestures virtually with the same rhythm and speed

as the master potter. Then the roles are reversed and the expert

observes the learner performing the gestures. She or she assists the

learner by providing him/her with oral and sometimes visual observa-

tions (the senses used are hearing and vision). Finally, the learner starts

performing the gesture in real conditions (Figure 3). The potter here

still uses oral instructions such as “… push the clay higher, press the

clay to centre it, close your hands to get a smaller object diameter”

and also physical contact, to guide the learner in case of errors (the

senses used are hearing and touch). During the in‐person transmission,

the learner is assisted and evaluated in real time by the potter.

After the in‐person transmission, the learner is invited to train by

himself or herself. In pottery, as well as in other manual arts and pro-

fessions, the gestural skills can be acquired only through practice and

experience. In this self‐training step, 11 learners at beginner levels par-

ticipated in our experiment (average age 26.2 years old; 10 right‐

handed and 1 left‐handed; 6 women and 5 men; high degree of famil-

iarity with technological devices such as PCs and smartphones but no

previous experience in using interactive learning systems). In order to

evaluate their performance, we used the same technological set‐up

that had been used for the capturing of Potter 3: Inertial sensors pro-

vided segment rotations, and the depth camera provided joint

positions.

5.2.2 | Learning wheel‐throwing pottery with the assis-
tance of sensorimotor feedback

On the basis of the observations from the study of in‐person transmis-

sion, expert instructions can be categorized depending on (a) their

function that is often linked to the moment they intervene and (b)

the learner senses they activate. Explicit instructions give a clear guid-

ing message (“… open your hands”), whereas implicit instructions

require interpretation by the learner.

The design of the feedback provided by the computer is based on

the expert instruction typology presented inTable 1 and on the princi-

ples of expert/learner relations which result from the observation of

in‐person transmission. We try to create metaphors between the nat-

ural potter–apprentice interaction and the learner/computer–human/

machine interaction. In our methodology, we focus on correction and

evaluation feedback because these have the greatest impact on the

learner0s execution of gestures and on the learner0s motivation. The

feedback provided focuses on the learner0s hand distance deviation

from that of the expert, as measured by the evaluation mechanism.

We use both implicit and explicit optical feedback to support the learn-

ing process. More precisely, the learner0s deviations are calculated and

visualized in real time, whereas the learner is performing the gesture.

The implicit visualization consists of curves/waves that vary depending

on the deviation value so that the greater the deviation, the longer the

FIGURE 2 Potter 3 performs the gestures virtually [Colour figure can
be viewed at wileyonlinelibrary.com]

TABLE 1 Expert instruction typology

Prevention Correction Evaluation

Acoustic Optical Acoustic Acoustic

Explicit Implicit Explicit

Implicit

FIGURE 3 Potter 3 adjusts the learner0s gestural position through
physical contact [Colour figure can be viewed at wileyonlinelibrary.

com]
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curve. The goal of the learner is to have a thin deviation line, equating

with zero. For example, when the wave concerning horizontal distance

deviation appears on the right, it means that the learner0s hand dis-

tance is greater than that tolerated and she or he must “close” their

hands to reduce the distance. This feedback is considered to be implicit

because it requires the learner0s interpretation of the curves. It does

not indicate the decision that has to be made in order to correct the

error. At the same time, more explicit optical instructions were imple-

mented, showing the general distance trajectories to be performed,

as we can see below in Figure 4.

The learner is also informed about the deviation through the use

of acoustic feedback. The sound of a bell is used to attract the learner0s

attention and to make the learning process more entertaining. Finally,

at the end of the gesture, evaluation feedback in also given to the

learner, to provide him/her with a global picture of his/her perfor-

mance, in order to reinforce his/her motivation. This takes the form

of a global score that is given to the learner based on his or her tempo-

ral success percentage (100% minus percentage of temporal failure).

6 | EVALUATION

6.1 | Results of gesture modelling

To validate the given hypotheses, the Jackknife cross validation

method was used. One repetition of each gesture trained the system,

and the others were used for recognition. This process is applied in a

circular way, until all the gestures to be used for training and recogni-

tion have been gathered. The basic idea behind the jackknife variance

estimator lies in systematically recomputing the statistic estimate, leav-

ing out one or more observations at a time from the sample set. To

evaluate the machine0s ability to recognize gestures, precision and

recall metrics were used (Abdi & Williams, 2010). Precision metrics

constitute the recognition rate that takes into consideration any

erroneous correspondence to a model, whereas the system of recall

metrics takes into consideration any missed recognitions.

Precision ¼ # of True Recognitions
#of True Recognitionsþ # of False Recognitions

Recall ¼ # of True Recognitions
#of True Recognitionsþ # of Missed Recognitions

As we can see from the high recognition accuracy, shown in

Table 2, the system is able to recognize different expert gestures and

confirms that the kinematic aspects of potters0 gestures can be cap-

tured and modeled. It also means that the models used for training

are sufficiently from each other and that the experts have a high level

of repeatability.

This repeatability had to be further evaluated in order to define

the tolerance threshold that was necessary from the pedagogical per-

spective; however, this threshold could not be concerned with all the

joints and articulations that could be captured with our equipment.

Thus, in order to identify the body parts that play the most important

role in the execution of pottery gestures, following the example of

Volioti, Manitsaris, and Manitsaris (2014), we applied a principal com-

ponent analysis to the dataset recorded with the camera in order to

reduce the data dimensions. In addition to the positions of nine articu-

lations on three axes, we used the variability of hand distance, because

the expert mentioned that it is an important parameter in learner eval-

uation. In Figure 5 below, the variables with the highest values on the

vertical axis are related to the effective pottery gestures that directly

influence object creation, whereas variables with values on the hori-

zontal axis belong to the accompanying secondary gestures. As we

can see from this analysis, the expert0s statement is confirmed because

FIGURE 4 The four indications used as explicit optical feedback [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Recognition accuracy

Precision (%) Recall (%)

Potter 1 (rotations of 11 segments) 100 100

Potter 2 (rotations of 11 segments) 96 97.5

Potter 3 (positions of 9 articulations) 93.5 93.7

FIGURE 5 The component plot of the principal component analysis
applied to pottery gestural data [Colour figure can be viewed at
wileyonlinelibrary.com]
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hand distance (DLHRHXYZ) appears to be the variable that constitutes

the principal component in the dataset.

After the identification of the most important gesture variables,

we could proceed to the evaluation of repeatability through the calcu-

lation of the distance standard deviation (SD) of the third potter. For

this, first of all, we needed to temporally align the five repetitions of

each gesture with the use of DTW technique (Manitsaris et al.,

2014). Then we calculated the SD for each time frame and each axis,

and we took the maximum value as the tolerance threshold (λ). After

the transformation of these values into centimetre, we can see the

threshold in the following table.

We can conclude from this Table 3 that, in general, Potter 3 has a

very high level of repeatability. In other words, this table shows that

while executing G2 twice, the potter may permit himself to have a dif-

ference of 1.02 cm on axis X. The Z axis has the most important devi-

ation from one repetition to the other, and this may be caused by the

potter moving his chair or changing his position in front of the camera.

Consequently, axis Z will not be used for the evaluation of the learning

process.

Thus, the application of the described methodological steps and

the evaluation results provide us with confirmation of the scientific

hypothesis that GRT can contribute to the capturing and modelling

of kinematic aspects of expert technical gestures. The high recognition

accuracy, achieved here, demonstrated the success of gesture

modelling and the statistical analysis (principal component analysis,

SD) permitted us to identify the important characteristics of this

precise gestural know‐how.

6.2 | Mechanism for learner evaluation

In order to understand the learner0s performances, the two parameters

that were evaluated were those of the learner0s (a) temporal deviation

and (b) spatial deviation. The first concerns the duration of the

learner0s gestures that should be as close as possible to that of the

expert. According to the expert, the learner should assimilate the

speed and rhythm of each gesture and the acceptable temporal devia-

tion is that of 5 s. In order to help the learner place his performance

within a temporal framework, we implemented a second counter. In

order to calculate learner0s spatial deviation, an evaluation mechanism

was proposed, which was based on machine learning. Because we

needed to compare the two gestures performed by different persons,

we needed to align their duration. Expert gestures are thus used one

by one for the training of gestural models, and the learner0s data is

used for recognition. For the calculation of learner0s deviations, we

use the tolerance threshold (λ) that is added to expert Euclidian hand

distance. Every time the learner0s hand distance (DL) on axis X or Y

exceeded the greatest tolerated expert distance (DE + λ) or was less

than the least tolerated distance (DE‐λ), his or her performance was

considered to deviate from the model.

if DLx< DEx−λð Þ then DLx− DEx−λð Þð Þ
if DLy< DEy−λð Þ then DLy− DEy−λð Þð Þ
if DLx< DEx þ λð Þ then DLx− DEx þ λð Þð Þ
if DLy< DEy þ λð Þ then DLy− DEy þ λð Þð Þ

Το calculate the total deviation of the gesture, instant deviations

were added, giving a final number of one per axis. In order to have a

clearer image of the deviation, in the analysis below, we calculated

the average value of these two deviations.

Moreover, for a comparative measure between expert and learner

gestures, we used recognition accuracy, which depended on their

degree of similarity. When the input data used for recognition pre-

sented high probabilities for correspondence with the reference ges-

tures, then the likelihood measure was high.

6.3 | Temporal deviation with and without computer
assistance

During the self‐training sessions, the learner tried to perform the ges-

tures according to the motor memories she or he acquired with the in‐

person transmission. The gesture duration was approximate. While

using our system, the learner received the information about expert

duration and his current duration and could adapt it. To evaluate tem-

poral progress, we compared the sum of the difference between the

average expert (DurEx) and learner duration (DurL).

∑
i¼11

i¼0
DurLi−DurΕxi
� �

Wecan conclude fromTable 4 that the sum of duration average dif-

ference between the expert and the learner was reduced for two of the

four gestures. In the case of G2 and G3, the indication of current and

desirable duration permitted the learners to approach the temporal

goal. IT also shows that the gesturewith the biggest deviation is G4. This

could be explained by the fact that these gestures contain an important

number of subgestures of great amplitude (taking a wire, removing the

object from the wheel etc.). The fast coordination of these substeps

requires experience and cannot be achieved at beginner0s level.

In addition, according to the expert, (a) the difference in average

duration between the learner and the expert per gesture should be

lower than 5 s and (b) the acceptable temporal deviation between

the different repetitions of the same gesture by the learner should

be 5 s or less. Table 5 presents the number of learners per gesture with

the average learner duration surpassing the expert duration by more

than 5 s, with and without feedback.

TABLE 3 Tolerance threshold (λ) in centimetre for each gesture

Χ Y Ζ

G1 1.7 cm 1.9 cm 3

G2 1.02 cm 1 cm 3.42

G3 1.47 cm 1.13 cm 2.8

G4 1.71 cm 1.6 cm 2.9

TABLE 4 The sum of duration average difference in second between
the expert and the learner for 4 gestures with and without feedback
assistance

G1 G2 G3 G4

Without feedback 54.5 31.94 36.01 90.78

With feedback 56 24.9 27.9 90.8
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Table 5 shows that the number of learners who have important

deviations from the expert0s average has been reduced for three of

the four estures. In the case of G4, two more learners0 averages devi-

ate from the acceptable temporal threshold, while using the feedback.

This is also linked to the particularities of this last gesture. It seems that

during the learning process, the articulation of the different substeps

of a gesture (G4) requires additional time.

The expert also states that it is important for the learner to have

temporal homogeneity while repeating the same gesture; however,

we can observe that several times the learner may perform the same

gesture with a very different duration (from 25 to 45 s or even 50 s

for the G2, etc.). Table 6 shows the number of learners per gesture

who have a standard deviation between the different repetitions of

the same gesture of greater than 5 s.

As we can see fromTable 6, with the use of sensorimotor feedback,

SD was reduced for three of the four gestures. In particular, for G1 and

G2, all the learners had a temporal deviation per gesture <5 s, which is

the desirable result according to the expert. We can thus conclude that

sensorimotor feedback, and, more precisely, the time counter, helped

learners reach a better perception of the desirable duration.

6.4 | Spatial deviation with and without computer
assistance

6.4.1 | Global performance and general deviation of four
gestures

If we evaluate the hand distances of the 11 pottery learners who partic-

ipated in our experiment and compare them with the results of self‐

training with and without computer assistance, we observe that, in

sum, the learners0 kinematic performance improved with the use of

sensorimotor feedback. According to the sum of learners0 deviations,

three of the four total gestures were improved. The interpretation of

visual and sonic feedback seems to have helped students to understand

the correct gesture trajectories. In contrast, as indicated inTable 7, the

performance of G4 improved for a minority of learners, which is due to

the different nature of this gesture, as explained previously.

6.5 | Gradual progress in the learner0s performance
through repetition and guidance from feedback

After the general confirmation of the contribution of feedback to the

learning process, we focused on its role in the learner0s gradual prog-

ress, from the first to the last repetition. For this, we calculated the

number of learners who had their best performances at the beginning

(first three repetitions) or at the end (last two) of the training process.

The best performances were those with the least spacial deviation of

hand distances in comparison to the expert model.

As can be seen fromTable 8, an important number of learners had

their best performance at the beginning of the training, with a regres-

sive tendency for the last repetitions. This could be due to different

degrees of attention, concentration, and fatigue between the first

and the last repetition. In contrast, the number of learners with their

best performances at the end of the training process increased for

three of the four gestures, with the use of sensorimotor feedback. This

seems to confirm the fact that (a) learners need time to assimilate the

sensorimotor feedback function and (b) it contributes to their concen-

tration and motivation, because they try to improve their performance

by the end of the training process.

To give more precise examples, we offer the performance evolu-

tion of two learners for G3. As can be seen in Figure 6, L1 has

regressed when performing without computer assistance, but this

tendency is reversed with the feedback. Here, only one repetition

(the 3rd) presents an important deviation. The same phenomenon is

observed for L3, who managed to improve his deviation, with one rep-

etition (the 2nd), following 15 cm of deviation. These numbers illus-

trate the fact that the learners needed to experiment with the

gestures and with computer assistance. They intentionally provoked

TABLE 5 Number of learners per gestures with DurLi−DurEx i
� �

>5 s

G1 G2 G3 G4

Without feedback 6 2 3 8

With feedback 4 1 2 10

TABLE 6 Number of learners per gesture with SD > 5 s

G1 G2 G3 G4

Without feedback 3 4 3 2

With feedback − − 1 2

TABLE 7 The average deviation on the X and Y axes in centimetre, for each learner, for four gestures, with (F) and without feedback (NO F)

G1 NO F G1 F G2 NO F G2 F G3 NO F G3 F G4 NO F G4 F

L1 97.15 79.59 51.49 64.82 29.71 26.78 107.92 92.11

L2 208.68 152.35 103.72 05.03 112.77 39.17 96.97 166.90

L3 185.88 49.71 09.54 02.41 17.34 23.20 192.34 100.01

L4 96.25 29.73 19.36 11.81 38.22 12.61 133.74 338.45

L5 59.55 55.45 28.86 08.56 133.38 34.13 53.09 227.67

L6 233.13 72.60 192.11 03.10 235.73 32.18 328.70 93.30

L7 82.82 35.43 78.69 03.22 24.55 03.13 181.98 491.83

L8 312.75 32.84 74.83 10.18 213.42 45.17 87.96 184.67

L9 122.80 94.89 69.93 25.75 30.41 21.04 92.44 135.90

L10 170.09 46.70 05.30 07.96 25.80 47.56 328.56 223.89

L11 134.53 98.72 05.99 13.14 65.65 30.03 258.89 103.54

Σ 1703.62 748.01 639.82 155.97 926.98 315.00 1862.58 2158.25
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kinematic errors in order to observe the system0s reaction, and they

needed a certain amount of time for adaptation in order to learn how

to interact with the machine.

