
HAL Id: tel-01537814
https://minesparis-psl.hal.science/tel-01537814v1

Submitted on 13 Jun 2017 (v1), last revised 18 Jul 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Waterpixels and their application to image segmentation
learning

Vaïa Machairas

To cite this version:
Vaïa Machairas. Waterpixels and their application to image segmentation learning. Image Processing
[eess.IV]. Université de recherche Paris Sciences et Lettres, 2016. English. �NNT : �. �tel-01537814v1�

https://minesparis-psl.hal.science/tel-01537814v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à MINES ParisTech

WATERPIXELS AND THEIR APPLICATION

TO IMAGE SEGMENTATION LEARNING
WATERPIXELS ET LEUR APPLICATION A L’APPRENTISSAGE STATISTIQUE DE LA SEGMENTATION

École doctorale no432

SCIENCES DES MÉTIERS DE L’INGÉNIEUR

Spécialité MORPHOLOGIE MATHÉMATIQUE

Soutenue par Vaïa MACHAIRAS
le 16 Décembre 2016

Dirigée par Etienne