6.6 | Evaluation of gesture recognition accuracy

At this stage, we can speculate that any improvement in the recogni-

tion accuracy of the learners0 gestures captured during the com-

puter‐assisted (feedback) self‐training sessions would seem to

demonstrate an improvement in performance. The machine0s greater

ability to recognize observations (learners0 gestures in G1, etc.) would

seem to indicate that they are closer to the models (expert gestures

—M1, etc.) used in training.

Table 9 below presents the results of learner gesture recognition

performed without feedback. Because each gesture was repeated and

captured 5 times with 11 learners, we have 55 instances of gesture

performance in our dataset. In Table 9, we can see the correspon-

dence of gesture error recognized and the model that has been

assigned by the system (e.g., G1–M2). The gesture with the lowest

recall is the third (17 repetitions have been assigned to M2). This

may be due to the fact that both G2 and G3 are performed within

the same spatial framework (wheel‐throwing diameter) without many

subgestures. The total precision and recall reached was 80%.

Interestingly, when we trained the hybrid machine learning system

with the same expert gestures, creating the same four models, but

learners0 gestures performed with feedback assistance were used for

recognition, we could observe better recognition accuracy. More pre-

cisely, G2 recall and M3 precision improved respectively from 67%

and 77% to 100%. This improvement could be linked with the better

spatial performance of gestures, as explained in the previous section.

Most importantly, total precision and recall increased by approximately

10%, reaching 90%.

The analysis of learners0 gestures, performed without feedback,

permitted the identification of temporal and spatial deviation in com-

parison to expert gestures. Motion capture, GRT and machine learning

techniques allowing the temporal alignment of two datasets, permitted

quantitative evaluation of learners0 gestures in wheel‐throwing pot-

tery, thus providing confirmation of the second hypothesis in this

TABLE 8 Number of learners with the best performances at the
beginning or end of the training process, with (F) and without (NO F)
feedback

G1 G2 G3 G4

First 3 repetitions NO F 4 5 9 8

Last 2 repetitions NO F 7 6 2 3

G1 G2 G3 G4

First 3 repetitions F 5 2 2 6

Last 2 repetitions F 6 9 9 5

FIGURE 6 Examples of average sum deviation on the X and Y axes for five repetitions by Learners 1 and 3, in centimetre [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 9 Precision (P), recall (R), and the total (TP, TR) of gestures
performed with feedback (left), and without (right)

M1 M2 M3 M4 R (%) TR (%)

G1 53 2 — – 91 80

G2 8 42 4 1 67

G3 — 17 35 3 65

G4 1 — — 54 98

P 81% 70% 77% 93%

TP 80%

M1 M2 M3 M4 R (%) TR (%)

G1 53 1 — 1 96 89

G2 — 55 — — 100

G3 — 18 37 — 67

G4 3 1 — 51 93

P 95% 72% 100% 98%

TP 91%
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research. The reduction in temporal and spatial deviation of gestures

performed with feedback assistance and the improvement of their

accuracy recognition, validates the third and final hypothesis that

sensorimotor feedback assists with self‐training and contributes to

improving learners0 performance.

6.7 | Qualitative evaluation of gestures learning and
system0s usability

In parallel with the quantitative evaluation of gestures learning, we

implemented a qualitative one, through questionnaires containing

open and semiconductive questions. The goal of the questions was

to collect learners0 global impressions about the system, the feedback,

and the whole learning process with and without the use of computer

assistance. To evaluate the different parameters such as fatigue and

interaction, we used a rating scale from 0 to 5, from a weak to a strong

degree of perception. The graphics of Figure 7 present the average rate

per question together with the standard deviation of 11 learners who

participated in the experiment. The results presented in the figure

correspond to questions: “How easy it was to adapt your gesture0s

duration to the one of the expert (with and without feedback)?;” “From

the 1st to the last repetition, how easy it was to perceive an improve-

ment of your performance (with and without feedback)?;” “How strong

was the fatigue /motivation you felt while repeating the gestures

(with and without feedback)?;” “How easy it was to perceive the

moment you were making an error and what error it was (with and

without feedback)?” According to them, when using our system with

the feedback, they feel less tired after the self‐trainings than without

it. Their motivation increased on average by 1 unit and passed from

moderate without feedback (3.2) to strong with feedback (4). Also

students seem to perceive positively the duration counter and confirm

that it helps to put their gestures in the desired time frame. Learner0s

perception of their gestures improvement through repetitions seems

to be more important with the use of feedback (from 2.6 to 4). From

one iteration to the other, students have the opportunity to compare

both their score and the feedback (How many times the sound was

activated?, How thick was the deviation line? etc.). This permits to

better follow the progress of learning. According to the questionnaire,

the feedback also reinforces a better perception of the moment

the learners are making an error and of what error do they make

(bigger or smaller hands distance).

7 | DISCUSSION AND CONCLUSION

In this paper, we presented a methodological framework for the

modelling and transmission of gestural skills. The system proposed,

based on machine learning techniques, appears to support self‐training

through the assistance it provides to the learner. It is able to calculate

the learner0s kinematic errors and provide feedback, in real time,

FIGURE 7 Qualitative evaluation results [Colour figure can be viewed at wileyonlinelibrary.com]
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guiding them and permitting them to adjust the gestures and overcome

errors. In contrast to the self‐training without computer assistance,

continuous evaluation makes the learning process more interactive

and thus reinforces the learner0s motivation. The design of the feed-

back and its activation mechanism was inspired by natural expert–

learner relations and interaction.

This study still presents some limitations because we focus

mostly on the kinematic aspects of wheel‐throwing pottery gestures,

whereas kinetics (pressure, force measurement, etc.) and finger

gestures are also important parameters to be evaluated. Collecting

and analysing finger gestures data constitute a real challenge because

it is not possible to use intrusive technologies and influence the

creation process. At the same time, the use of nonintrusive computer

vision techniques is also problematic because of occlusion issues; it

is difficult to extract the fingers from the scene, when they touch

the clay. The integration of kinetic gesture aspects and fingers

motion into our methodology is a priority for our current and future

research topics. The other limitation is linked to the fact that our

methodology has been evaluated with virtual gestures. It is important

to apply and evaluate it with gestures performed in real conditions

with the use of clay. However, as mentioned before the existing

noninvasive motion capture technology cannot presently provide

sufficient reliable data.

As we have seen in literature review, multimedia technologies are

traditionally used for the preservation and transmission of gestural

know‐how (Chevallier, 1991; Bril, 2011; Wang et al., 2011; Kim,

2011). Some projects make use of motion capture technologies to col-

lect a more complete gestural performance dataset (Rasamimanana &

Bevilacqua, 2009), (Raptis et al., 2011). As we have mentioned in the

literature review, multimedia technologies don0t provide any precise

information about the gestural performance, the recordings remain

two‐dimensional, whereas pedagogical contents based on multimedia

don0t permit the learner to actively interact with it. From the other

hand, studies conducted with motion capture technologies required

expensive or invasive equipment, and the feedback provided to the

learner is based on simple tracking of body joints.

The goal of our approach is to provide a system that would be

able to guide the learner in real time, whereas he is performing the

gesture. The added value of our framework is the fact that it is based

on low cost motion capture technology (Kinect camera) and that pre-

cise kinematic features are modelled with the use of machine learning

techniques that permit also to compare in real time the expert

gestural model and learner0s performance. Biomechanical aspects of

gestures are captured, modelled, and recognized, compared with the

reference gesture to make the system able to provide a feedback, a

guidance to the learner.
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ABSTRACT
We present a musical instrument, named the Embodied Mu-
sical Instrument (EMI) which allows musicians to perform
free gestures with the upper–body including hands and fingers
thanks to 3D vision sensors, arranged around the tabletop. 3D
interactive spaces delimit the boundaries in which the player
performs metaphorical gestures in order to play with sound
synthesis engines. A physical-based sound synthesis engine
and a sampler have been integrated in the system in order
to manipulate sound morphologies in the context of electro-
acoustic and electronic composition.
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Gesture data recording; Gesture Recognition; Physical-based
sound synthesis; Morphological transformations; Sound
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INTRODUCTION
Theorising the concept of sound objects in the Traité des ob-
jets Musicaux [1], Pierre Shaeffer initiated a form of electro-
acoustic music, called musique concrète, which suggests
the listener to identify the sounds individually and to value
their sound morphology equally as rules of melody, har-
mony, rhythm, metre, etc. By the means of new record-
ing and broadcasting technologies, Pierre Shaeffer made tape
collages of sound recordings and started exploring music
through textures of sounds. This approach encouraged com-
posers to make use of any sound materials they could get
a hand on. This idea followed closely the Futurists’ man-
ifest, the Art of Noise [2] which first put forward the use
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of machines sounds for compositional purposes and Edgar
Varèse who in 1914, was using ”the musical matter itself” in
his compositions. Later, with the birth of computer analysis
of sound spectrograms, theories of concret music evolved in
new musical trends such as spectral music and other musics
which focus on timbre as an important element of structure
or language. It is worth recalling that before these new per-
spectives raised in various forms, western music was focused
on pitch structures (harmony, modality), construction of mu-
sical forms (themes, motives), and rhythm (meter). Timbre
was simply used as a matter of colorisation of musical struc-
tures and considered in terms of orchestration. Furthermore,
electro-acoustic music composition can even be regarded as
painting or sculpture [3] where the artist works with shapes
and textures.

In 1913, the italian Futurist Luigi Russolo, wrote in The art of
noise: ’It will be through a fantastic association of the differ-
ent timbres and rhythms that the new orchestra will obtain the
most complex and novel emotions of sound’. In 1916, Russolo
reported police intervention to stop riots at his concert. In the
1950’s, Varèse’s piece Deserts, provoked bad reactions in the
audience because of its absence of theme and melodic struc-
tures. This facts shows that either the people were not ready
for new kinds of experimental sounds or that the music was
irritating. Truth is that in the 1930’s, composers had only the
crudest control over the sounds they were using. Noise music
was only at its beginning and artists did not have appropriate
tools for controlling it, creating a distance between the com-
poser and the musical manipulation. Varèse and Cage work
on percussion music was a natural step in the long process
of admitting unpitched sounds into music. It required several
generations until people could identify themselves to certain
kind of sounds. Nostalgia and melancholia for instance were
difficult to convey with these early electronic music, dissoci-
ating music to humans’ emotions.

In the mean time, the first electronic music instrument ap-
peared in 1928 with the world famous eponymous creation of
the russian inventor Leon Theremin. Interestingly, this inven-
tion, prior to the computer and motion sensors, was based on
air-gesture capture as its working principle. However, this
latter invention was mostly used to play a classical music
repertoire and was not integrated in electro-acoustic compo-
sitions at that time. Elektronische music resulted in the 50’s



in Cologne from the research of composers such as Stock-
hausen, Eimert, Beyer and Eppler’s on sound synthesis. It
was a radically different approach to the concret music since
the music and sounds were entirely produced by electronic
means. For Eimert, sound synthesis was a real musical con-
trol of nature based on the use of sine tones as the fundamen-
tal of the art. The main interest of electronic sound synthesis
was a desire to control over every aspects of musical compo-
sitions. But if this technique changed entirely the course of
music, it temporarily lead to total determinism and formalism
in the compositional approach.

As mentioned before, one of the main problem in electro-
acoustic and electronic music is the distance between com-
posers and the composing medium, which later became the
computer and the interface. As Pierre Shaeffer wrote: ’The
lack of intentional control over musical affect, together with
the fact that compositions emanating from such a wide range
of compositional aesthetics all produced the same impres-
sions, implicate the common rudimentary sound manipula-
tion technologies’. This inadequacy for sound manipulation
prevents the spontaneity and the emotional intention of the
musician. Later in the 80’s, improvements over computers
CPU capacities allowed for real time control of sound synthe-
sis. This way, the composer had access to a very wide range
of sounds and could trigger them spontaneously with the help
of keyboards, cursors, mixing desks, buttons and track pads.
As Emmerson [4] pointed out, ’ In the 1980s, two types of
computer composition emerged from the studio to the per-
formance space, one more interested in event processing, the
other in signal processing’.

Joel Ryan from the Steim Institute in Amsterdam wrote: In
order to narrow this relationship between technology and mu-
sicians, it is as much the problem in collaboration to get tech-
nologists to respect the thinking of the artists as it is to edu-
cate the artists in the methods of the technology [5]. Signal
processing as it is taught to engineers is guided by such goals
as optimum linearity, low distortion, and noise. This goals
may not be in accordance with musicians wishes. The temp-
tation of programmers is to concentrate on the machine logic
rather than the idea of the artist. New suggestions of sound
techniques that fit musical expressivity are needed. Several
research groups such as the IRCAM in Paris, the STEIM
in Amsterdam, the CCRMA in Stanford, and the MTG of
Pompei Fabra-Barcelona to name a few, have started to focus
on system designs easing interactive manipulation of sounds.
This includes thinking about intuitive interfaces, gestural con-
trollers, communications protocols, network designs and an
understanding of how they can all be interconnected.

STATE OF THE ART
In the past few years, non-intrusive movement and gesture
analysis have been integrated in consumer electronics thanks
to the progress made in 3D cameras technology and computer
vision algorithms. Computer vision is a branch of computer
science interested in acquiring, processing, analysing, and
understanding data from images sequences. Non-intrusive
gesture tracking systems are ideal for musical performances
since they allow freedom in body expression, are not intru-

sive and are easy to calibrate. Therefore, a musical interface
– or instrument – which draws gestural data from vision sen-
sors, feels natural from the user’s experience point of view,
provided that gesture to sound mapping is intuitive and has a
low latency response.

Performing arts have embraced this type of technology from
its very beginning, seeing in it an extraordinary springboard
for creation of new exciting interactions, highlighting the per-
former’s body and gestures. Starting from 1982 with David
Rokeby’ series of performances with Very Nervous System1,
a new area of embodied interaction making use of cameras
and computer vision algorithms was born. A global vision on
this scene reveals that the Kinect and the Leap Motion, have
already been popular choices among musicians and sound
artists for live performances.

Recent advances based on the Leap Motion show its abili-
ties to control high-level music control thanks to a 3D touch-
like gesture. GECO is a Leap Motion app (available on the
Leap Motion’ market space AirSpace) which allows to con-
trol MIDI, OSC or CopperLan protocols with a simple 3D-
gesture vocabulary. Han and Gold [6] use the Leap Motion to
create an air-key piano and an air-pad machine drum while
making use of the third dimension to control the sound inten-
sity via the hand’ velocity computation. The BigBang rubette
[7] module uses the Leap Motion to control notes, oscillators,
modulators or higher level transformations of sounds and/or
musical structures. Alessandro et al. [8] and Silva et al. [9]
combined respectively a Leap Motion and transparent sheet
of PVC [8] and glass [9] in order to grasp finger movements
occurring prior to the touch with the sheet. It is worth notic-
ing that this last example somehow meets with multi-touch
tablets and tabletops since the paradigm is based on a finger-
screen contact.

Nowadays, multi-touch screens and Omni-Touch wearable
interfaces [10] offer tangible interactions that are restricted
to a flat surface with finger tapping, scroll, flick, pinch-to-
zoom etc. (refer to [11] for extended reference guide of touch
gestures). The ReacTable [12] has launched a multi-player
tangible interaction of a unprecedented kind with real objects
communicating on a multi-touch tabletop. The ReacTable’
objects display images that are recognized by an infra–red
camera, sending information about the type of sound to be
generated to the system. It is striking how this approach falls
in with the concept of sketches and shapes of sonic objects
described in Schaeffer’s typology [1]. A similar work by
Thoresen [13] introduced a set of graphical symbols apt for
transcribing electro–acoustic music in a concise score, sim-
plifying the sometimes overwhelming complexity of Shaef-
fer’ Typo–Morphology.

In the same vein, the use of extra objects such as digital pen in
the music production app on Microsoft Surface tablet2 gives
very interesting and intuitive ways for achieving high-level
sound control parameters such as drawing amplitude and fil-
ter envelopes. This smart tabletop, along with the ReacTable

1www.davidrokeby.com/vns.html
2http://surfaceproaudio.com/



discussed above, belong to the first generation of devices and
instruments to allow embodiment and intuitive manipulation
of sound objects.

In line with these latter examples, our instrument, that we are
discussing in this article, is an interactive tabletop for play-
ing music in 3D space where the upper–body and fingers’
free–movements in mid-air extend the action of the fingers’
physical contacts with the table. While Microsoft Research
has developed similar technologies and set-ups for grabbing
and manipulating 3D virtual objects on and above a tabletop
surface with finger gestures ([14] and [15]), the EMI pushes
ahead sound mapping strategies in the 3rd dimension. Ad-
ditionally, the EMI is in line with extended piano-keyboard
devices such as the Seaboard by Roli3 and the TouchKeys4

by Andrew McPherson, but brings the extended interaction to
mid-air with both fingers and upper-body gestures thanks to
3D vision sensors such as the Leap Motions and the Kinect.

We start by describing the structural aspect of our instrument,
the sensors that are used and the concepts of micro and macro
bounding boxes articulated around the framework. The Sec-
tion Musical embodiment on a tabletop instrument depicts the
metaphors used while designing the interactions with the sys-
tem. A variety of sound synthesis controls are presented in the
section Sound morphologies manipulation, showing the mu-
sical capacity of our instrument to control sound morpholo-
gies. The section Latency assessment of the EMI presents a
first latency assessment of the system. Then we conclude and
give a view of our further works.

DESIGNING A FRAMEWORK

Structure of the instrument
The whole instrument is articulated around an acrylic sheet,
which serves as a frame of reference for the fingers. The
acrylic sheet is placed 10mm above two Leap Motions,
where the sensors’ field of view covers the area best and
underneath a Kinect placed 1.20mm in front (see figure 1 and
2). The cameras are described later in this section. The sheet
also constitutes a threshold of detection for the fingers: one
triggers the sound by fingering the tables surface. Gestural
interaction is not limited to this surface, but takes part inside
a volume above the table. The tracking space serves as a
bounding box, delimiting the sensors’ field of view in which
the data are robust and normalized.

The boundary engendered by the table’s surface eases the
repetition of a type of gesture. This conclusion raised
from the difficulties of gesture repetition observed in air-
instruments, where the movement is done in an environment
with no tangible frame of reference. In this regard, it is a
profitable constraint to add this surface since it enables the
user to intuitively place his/her hands at the right place and
helps repeating similar gestures.

3https://www.roli.com/products/seaboard-grand
4http://www.eecs.qmul.ac.uk/ andrewm/touchkeys.html

As the Embodied Musical Instrument is to be used for both
performances and learning contexts, it is portable, light, solid
and foldable. We have conducted experiments, changing the
tilt of the sheet to meet with the literature results concerning
the wrist and shoulder posture during touch-screen tablet use
[18]. However, movements with the EMI being wide and dy-
namic, wrist radial deviation was not constant enough to take
into consideration optimal tilt angles for specific applications.
At last, the sheet supports the arms and allow the user to rest,
thus avoiding the gorilla arm effect which results in a fatigue
while repeating gestures in the air [19].

Vision-based 3D sensors
We present here two types of vision-based sensors, which
are used in our research. As this technological field is
growing fast, we could not explore all the existing sensors
possibilities; however, the sensors we have chosen are well
documented, largely spread, low cost and fit our require-
ments. The first type of sensor is the Microsoft Kinect depth
camera. The first version of the Kinect, along with the
OpenNI skeleton tracking software delivers a fairly accurate
tracking of the head, shoulders, elbows and the hands, but
not fingers. It has a 43� vertical field of view, 57� lateral field
of view and a ranging limit varying from 0.8 to 3.5 m. Its
latency, around 100 ms and its spatial resolution (640x480
pixels) is unpractical for fast and thin gestures at close range
(e.g. < 0.50 m). As J.Ballester and C.Pheatt concluded
[16], the object size and speed requirements need to be
carefully considered when designing an experiment with it.
Hence, we will use the Kinect for suitable uses, aware of
its limitations and capacities. Typically, the Kinect works
sufficiently well between 1.40 and 3m for body tracking,
with a 1cm spatial resolution at a 2m distance from an object.
Furthermore, latency considerations lead us to use it for
higher-level musical structures occurring in the macro space,
where temporality is chosen to be loose.

Regarding the small and rapid finger gestures, we are inter-
ested in a second type of depth camera, the Leap Motion. This
camera works with two monochromatic cameras and three in-
frared LEDs. Thanks to inverse kinematics, it provides an ac-
curate 3D tracking of the hand skeleton, with more than 20
joints positions and velocities per hand. The Leap Motion
has a lateral field of view of 150�, a vertical field of view
of 120�. Its effective range extends from approximately 25
to 600mm above the camera center (the camera is oriented
upwards). Additionally, the Leap Motion is known for be-
ing accurate and fast: processing time for each frame is close
to 1ms, which is well below the acceptable upper bound on
the computer’s audible reaction to gesture fixed by [17] at 10
ms. Although additional latency will be added further with
the gesture to sound mapping, the initial latency provides us
with a viable starting point.

Micro and Macro bounding boxes
Igor Stravinsky (1970): The more constraints one imposes,
the more one frees one’s self... the arbitrariness of the
constraint serves only to obtain precision of execution.



We present here the design of the instrument through the
3D interactive spaces it creates. As presented before, there
are three sensors: two Leap motions and one Kinect. Once
placed on their slots on the EMI, the Leap Motions’ field of
view cover the whole surface of the table and a volume up
to 30 cm above it. We designate this volume as the micro
bounding box (figure 1). The Leap motions are centered in
the halved parts of the surface while the Kinect is placed in
front and above the table as displayed as displayed on figure
2. The position of the Kinect is roughly 1 – 1.20m behind the
table and stands roughly 1m above the table. There is no need
to place it with great precision as the system auto–calibrates
the skeleton with respect to the sensors’ field of view each
time the software is launched.

The perspective behind the splitting of the two bounding
boxes is to differentiate macro gestures done with the upper
body with meso/micro gestures done with the fingers. Hence
the macro space deals with the wide movements captured
with the Kinect while the micro space deals with finer-grain
manipulation captured with the Leap motions. Inspired by
Jensenius’ terminology [20], we use a unified space for both
micro gestures happening at a millimeter scale with meso
sound–producing gestures happening at a centimeter scale.

Figure 1. Micro bounding box.

MUSICAL EMBODIMENT ON A TABLETOP INSTRUMENT
One of the objective of the Embodied Musical Instrument is
to give, through movement, meaning to the sounds thus cre-
ated. If gestural electronic music performance is technically
rendered possible thanks to 3D tracking devices, the coupling
of perception and action, however, requires reflections on ex-
pressive use of affordance based on practice [21]. The EMI
is a framework for gesture tracking and recognition, with its
own metaphors and control mappings, unified within an em-
bodied model reducing the cognitive distance between the
imaginary imagery of electro-acoustic composers.

Godøy [22] distinguishes among music imageries images of
acoustic signals, images associated with the performance, im-
ages associated with the perception and images associated

Figure 2. Macro bounding box.

with the emotive experience. He tackles the problem of un-
derstanding the nature of these sound images in our mind
by drawing sketches of gestural and sonic features in a top-
down manner, tracing features and sub-features of sound-
morphologies and correlating them with acoustic features of
sound objects. We went through a similar thought process,
breaking down gestural features in effective, accompanist
and symbolic gestures (based on Delalande’ gestural typol-
ogy [23]) to some lower-level gestural features enabling very
specific sound controls over the articulation, intensity, after-
touch and so on. Hence, the interactive space created above
the instrument can be seen as a shared gestural space includ-
ing the effective, accompanist and symbolic gestures. In that
respect, the EMI inspires an environment analogous to what
Tanaka [21] and Graham[24] designate as a performance ges-
ture ecology. Basically, we aim with the EMI at capturing the
three categories of gestures discussed above and make use of
them altogether in order to generate very expressive sounds.

The proposed metaphorical gestures we use are borrowed
from keyboard instruments, touch gesture paradigms de-
veloped for touchscreen devices [11] and other physically-
inspired manipulation metaphors such as an elastic cable, a
wheel or a kite. The object metaphor connects to the affor-
dance of a simple object in the mind of the user and thus,
leads intuitively to the gesture to be done. We make the same
assumption that the simpler the metaphor is, the more intu-
itive and expressive the result will be. Wessel et al. [25] simi-
larly make this assumption as one of the necessary conditions
to get an ’intimate musical control of computers’. The other
conditions being its long term potential for virtuosity, that we
believe the EMI also meets with, the clarity of strategies for
programming the relationship between gesture & musical re-
sults and finally a low latency response of the system.

At last, Young [26] presented how features in electro-acoustic
works can be discussed through aural perception of the sound
objects in association with an analytical focus based on a
common understanding of the way a sound behavioral model
operates. This analytical focus is however not always obvious
to non initiated listeners and does not solicit the visual un-



derstandings of how things work and are produced. Physical
embodiment of music performance, if realistic enough, would
convey this additional information, necessary for the specta-
tor to understand the origin of the sounds and reduce the emo-
tional distance between the synthetic sounds and him/herself.

Metaphors in the micro bounding box
First, we were interested in building a model for dynamics, ar-
ticulation and duration, inherent in the fingering. This led us
to the decomposition of the fingering in several phases so as
to extract information about the trajectory and the duration of
each part. This representation is based on four phases: Rest,
Preparation, Attack and Sustain, inspired by a more general
gesture segmentation model (Preparation, Attack, Sustain,
Release) [27]. Segmenting the fingering into essential phases
facilitates the distinction of features for each phase (figure 3).
In rest position, the hand and fingertips are relaxed on the ta-
ble. In preparation, one or several fingers lift upwards. In
attack, one or several fingers tap downwards while during a
sustain phase, one or several fingertips stay at contact with the
surface of the table. At last, the velocity of the fingertip along
the z-axis in the few milliseconds prior to its contact with the
table during an attack phase is mapped to sound intensity. It
is worthy of note that this segmentation, which is articulated
around the z-axis is only made possible thanks to the depth
finger tracking of the Leap motion.

Figure 3. Rest Preparation Attack Sustain segmentation

The EMI makes use of a piano keyboard-paradigm that can
be played with the fingers in the micro–bounding box (figure
4). The key idea here is to cover a range of notes, without the
need to be extremely precise at fingering on the table since the
latter is completely flat and transparent. Therefore, the zone
(either blue, red or green) corresponds to a set of fives notes
(e.g.: EFGAB), where each note corresponds to one finger
(see colored areas on figure).

Figure 4. The keyboard paradigm.

We extend the mapping of fingertip positions on the x-axis of
the table to the y-axis and attribute this dimension to the tim-
bre space. Hence, the timbre/texture of the sound can be mod-
ified continuously by fingering at different locations along the
y-axis of the table while keeping the pitch fingering system
depicted above. Figure 5 depicts the top-view or avatar of a
musician moving arms and hands in the pitch-timbre space.

Figure 5. Pitch-timbre space.

Metaphors in the macro bounding box
From the hands’ joints provided by the Kinect, we compute
the three–dimensional euclidean distance between them and
name this feature elastic control. The metaphor for lengthen-
ing/shortening the 3D euclidean between hands is to imagine
that one is stretching/releasing an elastic cable. This gestural
metaphor is depicted in figure 6 with the red arrow.

From the three joints Head – Left Hand – Right Hand, that
we consider as apexes of a triangle, a plane equation is com-
puted. Then, we respectively measure the tilt between this
plane and the xy plane and xz plane of the table. The xy vs.
triangle plane provides a sense of how much left or right your
body is rotating, just as if one was pulling the wires of a kite
or turning a wheel. Keeping on with the kite–flying metaphor,
the xz vs. triangle plane reacts accordingly if the body is go-
ing backward or forward and/or the hands are going higher or
lower. These two controls are represented on figure 7 respec-
tively with the red arrow and the yellow arrow.

Figure 6. Elastic control: metaphor for lengthening/shortening the 3D
euclidean between hands

SOUND MORPHOLOGIES MANIPULATION
In the context of a gesture-based instrument, a necessity for
sound morphologies exploration is a repeatable gesture. For
this matter, we use the mubu library [28] developed by the
STMS team at IRCAM Sound. The mubu library, integrated
into the programming language Max, embeds a movement
description multi-buffer able to record gestural content in



Figure 7. Kite-flying control: The xy vs. triangle plane provides a sense
of how much left or right your body is rotating while the xz vs. trian-
gle plane reacts accordingly if the body is going backward or forward
and/or the hands are going higher or lower

real-time. This buffer can also be replayed, enabling to vi-
sualize the gestural data. Combined with the visual program-
ming tool Jitter for Max, it is possible to replay the avatar of
the musicians’ hands and upper body. This way, one can syn-
thesize a sound in real time with the produced gesture or re-
play a recorded gesture, at different speeds, forward or back-
ward, and change the sound synthesis parameters in real time.

We discuss here how the timbre dimension is explored thanks
to a physical-based sound synthesis engine named Blotar. It
is a physical modeling synthesizer that is part of PeRColate,
an open-source distribution containing a set of synthesis and
signal processing algorithms for Max [29] based off the Syn-
thesis Toolkit [30]. Physical-based sound synthesis makes
sense for well articulated sounds, which we trigger when the
fingers tap onto the table’s surface. By changing in turn a
mass, a spring or a damper parameter of the Blotar, one can
oscillate between a flute and an electric guitar timbre. In our
system, the brilliance parameters are mapped with the y-axis
of the table’s frame of reference. Hence, one can obtain bril-
liant sounds when the fingers tap close to the edge of the
table and rounder sounds when the finger taps in the mid-
dle. Finally, the velocity of fingertips when it hits the table
is mapped with the attack intensity of the sound taking into
account the non-linearities occurring in such events.

Additionally, we have added a virtual piano plug-in [31] sim-
ulating physical properties and behaviors of real acoustic pi-
anos. The EMI gesture paradigms being very much inspired
by piano-like gestures, this plug-in incorporates well and de-
spite the absence of the spring-keys haptic feedback, pro-
vides an intuitive and realistic sensation of piano playing. Fi-
nally, we have added an amplitude-convolution functionality
to modify the amplitude of the Blotar sounds with the piano
plug-in. Hence, one can use the attack and amplitude enve-
lope of piano sounds with the spectral content, transients and
effects of the Blotar.

Applying a new morphological frame to various spectral con-
tents, one can reveal and enlarge some aspects such as the

transients of the sounds and the sustain phase. For instance,
one can imagine a noisy voice with the morphological shape
of a bouncing ball or a percussive pitched sound such a vibra-
phone with long controllable sustain. These enables the com-
poser to select what s/he might be interested in the sound: the
shape or the content. Additionally, such physical-based and
cross-synthesis techniques, already spread among composers
through tools uch as Modalys [32] (IRCAM) could be han-
dled with the EMI.

LATENCY ASSESSMENT OF THE EMI
As we are interested in evaluating the latency of the system,
we are looking for the time difference between the moment
when one taps onto the table and when the synthesized sound
is coming out from the speakers. Therefore the experimental
protocol is as follows: a microphone is plugged into a sec-
ond computer, placed near by the instrument and the speak-
ers. When the player taps on the table in order to produce a
sound, the microphone picks up two signals: one is the sig-
nal produced by the physical tapping of the fingertip and the
other is the synthesized sound coming from the speakers (as
can be seen on figure 8). The distance between the respec-
tive attacks of the tapping sound and the synthesized sound is
measured with a precision of ±2ms, as can bee seen on 9.

Figure 8. Recording displaying the acoustic signal of the finger tapping
the acrylic sheet preceding the acoustic signal of the resulting synthe-
sized sound

Figure 9. The blue highlighted segment corresponds to the length be-
tween the two attacks, corresponding to the latency of the system

We have recorded two sets of gestures in order to evaluate the
performance of the system when one single note is repeated
several times and when a sequence of notes such as an arpeg-
gio is played. The two sets (1) and (2) are the following:

1. Single note repetition with index fingertip – 10 times

2. Arpeggio (thumb-middle-index-index) – 4 times

These two sets of gestures are repeated at various beat-per-
minute (BPMs) ranging from Lento (60 bpm) to Allegro (130
bpm) and above. For each series of recording, we compute
the average latency in millisecond. Additionally, we compute



the beat shift which corresponds to unitary shift of each beat
or note (eq. 1). The results are displayed on the table 1.

beat shift = average latency ⇤ (bpm/60) (1)

For instance, a beat shift equal to 0 would be a perfect tem-
poral alignment displaying no latency at all in the system. A
0.5 beat shift musically corresponds to an off-beat and a beat
shift greater than 1 occurs when the synthesized sound one
hears is produced by the second previous finger tapping.

Single Note Arpeggio

Tempo Avg (ms) Beat Shift Avg (ms) Beat Shift

60 bpm 154 0.15 167 0.17
70 bpm 174 0.2 184 0.21
90 bpm 230 0.34 232 0.34

110 bpm 245 0.45 273 0.5
120 bpm 304 0.6 314 0.62
130 bpm 301 0.65 345 0.74
140 bpm 369 0.86 364 0.84
160 bpm 463 1.18 419 1.12

Table 1. Average latencies and beat shifts at various BPM’s for sets of
gestures 1 and 2

From this table, we can see one trend: the average latency in-
creases linearly as the BPM increases. A second observation
is that the average latency is slightly greater (about 10ms) for
the arpeggio than for the single note repetition.

These results are well above what is considered as acceptable
for the computer’s audible reaction to gesture fixed at 10 mil-
liseconds (ms) by [17]. The Leap motion processing time per
frame being 1 ms, this high audio output latency can only be
explained by the typical processing scheduling delays of Max
and the limit of our current OS configuration (Mid 2012 Mac-
Book Pro Yosemite, 2.3 GHz INtel Cored i7 with 8 GB 1000
MHz DDR3 RAM). Still, it would be possible to improve
the latency problem with this configuration by modifying ad-
vanced scheduling parameters in Max, such as increasing the
Poll throttle, which sets the number of events processed per
servicing of the MIDI scheduler and decreasing accordingly
the Queue Throttle which sets the number of events processed
per servicing of low-priority event queue such as graphical
operations, interface events and reading files from disk. At
last, it is possible to decrease the signal vector size and the
sampling rate of the sound synthesis, even though this would
deteriorate the overall sound quality. Further experiments
will aim at finding an optimal compromise with these param-
eters in order to lower the latency.

CONCLUSION
In electro-acoustic music, the composer has the desire to ma-
nipulate sounds in multiple dimensions and to transform, iso-
late, and remix both natural and digitally created sound ob-
jects over time. One aim of the EMI is to reduce the cognitive
distance between the imaginary imagery of electro-acoustic
composers and the explicitly producing gestures. Embod-
iment seems necessary in electro-acoustic as it is intrinsic

to traditional acoustical instruments and to most people ap-
proach to music. Computer music has allowed composers
to use all sorts of sounds but the mechanism to produce or
trigger them often do not incorporate an adequate physical
movement. Realism needs a human form to physically ac-
tivate processes and to avoid robotic and impenetrable per-
formances. Novel interfaces for musical expression, such as
the instrument described here, can significantly change mu-
sicians and audiences’ perspectives on electronic-based mu-
sic, putting forward embodied expressions through virtuoso
gestures. To our knowledge, the EMI is the first musical in-
strument based on gesture recognition via 3D vision sensors
to put forward finger expert gestures while engaging the up-
per body in the performance. Its ease of use is also combined
with a great potential for virtuosity. The mapping strategies
show transparent relationships between gestures and musical
results. The latency is currently the main issue we need to
solve in order to get what Wessel and Wright designate as an
intimate musical control.
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ABSTRACT 

There is a growing interest in ‘unlocking’ the motor skills of expert 
musicians. Motivated by this need, the main objective of this paper is 
to present a new way of modeling expressive gesture variations in 

musical performance. For this purpose, the 3D gesture recognition 
engine ‘x2Gesture’ (eXpert eXpressive Gesture) has been developed, 
inspired by the Gesture Variation Follower, which is initially designed 
and developed at IRCAM in Paris and then extended at Goldsmiths 
College in London. x2Gesture supports both learning of musical 
gestures and live performing, through gesture sonification, as a unified 
user experience. The deeper understanding of the expressive gestural 
variations permits to define the confidence bounds of the expert’s 

gestures, which are used during the decoding phase of the recognition. 
The first experiments show promising results in terms of recognition 
accuracy and temporal alignment between template and performed 
gesture, which leads to a better fluidity and immediacy and thus 
gesture sonification.  
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1. INTRODUCTION 
Gesture constitutes a component of human expression. It can 
also be characterized as a self-contained part of music. A musical 
performance is a sequence of expressive gestures that 
encapsulate both theoretical knowledge and practical motor 
skills. Each musical performance is unique due to expressivity, 

since for a given musical excerpt, interpretations can vary 
greatly, depending on the performer or even on expression that 
the performer has each time s/he plays the same piece [11]. 

Recently, research on the capturing and recognition of musical 
gestures has become very appealing. Many researchers and 
musicians have developed interfaces that use machine learning 
algorithms and aim at recognizing not only the cinematic aspects 
of the gesture [4][17], but also measurable parameters about 
expressivity [12]. From a machine learning point of view, there 
is usually an important compromise to make between a fast, or a 

rich training of the model. There are musical interfaces that are 
based on one-shot learning [4][12][17], in which the system 
requires only one training example instead of large data sets; 
thus, the training time is greatly reduced but significant limits are 
put on the modeling of expressive variations of the same gesture. 
Thus, the modeled information is less rich than when using large 
data sets. Moreover, within a sensory-motor learning context, it 
is important to identify precisely the tolerance between the 

executions of an expert performer in order to provide meaningful 
feedback to the learner. Therefore, the mathematical description 
of how an expressive gesture is being performed, along with the 
modeling of its variations are becoming crucial research topics.  

Our approach is based on the concept that expressiveness is an 
intended gestural variation, which should be taken into account 
when modeling the gesture. In one of our previous work, 
Manitsaris et al. [22] has proposed a way to model offline 
gestural know-how in craftsmanship. As an extension of this 

work, we propose x2Gesture, which aims at recognizing musical 
expert gestures in real-time taking also into account the 
expressive variations. This is accomplished by implementing a) 
the existing work which models expert motor skills, and b) 
machine learning algorithms for real-time expert gesture 
recognition. Finally, our proposed methodology can support a 
unified user experience for both learning of expert musical 
gestures and performing musical gestures. 

 This paper is structured as follows: firstly, we review the state 
of the art (SoA) concerning machine learning algorithms that are 
used for gesture recognition (Section 2). Then our 
methodological approach (Section 3) and its implementation in 
two case studies (Section 4) are described. Finally, we conclude 
with our first evaluation results (Section 5).  

2. RELATED WORK 

2.1 Expert musical gestures 
Firstly, we shall define some terms, which are key to our 
methodological approach. The term ‘musical gestures’ lies in the 

intersection between observable actions and mental 
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representations [13]. A good definition of this, taken from Hatten 
(2003) is [19]: ‘musical gesture is biologically and culturally 
grounded in communicative human movement. Gesture draws 
upon the close interaction (and inter-modality) of a range of 
human perceptual and motor systems to synthesize the energetic 

shaping of motion through time into significant events with 
unique expressive force’. 
 When we refer to expressive gesture, what do we mean? 
According to [6], ‘expressiveness is conveyed by a set of 
temporal and spatial characteristics that operate more or less 
independent from the denotative meanings of those gestures’. 
The notion of expressivity measures how the expert gesture is 
performed. Hence, how an expressive gesture is performed is 

equally as important as what/which expressive gesture is 
performed [18].   
 By using the term ‘expert gestures’, we mean that performers 
have mastered their gestural skills. For example, they are those 
gestures that require years of training and practice before 
performers are able to perform them. Although this kind of 
expert has acquired high-level motor skills, expressive variations 
may occur between the different musical interpretations, even 

unconsciously. In order to control and measure expressive 
variations, some researchers use the ‘neutral performance’ as a 
reference [7], which is the performance played without any 
specific expressive intention. Alternatively, the mean of all the 
performances was taken as a reference [23].  

2.2 Machine learning algorithms  
Machine learning algorithms, such as those based on Hidden 
Markov Models (HMMs) [20], Dynamic Time Warping (DTW) 
[1], Hierarchical Hidden Markov Models (H-HMMs) [15], 
Sequential Monte Carlo technique [12] etc., are widely used for 
gesture recognition systems for continuous interaction. [2][3][4] 
successively developed a system based on a hybrid model 
between HMMs and DTW, called Gesture Follower (GF), for 
both continuous gesture recognition and following, between the 

template or reference gesture, and the incoming or performed 
gesture (template-based method). It can learn a gesture from a 
single example (one-shot learning), by associating each template 
gesture to a ‘state’ of a hidden Markov chain [5]. During the 
performance, a continuous estimation of parameters is calculated 
in real-time, by providing information for the temporal position 
of the performed gesture. Time alignment occurs between the 
template and the performed gesture, as well as offering an 

estimation of the time progression within the template in real-
time.  
 One limitation of HMMs is that observations are produced at 
the frame level, and as a consequence they do not support the 
transitions between segments [15]. Therefore, [14][15] 
developed a system based on H-HMMs with two levels for real-
time gesture segmentation and recognition. Similarly to GF, it 
adopts a template-based method and implements one-shot 

learning. The system is trained with a single pre-segmented 
gesture, which is annotated by the user. Each segment is 
associated with a high-level state (segment state), which 
generates the sub-models of the signal level (lower level), 
encoding the temporal evolution of the segment [14][16].  
 The aforementioned methodologies and research approaches 
do answer the question of what/which gesture is performed, but 
not how expressive gesture is performed. [12] further extended 

the research by proposing a template-based method which 
implements a Sequential Monte Carlo technique. Its main 
advantage is that the recognition system, named Gesture 
Variation Follower (GVF), is being adapted to gesture 
expressive variations in real-time. Specifically, in the learning 
phase only one example per gesture is required. Then, in the 
performing phase, time alignment is computed continuously and 

expressive variations (such as speed, size, etc.) are estimated 
between the template and the performed gesture [10][12].  

2.3 Conclusions from SoA and Motivation  
Leveraging the above, we can conclude that the majority of 
algorithms answer the question of what/which gesture is 
performed, or how it is performed, or both. Furthermore, in most 
cases, a parameter is implemented, measuring how much the 
performance is allowed to be different from template gestures 
[25]. Additionally, the users can control the degree of 
generalization of the model to ensure a robust estimation of their 

performed gestures with this parameter [15]. In GF and GVF, 
this parameter is called tolerance [8][25] and in [15] which is 
based on H-HMMs, variance offset. The main advantage of this 
parameter is that if its value is low, the system will be more 
robust and will recognize gestures with more accuracy. If it is set 
high, the system will be less reliable, due to the fact that the 
model will be too general and it will lead to overlaps between 
classes [15][25]. However, the main drawback is that the value 

of this parameter remains fixed during the performance of the 
gesture. This leads to the possibility that the system might fail to 
recognize some variations within the gesture, because it might 
require a slightly higher or slightly lower value of this parameter. 
Moreover, there is an impact on the time alignment between 
template gesture and performed gesture, which can vary 
importantly, thus reducing the immediacy and fluidity of the 
gesture sonification. 

 An additional conclusion from the literature review is that, the 
purpose or end-use of the implementation of algorithms is for 
installations, performances or even entertainment. But what 
happen in the case of the educational and learning process? Can 
the existing algorithms successfully recognize expressive 
gesture variations between expert and learner’s performances? 
For this reason, our proposed methodology deals with the know-
how transmission between expert and learner. Moreover, we 
propose confidence bounds, instead of fixed values of tolerance 

and variance offset, which are derived from expert gesture 
performance [22] and can dynamically and more precisely 
recognize the variations that occur within the learner’s 
performance (performed gesture) in relation to the expert’s 
performance (template gesture). Apart from the learning the 
scenario, the proposed methodology gives also the possibility to 
the user to perform his/her own musical gestures and control 
sound parameters.  

3. MODELING AND RECOGNITION  
In the proposed methodology, the goal is not simply to train, 
recognize and sonify expert musical gestures, but by exploiting 
the existing methodologies and adding the parameter of 
confidence bounds, to develop a system that will be able to 

recognize expressive variations that take place within the gesture 
performance.  

3.1 Expert operational model 
The first step was to model expert gestural know-how in the case of 
the piano. This was accomplished by capturing expert musical 
gestures while the expert performed specific musical gestures on the 
piano. Then, expert gestural analysis was conducted. The purpose of 
using the State Space estimation methodology was two-fold: a) in 

order to model expert musical gestures, we built an operational model 
that describes how expert gestures are performed; and b) in order to 
develop a system that will be able to recognize more accurately the 
variations that might occur within the learner’s performance, we 
extracted the confidence bounds, based on the iterations of the same 
expert musical gesture, from the expert operational model [22]. 
 The general specification of the State Space presentation of vector 
𝑌𝑡 is given by the following dynamic system [21]: 
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𝒀𝑡 =  𝜷𝑡 + 𝒁𝑡𝒂𝑡 + 𝜺𝑡          (1) 

𝒂𝑡+1 =  𝜸𝑡 + 𝑾𝑡𝒂𝑡 + 𝜼𝑡         (2) 
 

where: 

 𝒀𝑡 is a n×1 vector, which can refer to as the signal or observation 
equation (1)  

 𝒂𝑡 is an m×1 vector of possibly unobservable state variables, 
which can be referred to as the state or transition equation (2) 

 𝜷𝑡, 𝒁𝑡, 𝜸𝑡 and 𝑾𝑡 are conformable vectors and matrices 

 휀𝑡  and 𝜂𝑡 are vectors of mean zero, Gaussian disturbances  

 Following equations (1) and (2), in our case the functional version 
of the expert operational model, presenting the gestures of the right 
hand with respect to dimension X (RHX), is as follows: 
 

𝑹𝑯𝑿𝑡 =  𝒁1𝑡𝒂1 + 𝒁2𝑡𝒂2𝑡 +  𝜺1𝑡       (3) 

𝒂2𝑡 =  𝛿1𝒂2𝑡−1 + 𝜼1𝑡          (4) 
 

where: 

 𝒁1𝑡 = [𝑰  𝑹𝑯𝒁𝑡−1 𝑹𝑯𝒀𝑡−1 𝑳𝑯𝑿𝑡−1], 𝒁2𝑡 = [𝑹𝑯𝑿𝑡−1 −
𝑹𝑯𝑿𝑡−2] 

 I = unit vector, 𝐙t = [𝐙1t 𝐙2t],  ′ = transposition, and  

 𝒂1
′ = [𝑎10 𝑎11 𝑎12 𝑎13], 𝒂2t and δ1 are parameters to be 

estimated.   

 

 Analytically, the equations to be estimated are as follows: 
 

𝑅𝐻𝑋𝑡 =  𝑎10 + 𝑎11𝑅𝐻𝑍𝑡−1 + 𝑎12𝑅𝐻𝑌𝑡−1 + 𝑎13𝐿𝐻𝑋𝑡−1 +
𝑎2𝑡(𝑅𝐻𝑋𝑡−1 − 𝑅𝐻𝑋𝑡−2) + 휀1𝑡        (5) 

𝑎2𝑡 =  𝛿1𝑎2𝑡−1 + 𝜂1𝑡          (6) 
 

 In our piano case study, we mostly focused on the gestures made by 
playing with two hands. Thus the complete operational model has two 
sets of equations: three right hand equations (𝑅𝐻𝑋𝑡, 𝑅𝐻𝑌𝑡 and 

𝑅𝐻𝑍𝑡), and three left hand equations (𝐿𝐻𝑋𝑡, 𝐿𝐻𝑌𝑡 and 𝐿𝐻𝑍𝑡). 

 Having estimated the system of equations (5) and (6), the expert 
operational model is dynamically simulated and the dependent 

variables are forecasted. Consequently, the estimated forecast standard 
error is derived according to: 
 

𝑅𝐻𝑋_𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑠𝑒𝑡 =  𝑠√1 + 𝑅𝐻𝑋𝑡
′(𝑍𝑡

′𝑍𝑡)𝑅𝐻𝑋𝑡   (7) 

where s = standard error of the estimated equation. 
 

 Then, we calculated the confidence zone for each musical gesture, 
including confidence bounds (a higher and a lower bound). The 

equations of the higher (8) and lower (9) bound referring to right hand 
are the following, where 𝑅𝐻𝑋_𝑓𝑡 is the forecasted data series at 

discrete time t, and 𝑅𝐻𝑋_𝑠𝑒𝑡  is the forecasted standard error:  
 

𝑅𝐻𝑋_ℎ𝑖𝑔ℎ𝑡 =  𝑅𝐻𝑋_𝑓𝑡 + 𝑅𝐻𝑋_𝑠𝑒𝑡      (8) 
𝑅𝐻𝑋_𝑙𝑜𝑤𝑡 =  𝑅𝐻𝑋_𝑓𝑡 − 𝑅𝐻𝑋_𝑠𝑒𝑡       (9) 

 

 

Figure 1. Confidence bounds of the expert musical gesture. 

 If the performed gesture is between these confidence bounds (Figure 
1) during the whole performance, this means that we can successfully 
take into consideration the expressive variations that occur between the 
template and performed gesture. We further generalize this 
methodology by implementing the confidence bounds and using them 
with machine learning algorithms, in order to recognize expressive 

variations that might take place between the learner’s (performed 
gesture in Figure 1) and expert’s (template gesture in Figure 1) 
performance in real-time, in order to improve both the recognition 
results and the gesture sonification. 

3.2 Implementation  
x2Gesture is based on GVF library 1 [10][12][26], and implements 
the State Space and Particle Filter algorithm. The state elements are the 
gesture characteristics, which are for example, the time progression of 
the performed gesture (temporal alignment), the relative speed, the 
scaling coefficient (size) and the angle of rotation (orientation). The 

transition function is linear, relying on a Gaussian noise [9] and the 
observation function is the distance between the adapted template 
gesture and the performed gesture [10].   
 The algorithm includes two phases: the learning (or training) and the 
following (or recognition) phase. x2Gesture is first trained with a 
single expert example per gesture along with an audio file (pre-
recorded sound). This process is repeated until the system is trained 
with all the template gestures, which are mapped to the respective 

sounds. Thereafter, in the following phase, the learner or performer 
imitates in real-time the same expert gesture. For each performed 
musical gesture, x2Gesture selects the appropriate confidence 
bounds, which correspond to the performed gesture. At the same time, 
the model aligns the incoming gesture onto the template gesture, 
estimating also the gesture variations [10][26]. Moreover, the system 
resynthesizes a plausible imitation of the original (expert) sound in real 
time according to the learner’s gesture performance, by using the 

granular sound synthesis engine. The better the recognition results are, 
the better the gesture sonification and the re-synthesis of the sound will 
be.   
 The added value in the recognition system, as it is already 
mentioned, is the implementation of the confidence bounds. In this 
way, during the recognition, the system can prevent numerical errors 
that might happen due to expressive variations, and as a result, 
confidence bounds could improve the gesture classification and 
therefore the gesture sonification. This happens because confidence 

bounds are extracted from the expert operational model and they are 
not a fixed number selected by the user during the learning process or 
musical performance.  

4. CASE STUDIES 
For the evaluation of x2Gesture we organized two case studies: a) a 

learning scenario of expert musical gestures and b) a performance with 
musical gestures by using Intangible Musical Instrument (IMI) [24]. 
IMI setup is a construction made of Plexiglas, shaped so as to look like 
a table on which the learner and/or performer can put his/her hands and 
perform musical gestures. In both case studies, three musical gestures 
were included in the musical vocabulary (Table 1): a) 𝐺1: ascending 

scale performed in legato style, b) 𝐺2: descending arpeggio performed 

in staccato style, and c) 𝐺3: a musical excerpt from a famous Greek 

song.  

Table 1. (a) 𝑮𝟏: ascending scale, (b) 𝑮𝟐: descending arpeggio 

and (c) 𝑮𝟑: a musical excerpt from a Greek song  
 

 
(a) 

 

 
(b) 

 

 
(c) 

Slow – 72 bps  

(adagio)  

Slow – 80 bps 

(andante) 

Slow – 72 bps  

(adagio) 

Normal – 100 bps 

(andante) 

Normal – 112 bps 

(moderato) 

Normal – 100 bps 

(andante) 

Fast – 116 bps 

(moderato) 

Fast – 126 bps 

(allegro) 

Fast – 116 bps 

(moderato) 

 
 1 https://github.com/bcaramiaux/ofxGVF 
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 All gestures have duration approximately 10-15 seconds and each 
user was asked to repeat each gesture five times. Apart from that, the 
user repeated each musical gesture in two different rhythms, slow and 
fast (Table 1). 
 In order to capture in real-time the musical gestures, two inertial 

sensors (Animazoo IGS-150 2) were used. These sensors are 
gyroscopes, providing XYZ axis rotations. Also they were placed on 
user’s two hands, and specifically on wrists.   

4.1 Case study I: Learning  
In the learning scenario, 7 users were participated, one from whom 

was the expert pianist and the rest 6 were the learners. The purpose 
was to capture the expert pianist while performing the expert musical 
gestures on the piano (Figure 2 (a)). For each expert musical gesture, 
one iteration was selected as the reference gesture. Then, the rest 
iterations have been aligned and timely warped based on the reference 
gesture, using the DTW technique. Therefore, all the iterations of the 
same gesture transformed into having the same duration. These 
transformed data were averaged per variable and the result was used 

in the estimation of the expert operational model and in the extraction 
of confidence bounds, following the steps, which are described in 
Section 3.1.  
 

 
(a) 

 

 
(b) 

 
(c) 

Figure 2. Different roles of users: (a) expert, (b) learner and 
(c) performer.  

 Subsequently, x2Gesture was trained with the three template 
gestures (reference). In the recognition phase, each one of the six 
learners performed the same expert musical gestures on the piano 
(Figure 2 (b)) five times. Their gestural data were captured in order to 

evaluate the recognition results of the model, as well as the accuracy 
and reliability of the confidence bounds. 

4.2 Case study II: Performing 
In the second case study, 6 performers were participated in total. For 
each performer the expert operational model and the confidence 
bounds were extracted. Moreover, apart from their gestural data, the 

sound that was produced was also recorded. Therefore, in the training 
phase, both reference gesture of each performers and the respective 
sound were given as input. In the recognition phase, each performer 
(Figure 2 (c)) performed the same musical gestures by using IMI, in 
order to resynthesize the pre-recorded sound in real-time.  

5. EVALUATION 
The goal of the experiment is to assess the recognition accuracy of 
x2Gesture, which implements the confidence bounds, comparing it 
also with established techniques, such as GF and GVF. The evaluation 
method that was used is called ‘jackknife’, or ‘leave-one-out’ 
approach. The basic idea is leaving out one or more observations at a 
time from the sample set. Practically, the database contains 
observations from five iterations of three musical gestures. Five 

distinct datasets have been created for each iteration of performed 
gesture. Therefore for each jackknife iteration, one dataset is left out to 
train the model 𝑀𝑖  per musical gesture 𝐺𝑖  and the rest four are used 

for testing. Two metrics were also used to evaluate the recognition 
accuracy: a) Precision, which takes into account the false recognitions 
and b) Recall, which takes into account the missed recognitions.   
 
2 http://synertial.com/ 

5.1 Evaluation of case study I 
For the evaluation of the learning scenario, jackknife method was used 

only in expert’s data. The aim is to evaluate the accuracy of the expert 
operational model and confidence bounds.  Table 2 presents the results 
that x2Gesture gave for the five jackknife iterations, as well as the 
values of Precision and Recall per 𝐺𝑖.  

Table 2. x2Gesture: Precision and Recall per expert gesture  

Maximum likelihoods 

  𝑀1 𝑀2 𝑀3 Recall 

Observa-

tions 

𝐺1 20 - - 100% 

𝐺2 - 20 - 100% 

𝐺3 - - 20 100% 

 Precision 100% 100% 100%  

 
 Because the results seemed to be perfect, we repeated the same 
experiment with GF and GVF. Therefore, Table 3 shows briefly the 
values of Total Precision and Total Recall per expert gesture from 
recognition with GF and GVF.  

Table 3. GF and GVF: Precision and Recall per expert gesture  

  GF GVF 
  Precision Recall Precision Recall 

Observa-

tions 

𝐺1 100% 100% 95% 100% 

𝐺2 100% 100% 100% 100% 

𝐺3 100% 100% 100% 95% 

 Total 100% 100% 98% 98% 

 
 The high recognition results that x2Gesture, GF and GVF gave, 
can be explained by the fact that the expert pianist was very dedicated 

and focused on the expert performance of musical gestures. This 
resulted in not occurring expressive variations, even unconsciously, 
between the different iterations of musical interpretations. The 
tolerance that was used for these tests was 0.1 for both GF and GVF. 
 In order to complete the evaluation of the learning scenario, learners 
have to imitate the same expert musical gestures on the piano. The 
specific dataset contains: 6 learners * 3 musical gestures * 5 iterations 
= 90 gesture examples. The value of tolerance that was selected was 
0.2 for GF and 0.1 for GVF. These tolerance values were the result of 

many experiments, as they gave better results for these specific 
musical gestures in comparison with smaller or larger tolerance values.  
 After having trained the system with the expert’s template gesture 
(reference), the data from the learners’ performances were given for 
recognition. The recognition results are presented in Table 4:  

Table 4. GF, GVF and x2Gesture: expert – learners  

 GF GVF x2Gesture 
 Precision Recall Precision Precision Precision Recall 

𝐺1 59% 57% 70% 53% 100% 70% 

𝐺2 79% 37% 45% 43% 65% 37% 

𝐺3 53% 83% 53% 70% 48% 83% 

Total 64% 59% 56% 55% 71% 63% 

 
 According to Table 4, we can conclude that from the comparison of 
recognition percentages, x2Gesture gives better results than the others. 
These results are consistent to what we expected, and confirm the 
hypothesis that the recognition results can be improved with the 
implementation of confidence bounds. Moreover, the results confirm 
that confidence bounds can dynamically and more precisely recognize 
the variations that might occur within the learner’s performance and 
expert’s performance. 

5.2 Evaluation of case study II 
In the performance case study with the use of IMI, all 6 performers 
execute the musical gestures five times. As it is mentioned, during the 
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performance they were also asked to perform the gestures either 
slower or faster. The dataset for this case study includes per user: 3 
musical gestures * 5 iterations (which contain data from slow, normal 
and fast speed) = 15 gesture examples. For the case study II, the value 
of tolerance that was selected was 0.1 for both GF and GVF.  

 x2Gesture was trained per user with the three template gestures 
along with the pre-recorded sounds. Then, in the recognition, 
x2Gesture selected the appropriate confidence bounds, according to 
the performed gestures, and resynthesized the sound in real-time, by 
using the granular sound synthesis engine. The recognition results per 
performer and per algorithm are shown in Table 5: 

Table 5. GF, GVF and x2Gesture: performer – performer  

  GF GVF x2Gesture 
  Precision Recall Precision Recall Precision Recall 

U
se

r 
1
 𝐺1 75% 75% 68% 85% 64% 80% 

𝐺2 82% 90% 76% 65% 71% 75% 

𝐺3 83% 75% 61% 55% 79% 55% 

 Total 80% 80% 68% 68% 71% 70% 

U
se

r 
2
 𝐺1 100% 100% 100% 100% 100% 100% 

𝐺2 100% 100% 100% 100% 100% 100% 

𝐺3 100% 100% 100% 100% 100% 100% 

 Total 100% 100% 100% 100% 100% 100% 

U
se

r 
3
 𝐺1 100% 100% 95% 95% 87% 65% 

𝐺2 100% 100% 100% 100% 100% 90% 

𝐺3 100% 100% 95% 95% 67% 90% 

 Total 100% 100% 97% 97% 85% 82% 

U
se

r 
4
 𝐺1 71% 50% 78% 90% 95% 95% 

𝐺2 54% 35% 95% 90% 91% 100% 

𝐺3 55% 90% 89% 80% 100% 90% 

 Total 60% 58% 87% 87% 95% 95% 

U
se

r 
5
 𝐺1 100% 100% 95% 100% 100% 100% 

𝐺2 100% 100% 100% 100% 100% 100% 

𝐺3 100% 100% 100% 95% 100% 100% 

 Total 100% 100% 98% 98% 100% 100% 

U
se

r 
6
 𝐺1 100% 100% 95% 100% 100% 100% 

𝐺2 100% 100% 100% 95% 100% 100% 

𝐺3 100% 100% 100% 100% 100% 100% 

 Total 100% 100% 98% 98% 100% 100% 

 
Grand 

Total 90% 90% 91% 91% 92% 91% 

 
 In the last row of Table 5, grand total from all performers are 
presented. If we interpret the table according to the last row, 
x2Gesture gives the highest results (with GVF and GF to follow).   
 Alternatively, if we interpret the results per performer, we can 
conclude that GF gives better recognition results than the others, while 
x2Gesture and GVF come after. This can be explained by the fact that 
in four out of six performers GF gives 100% in Precision and Recall, 

while x2Gesture in three and GVF in one. However, the majority of 
the percentages per performer from x2Gesture and GVF are really 
close to 100% (i.e. 98%, 97%, etc.), which means that the model did 
not manage to recognize correctly one or two gestures.   

5.3 Evaluation on recognition stability and 

time 
At this point, it is important to highlight an additional advantage of the 
implementation of confidence bounds. Figure 3 presents the time 
progression of the recognized 𝐺3 from user 3 (case study II). Time 

index ‘0’ is the beginning of the gesture and time index ‘1’ is the end 
of the gesture. Compared to the other two algorithms, x2Gesture is 

more stable during the recognition process and faster than the others, 
because the system recognizes correctly 𝐺3 from the 1st frame, 

resulting to the increase of the maximum likelihood that refer to 𝐺3.  

 

 

Figure 3. Gesture progression through the temporal 

alignments of GF, GVF and x2Gesture.  

 This can be also confirmed by the Figure 4(c), which presents the 
maximum instant likelihood. Therefore, the gesture sonification is 

more fluid and immediate because the new synthesized signal is much 
closer to the template sound. GVF becomes stable after 112 frames. 
Figure 4(b) shows the latency before 𝐺3 takes the maximum 

likelihood. GF recognizes correctly 𝐺3 after 145 frames, as it seems to 

oscillate between 𝐺3 and 𝐺1. The maximum likelihoods along with 

their transitions between gestures are presented in Figure 4(a). 
Although, in the end all three algorithms recognize correctly 𝐺3, the 

production of the sound differs in three algorithms.  
 

     
 

(a) 

     
 

(b) 

     

(c) 

Figure 4. Instant likelihoods per frame using (a) GF, (b) 
GVF and (c) x2Gesture. 

 Additionally to the above specific example in which x2Gesture 
recognizes the right musical gesture faster than the other two 
algorithms, Table 6 presents the average time that each algorithm 
succeeds to recognize each musical gesture correctly.   

Table 6. Average time that GF, GVF and x2Gesture need to 

recognize each gesture correctly 

 GF GVF x2Gesture 
 Mean St.Dev. Mean St.Dev. Mean St.Dev. 

𝐺1 8,43 7,27 2,25 1,65 2,23 1,53 

𝐺2 1,94 3,17 3,25 2,56 1,65 1,73 

𝐺3 0,71 1,34 2,46 2,43 0,96 0,68 
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 In order to evaluate the response time in real time, the database from 
case study I (expert – learners), was used. According to the small 
values of mean and standard deviation for each gesture, it can be 
further confirmed that x2Gesture can recognize faster and more stable 
the musical gestures without oscillating between all three musical 

gestures. However in 𝐺3, GF has smaller mean value than x2Gesture, 

but larger standard deviation. This can be interpreted by the fact that, 
although GF has recognized more 𝐺3 in comparison to x2Gesture 

(Precision in Table 4), the values of time that GF has taken the highest 
instant likelihoods for 𝐺3 varied with each other more (max. time 

value 5,02 sec. and min. time value 0,11 sec.) than in x2Gesture (max. 
time value 3,01 sec. and min. time value 0,13 sec.).    

6. CONCLUSION AND PERSPECTIVES 
Summarizing, we propose the 3D gesture recognition engine 

‘x2Gesture’, which has been especially designed to address the needs 
of both learning the expert musical gestures and live performing 
through gesture sonification. Moreover, the proposed modeling of the 
expressive variations and the output confidence bounds, led to higher 
recognition accuracy even in multi-user use-cases, by taking into 
consideration the expressive variations that might occur. Furthermore, 
the first evaluation results prove that there is a more fluid and 
immediate temporal alignment with the correct gesture.  

 Our future work is to generalize our methodology in order to be used 
in a variety of different disciplines, by creating connections between 
them. For example, to combine music with mathematics, or physics, 
or drawing, etc. Expressivity and creativity will be the core of these 
interdisciplinary musical performances.   
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This paper describes a prototype natural user interface, named the Intangible Musical Instrument, which aims to facilitate 

access to the knowledge of the performers that constitutes musical Intangible Cultural Heritage, using off-the-shelf motion 

capturing that is easily accessed by the public at large. This prototype is able to capture, model and recognize musical gestures 

(upper body including fingers) as well as to sonify them. The emotional status of the performer affects the sound parameters at 
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1. INTRODUCTION 
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and living, because it does not only refer to inherited knowledge but also to the renewal of 

contemporary cultural expressions. It refers to the past, to the present, and, certainly to the future 

and is the mainspring of humanity's cultural diversity. According to UNESCO, music is the most 

universal form in the performing arts, since it can be found in every society, usually as an integral 

part of other performing art forms and other domains of the ICH. Music of different types such as 

classical, contemporary or popular, sacred etc., can be found in a large variety of contexts. 

Instruments, artefacts and objects, in general, are closely linked with musical expressions and they 

are all included in the Convention’s definition of the ICH [UNESCO 2003]. Music that fits with the 

Western form of musical notation is better protected, while those that do not fit are usually 

threatened with disappearance when their holders die. Thus, the crucial point for all music forms is to 

develop the motor skills of playing a musical instrument by strengthening the bond between the 

expert performer and the learner. Motivated by this need, in recent years, researchers focused on the 

study of embodiment and enactive concepts. These concepts reflect the contribution of body movement 

to the action/perception and the mind/environment interaction [Noë 2004]. In the performing arts, 

and, more precisely, in music, body movement is semantically connected with gesture in most 

activities, such as performing and composing.  

Composers bring together knowledge and skills in sound coloring and organization, in terms of 

structure and form. These skills are depicted on the music score of their pieces, which constitute the 

Tangible Cultural Heritage (TCH). Nevertheless, the music score usually contains only a few abstract 

annotations about idiomatic gestures that should be incorporated by the performer during his/her 

musical and physical playing. Such information leads to the organization of the musical material, 

which is culminated in a compositional structure. The analysis of the musical material always brings 

to the surface the question “how does this work?”. Music theory explains the musical structure and/or 

defines the way the material functions, according to various viewpoints, such as those of Allen Forte, 

Arnold Whittall, Rosemary Killiam and Patrick McCreless [Hadjileontiadis 2014]. Therefore, music 

theory can explain how a piece of music functions, but it does not provide information about the 

method and more precisely, the way the musician should interpret the musical score or/and how to 

perform.  

The performance is the result of the symbiosis between the musician and his/her instrument. This 

symbiosis takes the form of an interactional relationship, where the musician is both a trigger and a 

transmitter, connecting the perception (mediated instrumental mechanisms and physical 

environment), the knowledge (theoretical understanding of the inherited music score) and the gesture 

(semantic motor skills). Consequently, the expert musical gesture can be considered as a fully 

embodied notion that encapsulates the motor skills of the performer to interpret musical pieces, 

following the musical notation defined by the composer. Moreover, the musical instrument is a 

physical interface that can be considered as a means of musical expression and performance. 

Nevertheless, the learning curve of playing musical instruments requires years of training, practice, 

and apprenticeship before being able to perform. Furthermore, the learning of expert musical gestures 

is still viewed as a communicative act of social interaction, rather than “my own” personal experience. 

Consequently, “learning” musical gestures and “performing” music are usually perceived as separate 

concepts and experiences. This means that accessing knowledge is a long-term procedure, since there 

is no quick transition from novice to expert. 

Based on the above need, the purpose of this paper is to present a Natural User Interface (NUI) 

named the “Intangible Musical Instrument” (IMI) for capturing, modeling and recognition of musical 

gestures of expert performers which will be able to support both “learning” and “performing/ 

composing” as a unified user experience. 
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2. STATE OF THE ART 

2.1 Musical gestures as referential patterns of composers 

Gesture is the core activity of music creation; a dynamic organism, similar to the human organism; an 

experience that combines structural properties of music together with cultural and historical contexts 

[Truslit 1938; Coker 1972; Broeckx 1981; Hatten 1994; Cadoz and Wanderley 2000; Cumming 2000]. 

In talking about musical gestures and cultural heritage, there is an endless list of composers and 

knowledge that constitute an ICH. For example, short musical patterns, which can easily be imitated 

through body gestures, constitute, for Beethoven, the palette of his compositions. These short 

patterns, and their variations, constitute an ongoing unfolding process throughout his musical pieces. 

Many analysts consider this practice as a self-referential context where musical gestures, similar to 

other variations of the same gesture, are recognized within the same piece. Another example, which 

can be given is the musical collage of gestures in the Sinfonia of Berio. Gestural patterns of Mahler, 

Ravel and Debussy are integrated into the new musical piece so that in the Sinfonia they remain as 

representative musical idioms that transmit music-related cultural meanings [Godøy and Leman 

2009].  

Consequently, “musical patterns” and “gestural patterns in music” are closely linked notions, since 

sonic forms are understood through embodiment. These patterns constitute elements of social 

interaction and differentiation since their imitation entails the acquisition of cultural models for 

emulation. According to McNeill [1992], these patterns can be considered throughout history as 

playing an important role in creating and sustaining human communities and can be understood as a 

mirror system between composer and listener or even master and learner [Clayton 2000; Keller 2008]. 

Nevertheless, musical pieces documented through musical scores, which constitute a TCH, 

encapsulate only abstract information about energy and expressivity of gestures, which are finally 

incarnated through the interpretation of performers on musical instruments. 

2.1.1 Typology of musical gestures 

The gesture vocabulary described by Delalande, which has been extensively used in the literature 

[Delalande 1988; Cadoz and Wanderley 2000; Zhao 2001], divides musical gestures into three classes. 

The first class is named “effective gesture” and it concerns movements that are necessary to 

mechanically produce the sound (e.g. press a key). The second class is named “accompanist gesture” 

and it refers to sound-facilitating movements (e.g. specific postures that permit expressivity). Finally, 

the “figurative gesture” conveys symbolic messages to the audience as a communication act.  

2.1.2 Transmission of gestural know-how in music 

The examples documented in the previous two sections show that the musical meaning of gestural 

know-how involves different levels of information, which are: a) first-person, b) second-person and c) 

third-person perspectives on gesture [Leman 2010]. 

The first-person perspective on gesture defines the meaning of the gesture for the person that 

actually implements it. Within the ICH context, the expert performers are holders of ICH that have 

perfected their know-how to include high-level specific characteristics. Additionally, the learner can 

also have a first-person perspective when playing a musical instrument. The difference between the 

two is that the expert has developed, at a greater level than the learner (it really depends on the level 

of the learner), his/her action-based approach to gesture, because s/he knows all the gestural patterns 

in music. S/he has mental access to how the action, described on the musical score, is deployed over 

time and s/he has the capacity to control his/her sensorimotor system that produces the corresponding 

sonic form. 

The second-person perspective on gesture refers to how other people perceive the musical gesture 

in a social interaction context. This approach is the most typical one that is used in music schools, 

conservatories, etc.. The learner observes the experts, which in most cases are his/her teacher, 
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following the concept of “my” perception of “your” gesture [Leman 2010]. According to this “me-to-you” 

relationship, a mirroring system is established between expert and learner, where the body 

movements of the learner are deployed, so that the movement of the expert, incorporating the 

knowledge of the composer derived from the musical score, is understood as an action by the learner. 

The third-person perspective on gesture focuses on the measurement and capturing of moving 

objects. This task can be done by a computer using audio recording, video recording, motion capture 

technologies and brain scans, as well as physiological body changes [Pratt 1931/1968; Friberg and 

Sundberg 1999; Camurri et al. 2005]. In this way, the knowledge of the performer is captured, based 

on techniques of feature extraction and pattern matching. 

2.2 Emotional expression in music 

There is no need for scientific evidence to support the fact that music expresses emotions, as personal 

accounts of affective experiences during listening to music are more than sufficient. However, a vast 

amount of research has been conducted in order to reveal further insights into this phenomenon, 

ranging from philosophical to biological approaches [Juslin and Sloboda 2010]. It has been suggested 

that such music-induced emotions are governed by universality in terms of musical culture, meaning 

etc. and that listeners with different cultural backgrounds can infer emotions in culture-specific music 

to a certain extent. Such evidence has led to the assumption that neurobiological functions underlying 

such emotional experiences do not differ across members of different cultures, as the responsible 

neural networks may be fixed. In general, the processing of musical stimuli involves the gradual 

analysis of music structural elements from basic acoustic features to musical syntax that leads to the 

perception of emotions and semantic meanings underlying the stimuli [Koelsch and Siebel 2005]. It is 

becoming evident that the structure of music defines what it expresses. To be more accurate, music 

does not literally express emotion, but it is its structural elements and production performance 

shaping the acoustic outcome that foster the induction of emotional states in the listener. In the 

following descriptions, affective states will often be characterized based on the valence-arousal model 
[Russell 1980]. Valence denotes whether an emotion is positive or negative, while arousal refers to the 

level of excitation that the emotion encapsulates.  

2.2.1 Emotions in musical performance 

Written music can be performed in different ways just as a piece of text can be read with various 

tones. In an important sense, it can be argued that music and performances of the same work can 

differ significantly. The latter form the concept of performance expression that refers to both a) the 

correlation between the performer's interpretation of a musical excerpt and the small-scale variations 

in timing, dynamics, vibrato, and articulation that shape the microstructure of the performance and b) 

the relationship between such variations and the listener's perception of the performance. It has been 

proposed that performance expression emerges from five different sources, i.e. Generative rules, 

Emotional expression, Random fluctuations, Motion principles, and Stylistic unexpectedness, referred 

to as the GERMS model [Juslin 2003]. Here, the focus is placed on emotional expression that allows 

the performer to convey emotions to listeners by manipulating features such as tempo and loudness in 

order to render the performance with the emotional characteristics that seem suitable for the 

particular musical piece. Table I reports the primary acoustic cues of emotional expression in music 

performance [Gabrielsson and Lindström 2010; Juslin and Timmers 2010]; these are mainly empirical 

relationships, rather than absolute, and constitute an appealing research topic. 

 
Table I. Empirical relationships between sound parameters and emotions [Gabrielsson and Lindström 2010; 

Juslin and Timmers 2010] 

PARAMETERS DEFINITION ASSOCIATED EMOTIONS 

Tempo The speed or pace of a musical piece 
Fast tempo: happiness, excitement, anger 

Slow tempo: sadness, serenity 
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Mode The type of scale in which the piece is written 
Major tonality: happiness, joy 

Minor tonality: sadness 

Loudness/ 

Volume 
The physical strength and amplitude of a sound 

Loud sound: happiness or power, anger 

Soft sound: relaxation, tenderness or sadness  

Melody 
The linear succession of musical tones that the 

listener perceives as a single entity 

Complementing harmonies: happiness, relaxation 

Clashing harmonies: excitement, anger 

Tonality 
Musical key or the relations between the notes of a 

scale or key of a musical piece. 

Tonal: joyful, dull 

Atonal: angry 

Rhythm The regularly recurring pattern or beat of a song 
Smooth/consistent rhythm: happiness, peace 

Rough/irregular rhythm: amusement, uneasiness 

 

It is clearly conceivable that emotions play a significant role in musical artistic expression. 

Consequently, the analysis and manipulation of users’ affective states should be taken into serious 

consideration within Intangible Musical Instrument (IMI) design, development and practice that aims 

to support music performance. 

2.3 Gesture control of sound 

In order for a musical interface, or instrument, which draws gestural data from sensors and cameras, 

to feel natural from the point of view of user experience, it should provide intuitive gesture control of 

sound. With the term “mapping gesture to sound” or “gesture sonification” is meant the procedure, in 

which the gestural data is being associated with the sound parameters; therefore, the gesture 

characteristics and features, as well as the sound synthesis variables that are going to be used, have 

to be defined. Then, a decision about the strategy of mapping, explicit or implicit mapping, also has to 

be made. In explicit mapping, also called direct mapping, the input is directly associated to the output 

while, implicit or indirect mapping refers mostly to the use of machine learning techniques, which 

imply a training phase to set parameters [Bevilacqua et al. 2011]. 

2.4 Conclusions from the state-of-the-art and motivation 

Leveraging the above, there is a growing interest in the analysis of the gestural knowledge. A large 

amount of studies conducted in the last years on embodied music cognition have investigate that not 

only effective, but also accompanist and figurative gestures are very important, since they are related 

to the expressivity and to the social interaction of the performer with the audience [Jensenius 2007; 

Maes et al. 2010]. However, “learning” musical gestures and “performing” music are usually perceived 

as separate concepts and experiences that pass through intermediate physical mechanisms. Usually, 

for learners, the “challenges” related to the physical aspects, such as the instrument being more 

important than the “skills” needed in music playing, can cause frustration. Consequently, the 

achievement of good motor skills is a long-term procedure. Additionally, the learning of the motor 

skills that are self-referential for a specific performer still constitute a “black box” for the learner, 

since it can be only approached as a second-person experience; therefore, when the learner observes 

the expert, s/he perceives as expert motor skills, the limited abstract sonic movements, which are 

visually derived from the expert gestures. Finally, the skills required of the performer, whether 

gestural or emotional, are not documented on the music score in much detail. Hence, in cases where a 

musical piece does not follow the Western form of music notation, it is extremely difficult to transmit 

it to the next generations.  

Motivated by the above, the main objective of the present work is to create a natural user interface 

of the gestural expression and emotion elicitation in music. This natural user interface refers to 

Intangible Musical Instrument (IMI), which provides a holistic approach to gesture capturing, 

recognition and sonification, taking into consideration the emotional status of the performer at the 

synthesis level. Moreover, IMI can support learning, performing and composing with gestures as a 

first-person experience, by putting the user at the core of musical activities, such as performing and 

composing with gestures. 
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3. METHODOLOGICAL APPROACH 

3.1 Methodology of gestures and emotions sonification 

IMI supports the continuous and real-time gesture control of sound, taking into consideration the 

emotional status of the performer. Therefore, the fundamental elements of the proposed methodology 

(Figure 1) are the modalities that are involved in the musical performance, which are the gestures, 

the emotions and the sound. The scientific challenge of this methodology is to propose a coherent way 

of interconnecting these modalities, and thus answering “what to map, where and how?”. 

 

 
Fig. 1. Methodology of gesture sonification taking into consideration the emotional status of the performer 

The motor skills of the user are put at the core of the sound creation, by using the gestural 

modality as a trigger of sound processes. These motor skills are captured by motion capture sensors, 

which are exactly the same for all the user profiles (e.g. expert, learner) for both learning and 

performing/composing. Taking into consideration the need for modeling the expert gestures, robust 

gestural information is captured in order to apply on it machine learning and pattern recognition 

methods. All the movements of the upper body part, including finger and head motions, are captured 

and represented through measurable physical descriptors; therefore, the physiological analysis of 

gestures focuses on an analytical description based on cinematic, spatial and frequential 

characteristics. More precisely, a hybrid rotational and Cartesian representation of the motion is 

applied, using inertial sensors and depth cameras. The descriptors of the expert gestures are used to 
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create deterministic models (on a frame-by-frame basis) as well as to train stochastic models based on 

time series. In a learning context, when the learner performs a gesture, his/her gestural descriptors 

are compared online with the expert models of all the gestures of the vocabulary and a gesture is 

recognized according to which model outputs the highest probability. In a musical performance 

context, the performer can train the models with his/her own gestural data and recognize them online. 

The gesture recognition engine that uses time series as input is based on a hybrid approach of Hidden 

Markov Models (HMMs) and Dynamic Time Warping (DTW) [Bevilacqua et al. 2007], where HMMs 

are used to recognize the gesture and DTW to temporarily align the modeled gesture with the input 

gesture. 

As long as the gesture is recognized, different mapping strategies are proposed. The first strategy 

refers to the connection of gesture perceptual parameters to some set of sound perceptual parameters, 

which are translated into concepts that can be perceived visually (gestures) or sonically (sounds). This 

strategy is also known as explicit mapping and it is used for associating fingerings to pitches as a one-

to-one relationship. Similarly, with bijective functions, there is a mapping between 3D positions of 

fingertips to the creation of specific notes. This function takes gesture as input and outputs sounds 

with a MIDI piano synthesizer. When the fingertips come into contact with the surface of the IMI or 

hover less than a centimeter from it, a note is produced, the sound of which is determined by a set of 

parameters such as speed and the fingers’ trajectory before contact. Moreover, the musically 

interactive surface is articulated in three zones, similar to the octaves of acoustic pianos, and each of 

them is associated with the hand’s centroid. 

The second mapping strategy, called implicit mapping, is based on a temporal mapping method 

[Bevilacqua et al. 2011]. The basic advantage of this approach is the time warping of the sound that is 

produced, depending on the speed of the performed gesture in real-time. It replays sound samples at 

various speeds, according to the gesture performed in real-time. Audio time stretching and 

compressing, as well as re-synthesis of audio can be accomplished by using the granular sound 

synthesis engine. In particular, the temporal mapping method associates a sound with a template 

gesture and links temporal states of a sound with the temporal states of the template gesture. Implicit 

mapping is based on information that is given from head, arms and the vertebral axis, meaning the 

upper body, without including the fingers. 

Finally, music is well-known for affecting human emotional status, but the relationship between 

specific musical parameters and emotional responses is still not clear. Taking into account Table I, the 

sound parameters that are proposed in this research and are directly associated to the emotional 

status (Valence-Arousal model) are the loudness and the pitch. More specifically, the values of 

Valence modify the pitch of the sound, while the values of Arousal change the loudness. In both 

learning and performing/composing contexts, the Valence and Arousal parameters of the user are 

used as input to the sound synthesis engine, thus, mostly affecting the intensity and the timbre of the 

sound.  

3.1.1 Learning the expert musical gestures 

As has already been mentioned, the key point for all music forms is to have access to the gestural 

knowledge of playing a musical instrument and the strengthening of the bond between the expert 

holder of the ICH (which is the composer or performer) and the learner. As a result, in a learning 

scenario, the learner performs pre-defined expert gestures, taken from the vocabulary. Therefore, s/he 

imitates these expert gestures. S/he attempts to get close enough to the expert gesture model, so that 

the sound can be re-synthesized at its original speed. The re-synthesis of the sound is based on the 

granular sound synthesis engine. 

3.1.2 Composing with gestures 

In a composing scenario, the composer has the ability to create his/her own vocabulary of musical 

gestures, to describe the expressiveness by defining the appropriate emotions that the performer 
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should imitate and to sonify his/her gestures and emotions by defining the sonic spaces and 

parameters. As a result, the composer is able to experiment with his/her own gesture-sound mappings 

and audio synthesis, as well as to compose contemporary music by performing gestures one after the 

other, by using fingers, body gestures and emotions. The goal of the composing scenario is to provide a 

generic system, which can be adapted according to the needs of each performer and composer. The 

variety of sounds the IMI can produce is equivalent to most synthesizers, but the way the musician 

interacts with it is totally unique, making the interface a powerful tool for both performing and 

composing music. However, it is important to highlight that the IMI is not a virtual replacement for 

the piano (or any other keyboard instrument), but an adaptation of the existing techniques for this 

instrument to computer music, including electronic and electroacoustic music. 

4. TECHNICAL IMPLEMENTATION AND SOFTWARE DEVELOPMENT  

The aforementioned methodology, which refers to capturing, analyzing, recognizing data, mapping 

gesture to sound, as well as sound synthesis, is implemented with Max/MSP programming language2. 

The setup prototype is a construction made of Plexiglas, shaped so as to look like a table on which 

user can put his/her hands (Figure 2). The dimensions of the table are 70 cm long, 40 cm wide and 13 

cm high. The setup lies on a table so that the hands on the Plexiglas are placed at a comfortable 

height.  

 

 
Fig. 2. Intangible Musical Instrument (IMI) 

The successive steps, which were achieved in order to first capture the gesture and then to model 

it, are described below. For the capturing part, two types of depth camera and two inertial sensors are 

used. The first type of depth camera is the Kinect3, originally created for video gaming purposes. 

Equipped with a structured light projector, it can track the movement of the whole body of individuals 

in 3D using a Random Decision Forest algorithm [Shotton et al. 2013]. However, the proposed 

methodology focuses on the upper part of the body and the current algorithm delivers a fairly accurate 

tracking of the head, shoulders, elbows and the hands, but not the fingers. The second type of camera 

used is the Leap Motion4, which works with two monochromatic cameras and three infrared LEDs. 

The Leap Motion provides an accurate description of the hand skeleton, with more than 20 joints 

positions and velocities, both in 3D (x, y, z coordinates). Two Leap Motion are used, one for each hand. 

Each Leap Motion has a field of view of 150° and tracks the hand from below efficiently up to 30 cm 

above the camera center (the camera is oriented upwards). Once placed on their slots on the IMI, they 

cover the whole surface of the table and a volume above it. Additionally, two inertial sensors are taped 

to the user’s wrists (Animazoo motion capture suit5), which deliver rotation angles (Euler angles). 

                                                 
2 https://www.cycling74.com/ 
3 https://www.microsoft.com/en-us/kinectforwindows/ 
4 https://www.leapmotion.com/ 
5 http://synertial.com/ 
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Finally, an electroencephalogram is mounted on the head to record brain electrical patterns via the 

Emotiv sensor6. These patterns are then translated to the emotional status of the user. 

 

 

Fig. 3. Unified interface for gesture and emotion recognition and sonification 

                                                 
6 https://emotiv.com/ 
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In a live learning scenario of the proposed methodology, which is a “learning by doing” approach, 

the learner has to stand in front of the capture system (Kinect and Leap Motions) and wear the two 

inertial sensors on his/her wrists and the Emotiv sensor on his/her head, so as to see his/her skeletal 

representation on the IMI’s interface (Skeletal visualization in Figure 3) and attempt to perform the 

musical expert gestures as well as to embrace the respective emotional status. The expert vocabulary 

contains some basic musical gestures such as ascending and descending scales, ascending and 

descending arpeggios, as well as some basic musical excerpts of Beethoven.  

In order to perform i.e. ascending and descending scales, the learner’s gestural data (positions and 

Euler angles) are analyzed and used for the machine-learning phase, which is based on HMMs and 

DTW technique [Bevilacqua et al. 2007; Bevilacqua et al. 2010]. The main advantage of this hybrid 

approach, instead of using other algorithms, is that it permits a time alignment between the model 

and the data used as input for the recognition. The two phases are Training (or Learning) and 

Recognition. In the Training Phase, the expert trains the system with his/her musical gesture, and a 

pre-recorded sound is associated with the template gesture and links the sound with temporal states 

of the template gesture (Learning in Figure 3). In the Recognition Phase, the learner tries to imitate 

in real-time the expert’s musical gesture. The meaning of real-time performance and recognition is 

that the technique does not recognize the gesture once it is completed, but it estimates the gesture in 

real-time, moment by moment over time. As a result, it is designed to continuously output information 

about the gesture, by providing the learner’s probabilistic estimations (Recognition in Figure 3). 

Simultaneously, the sonification is taking place based on granular sound synthesis engine, in which 

the system predicts the sound according to the performed gesture (Implicit Mapping in Figure 3). 

Moreover, the sound can be modified according to the values of valence and arousal, meaning the 

emotional status of the user (Emotions in Figure 3). The values of arousal modify the loudness and the 

values of valence the pitch of the sound. Finally, the learner has the ability to play a musical sequence 

(i.e. ascending and descending arpeggios), in which each fingertip is associated to each specific note 

(Explicit Mapping in Figure 3).  

5. EVALUATION  

This section deals with the evaluation of the IMI and its functionalities in terms of complying with the 

user’s requirements, expectations and experiences. The survey instrument is a structured 

questionnaire that has been distributed during three scheduled demos in Greece, in which 105 

respondents took part. The demographics of the respondents are presented in Table II. 

 

Table II. Demographics of respondents (n=105) 

  Number Percentage (%) 

Sex: 

Male 

Female 

 

31 

74 

 

29.5 

70.5 

Age: 

Up to 20 

21 – 30 

31 – 40 

41 - 50 

 

21 

36 

20 

28 

 

20.0 

34.3 

19.0 

26.7 

Perceived familiarity in using computers: 

Not much 

Adequate 

Good 

 

8 

66 

31 

 

7.6 

62.9 

29.5 

Music Literacy: 

Not at all 

Not much 

Adequate 

 

50 

39 

12 

 

47.6 

37.1 

11.4 
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Good 4 3.8 

Familiarity with classical music:  

Not at all 

Not much 

Adequate 

Good 

 

48 

28 

21 

8 

 

45.7 

26.7 

20.0 

7.6 

 

A common rule for considering whether a sample size is acceptable is the ratio of sample size to the 

number of the latent variables parameters to be equal to 5 to 1 [Bentler and Chou 1987]. Taking into 

consideration that a sample size that follows this rule is equal to at least 90, it is concluded that the 

sample size of this study is acceptable. Figure 4 shows the workshops in progress, in which users 

experiment with IMI while learning and performing musical gestures. 

 

    
 

Fig. 4. IMI workshops where the users experiment with the IMI in both learning and performing/composing contexts 

During the workshops, the researchers presented the IMI to the participants and a number of 

expert musicians performed the musical expert gestures that are described in Section 4. Each of those 

experts used his/her personal musical style to perform on the IMI. Then, participants (users) were 

asked to identify basic referential elements, meaning musical gestures of the experts and each 

participant tried to imitate the gestures of his/her favorite expert on the IMI in order to control the 

expert sound. Figure 5 presents the operational model that was used. Operational model is an 

abstract and visual representation of how an activity is working, or in other words, it is the blueprint 

of this activity. Each “box” refers to a general construct, which is constituted by items (questions). 

Constructs were proposed by expert musicians, teachers and engineers, thus verifying content 

validity. Special attention was given to basic users, without any specific knowledge of music, in order 

to verify whether the IMI facilitates the learning of the expert gestures. 

The key concept of this operational model argues that the skills of the user on recognizing 

referential stylistic elements or even specific movement patterns of a given expert musician, mediate 

the relationship between the quality of interaction with gesture sonification and the performance of 

the user when playing on the IMI. Based on this operational model the specific goals of this evaluation 

may be summarized as follows: 
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Fig. 5. The IMI operational model indicating the relationship between quality of emotion detection and IMI performance 

 

G1. To evaluate the overall perceived performance of IMI, with respect to effectiveness (i.e. if IMI 

meets its objectives), efficiency (i.e. if IMI responses satisfactorily and in a short time in gestures, 

emotions and sound production), and satisfaction (i.e. if IMI provides satisfaction to the user).  

G2. To evaluate whether the personal style (in terms of gesture, music style, and emotions) of a 

performer (while s/he interprets classical or contemporary composers) can be recognized.   

G3. To evaluate the usability and the user-friendliness of the IMI in terms of “outer interactions”, such 

as hands, playing, and setup, and “inner interactions”, such as freedom, expression, feedback, 

motivation, and learning (see Section 5.1). 

G4. To evaluate whether the user’s experience on emotion detection, such as images, timing, and 

colors, influences the overall perceived performance of IMI, through the quality of interaction with 

gesture sonification and the users’ perception in recognizing the performer’s personal style.  

G5. To estimate the total influence of each entity on the overall perceived performance of IMI. 

5.1 Validating the IMI operational model 

Firstly, exploratory factor analysis (EFA) was performed in order to investigate the dimensions of the 

constructs proposed. All constructs were uni-dimensional, except for the construct with respect to the 

interaction with gesture sonification, which produced two dimensions (factors). These dimensions 

have been labelled “outer interactions”, including items such as placing hands (loading = 0.901), 

playing comfortability (0.847), and setup environment to perform (0.624), and “inner interactions”, 

including items such as freedom (0.656), expression (0.764), audio feedback (0.578), visual feedback 

(0.690), motivation (0.618), and learning (0.718). Furthermore, the Kaiser-Meyer-Olkin (KMO), 

measuring the sampling adequacy, and the Bartlett’s test of sphericity, measuring the 

appropriateness of factor analysis, was used [Field 2005]. The KMO value found to be equal to 0.776 

(i.e. above the critical value of 0.50) and Bartlett's test exact significance equal to 0.000 (i.e. bellow the 

critical value of 0.05). These findings, taking also into consideration the corresponding scree plot 

presented in Figure 6, indicated that factor analysis is appropriate for these data [Kaiser 1974]. In 

addition, the values of the estimated Cronbach Alphas (above 0.70) and the percentage of the total 

variance (above 50%), explained from factor analysis for each construct, verified the consistency of the 

survey instrument and the instrument content validity.  
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Fig. 6. Scree plot of factor analysis 

Furthermore, a joint confirmatory factor analysis (CFA) of all constructs as well as the Kolmogorov 

– Smirnov normality test [Smirnov 1948] for each construct individually were performed and then the 

operational model was estimated. The CFA test indicated that the constructs could be used in the 

estimation of the operational model, in the form presented in Figure 5. The normality tests indicated 

that all the constructs followed normal distribution patterns and thus the maximum likelihood test 

could be used in the estimation of the operational model. 

Table III presents the means and the standard deviations of all the constructs used in the study, 

and displays their bivariate correlation coefficients. Strong, positive and significant correlations 

between the variables involved are observed, supporting the hypotheses of the study. However, results 

based on correlations, although interesting, may be misleading due to the interactions between 

several variables [Katou et al. 2014].  

 

Table III. Means, standard deviations and bivariate correlation coefficients of all the constructs 

Constructs  

Mean 

(standard 

deviation) 

Correlation Coefficients 

Emotion 

detection 

Outer 

Interaction 

Inner 

Interaction 

Skills on 

recognizing  

Performance 

of IMI 

Emotion detection 
3.025 

(0.753) 
1     

Outer Interaction 
3.483 

(0.795) 
0.366** 1    

Inner Interaction 
2.981 

(0.711) 
0.475** 0.439** 1   

Skills on 

Recognizing 

3.127 

(0.686) 
0.421** 0.431** 0.561** 1  

Performance of 

IMI 

3.406 

(0.794) 
0.465** 0.382** 0.539** 0.455** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Therefore, in order to isolate the possible links between the variables involved in the operational 

model presented in Figure 5, the estimated path diagrams for this proposed framework are presented 

in Figure 7. The boxes represent exogenous or endogenous observed variables and the circles 

represent the related latent variables. The light arrows indicate the observed variables that constitute 
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the related latent variables and the bold arrows indicate the structural relationships between the 

corresponding variables. For comparison purposes, the numbers that are assigned to each arrow show 

the estimated standardized coefficients. However, under the structural estimated standardized 

coefficients, the numbers in brackets present the actual estimated coefficients and their standard 

errors, indicating that the confidence intervals for the estimated coefficients are very narrow. 

 

 
Fig. 7. Estimation results of the IMI operational model 

Table IV presents the fit indices that are attached to the results presented in Figure 7. The 

performance of the IMI operational model is very satisfactory as it can predict the IMI processes with 

93.7% overall accuracy. Taking into account that chi-square statistics may be inflated by significant 

correlations between constructs, the value of the normed-chi-square was used instead. In our case this 

value is very small (1.412), confirming the validity of our model and indicating that the proposed 

model is an adequate presentation of the entire set of relationships [Pedhazur and Pedhazur-Schelkin 

1991]. In addition, the values of the GFI and the CFI are above the corresponding critical values, 

verifying that the structure of the model fits the empirical data satisfactorily. However, the value of 

the NFI (0.738) is much less than its critical value, indicating the usual tendency to underestimate fit 

in relatively small samples [Bentler 1990].  
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Table IV. Assessment indices of the IMI operational model 

Assessment 

category 

Fit Indices 

ID Description  Pass criteria Value 

Overall 

Performance 

Evaluation Indices 

Chi-square Exact significance of Chi-square statistic >0.05 0.001 

Normed Chi-

square 
Chi-square / Degrees of freedom <5 1.412 

RMSEA 
Root Mean Squared Error Approximation 

(numerical value [0,1]) 
<0.10 0.063 

Individual Fit 

Indices 

GFI 
Goodness of Fit Index 

(numerical value [0,1]) 
>0.70 0.837 

NFI 
Normed Fit Index 

(numerical value [0,1]) 
>0.90 0.738 

CFI 
Comparative Fit Index 

(numerical value [0,1]) 
>0.90 0.903 

 

5.2 Evaluation results 

The above results highlight that the model satisfactorily predicts performance (all standardized 

coefficients are significant and positive, and fit indices are acceptable overall). Moreover, the skills on 

recognizing gestures, styles and the emotions of a performer fully mediate [Baron and Kenny 1986] 

the relationship between interaction and performance. The ease for placing of hands, degree of 

comfort, motivation, and learning are the most important interactional factors with IMI. In terms of 

emotional elicitation, the results highlighted the timing of the user’s emotional state as the most 

important factor. Furthermore, gesture recognition is the most important factor in determining 

performance effectiveness. Performance is also influenced by familiarity in using computers (all the 

other controls, such as sex, age, educational level, music literacy, used in the study were not 

significant). This means that IMI belongs to the so-called “Contingency Systems”, which support the 

view that the system maximizes its performance according to the specific context in which it is 

operating [Delery and Doty 1996]. However, it should be taken into consideration that the model and 

its estimation is based on perceived subjective data. Perceived data do not undermine the usefulness 

of the model and the whole IMI evaluation exercise. In any case, a further technical assessment 

exercise could also be employed to measure performance of the system in a more objective manner. 

Overall, Table V presents the total effect of each column variable on each row variable after 

standardizing all variables. For example, the standardized total (direct and indirect) effect of the 

“emotion detection” on satisfaction is 0.347. That is, due to both direct (unmediated) and indirect 

(mediated) effects of the “emotion detection” on satisfaction, when it goes up by 1 standard deviation, 

satisfaction goes up by 0.347 standard deviations (for further discussion of direct, indirect and total 

effects, see Kline [Kline 1998]). 

 

Table V. Total standardized effects for IMI operational model 

ID                     of 

Question 

(refers to the 

items in the 

Questionnaire in 

Appendix) 

 

Variable 

Abbreviation 

Constructs 

Emotion 

detection 

Inner 

Interaction 

Outer 

Interaction 

Skills on 

recognizing  

Performance 

of IMI 

Inner 

Interaction 
0.675 0.000 0.000 0.000 0.000 

Outer 

Interaction 
0.489 0.000 0.000 0.000 0.000 

Skills on 

recognizing 
0.644 0.761 0.267 0.000 0.000 

Performance of 

IMI 
0.482 0.569 0.200 0.748 0.000 

Q1.1.1 Hands 0.423 0.000 0.865 0.000 0.000 
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Q1.1.2 Comfort 0.374 0.000 0.766 0.000 0.000 

Q1.1.3 Pleasant 0.277 0.000 0.566 0.000 0.000 

Q1.1.4 Freedom 0.333 0.493 0.000 0.000 0.000 

Q1.1.5 Expression 0.387 0.573 0.000 0.000 0.000 

Q1.1.6 Sonification  0.396 0.586 0.000 0.000 0.000 

Q1.1.7 Visual 0.418 0.619 0.000 0.000 0.000 

Q1.1.8 Motivation 0.500 0.740 0.000 0.000 0.000 

Q1.1.9 Learning 0.459 0.680 0.000 0.000 0.000 

Q1.2.1 Colors 0.588 0.000 0.000 0.000 0.000 

Q1.2.2 Time 0.835 0.000 0.000 0.000 0.000 

Q1.2.3 Images 0.616 0.000 0.000 0.000 0.000 

Q2.1 Gesture 0.429 0.506 0.178 0.666 0.000 

Q2.2 Style 0.319 0.377 0.132 0.496 0.000 

Q2.3 Emotions 0.322 0.381 0.134 0.500 0.000 

Q3.1 Effectiveness 0.408 0.482 0.169 0.634 0.848 

Q3.2 Efficiency 0.313 0.369 0.130 0.485 0.649 

Q3.3 Satisfaction 0.347 0.410 0.144 0.539 0.721 

 

Table V could guide the designers of the IMI to put effort into improving entities in the system in 

order to get better results, as perceived by the users of the system; however, any amendment should 

take into consideration the cost-benefit analysis of each change. 

A summary of Table V is presented in Figure 8, where the relationship between the components 

(i.e. explanatory variables) and performance (i.e. dependent variable) of IMI is presented. This 

summary indicates both the mean values of each component and their contribution (loadings) to the 

performance of IMI. Thus, any amendment/update of the components will influence performance. 

 

 
Fig. 8. The relationship between components of IMI and its performance 

For amending/updating the components of IMI, the following rules should be considered:  

 

(1) the prediction accuracy index, explaining the relationship between the explanatory variables 

(components of IMI) and the dependent variable (dimensions of performance) should be as close as 

possible to one (perfect prediction);  

(2) the means of the variables (explanatory and/or dependent) should be as close to level five (perfect 

perceived user’s evaluation response); and  

(3) the loadings of the variables (explanatory and/or dependent) should be as close to one (perfect 

contribution to performance). 

 

Additionally, the following information are also used: 
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a) a low mean of a variable means that there is “room” for the corresponding component to be 

improved; however, a cost-benefit analysis should also be used to investigate how easy it is to 

improve a component; 

b) the high loading of a variable means that the corresponding component is important in 

determining performance.  

 

This means that in ranking the amendments/updates of the components of IMI, it should be taken 

into consideration whether there is “room for improvement” and whether there is a “high 

contribution”. This can be achieved by considering the following general rule, which accordingly 

determines a “component ranking index”: “The lower the ratio of the mean of a component is, the 

higher the priority for amendments/updates for this component”.  

Following this rule, the major conclusions and recommendations with respect to IMI can now be 

summarized. First of all, the components of IMI predict performance with very high accuracy (93.7%). 

The perception of the dimensions of IMI performance range between 3.30 and 3.50 (on a five-level 

Likert scale), indicating that the performance of IMI is above average. According to the component 

ranking index, the components of the IMI, in a descending order, are arranged as follows: outer 

interaction with gesture sonification (17.40), emotion detection (6.27), inner interaction with gesture 

sonification (5.24), and skills on recognizing performer’s qualities (4.17). Considering the arrangement 

in (3), it is recommended that the priority for improvements to be taken should be in the areas of 

“skills on recognizing performer’s qualities” and “inner interaction with gesture sonification”. 

Applying the same rule within the components of “skills on recognizing performer’s qualities”, priority 

for improvements should be taken in the areas of gestures (4.58), style (6.26), and emotions (6.36). 

Applying further the same rule within the components of “inner interaction with gesture sonification”, 

the priority for improvements should be taken in the areas of motivation (3.96), visual feedback (4.68), 

audio feedback/sonification (4.95), expressing (4.84), learning (5.00), and freedom (6.04). 

6. CONCLUSIONS  

A prototype natural user interface, named the Intangible Musical Instrument (IMI), was presented in 

this paper. From a technical point of view, this first prototype is able to capture, model and recognize 

musical gestures and emotions as well as to sonify gestures and emotions. The IMI is conceived to 

transmit the multi-layer musical ICH to the public, by developing a unified interface framework that 

supports learning, performing and composing with gestures. This means that the learning of gestural 

knowledge of expert performers becomes a first-person experience with the IMI. Most importantly, a 

significant effort has been made to put the user at the core of the musical performance and of 

composition with gestures in both combined and autonomous ways.  

Summarizing, the first evaluation of the IMI shows very satisfactory results in performance 

prediction. However, what emerges from the study described here is that future work should focus 

more on improvements in terms of research into expert musical gesture recognition as well as visual 

and audio feedback (sonification). Our future research should also focus on augmenting ordinary 

musical scores by providing gestural and emotional annotations together with the musical notation, in 

order to further facilitate the learning experience. 
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Appendix: 

 SECTION 1: QUALITY CHARACTERISTICS OF INTANGIBLE MUSICAL INSTRUMENT 

 

1. How would you rate the interaction with IMI? 

No. Interactive Characteristics  

Not  

at all  

Very 

much 

1 2 3 4 5 

1 How easy did you find it to place your hands correctly (correct octave) on the IMI?        

2 How comfortable did you find the playing/performance of the musical gestures on the 

IMI? 
     

3 How pleasant did you find the setup environment to perform with in terms of design 

and aesthetics (Plexiglas, motion sensors, brain activity sensors)? 
     

4 Did you feel that your gestures were more free compared to a real piano?      

5 To what extent could you express yourself through the IMI?      

6 How much did the IMI help you to improve/correct your gesture during performance, 

by comparing the sound that you produced in real-time (sonification/audio feedback) 

with the sound that you listened to while watching the video with the expert’s 

gestures? 

     

7 Did the virtual avatar (visual feedback) help you improve/correct the performance of 

your gestures? 
     

8 How much did the IMI activity of “Final Challenge” motivate you to focus more on the 

learning of fundamental musical gestures and activities? 

     

9 How much do you think the IMI would help you to learn musical gestures?      

 

2. How would you rate the quality of emotion detection?   

No. Emotions 

Very  

Bad 

Very 

good 

1 2 3 4 5 

1 To what extent did the images that were shown to you excite you emotionally?      

2 To what extent was the time enough for you to follow the emotional state at every 

level of the game? 

     

3 To what extent were the colors representative of emotions?       

 

SECTION 2: USER’S MUSIC PERCEPTION  

 

How easily can you recognize the personal style (expressiveness, gestures, sound) of a performer while s/he interprets 

classical or contemporary composers? 

No. Performer’s qualities  

Very  

Bad 

Very 

Good 

1 2 3 4 5 

1 Gestures      

2 Music Style (e.g. to understand differences between playing/performance while 
listening to the same piece of music) 

     

3 Emotions      

 

SECTION 3: PERFORMANCE OF THE IMI   

 

How would you rate the overall performance of the IMI? 

No. Performance Measures 

Very  

Bad 

Very 

Good 

1 2 3 4 5 

1 Effectiveness (if the IMI meets its objectives)      

2 Efficiency (if the IMI responds satisfactorily and in a short time to gestures, emotions 
and sound production) 

     

3 Satisfaction (if the IMI provides satisfaction to the user)      

Thank you very much for your co-operation. 
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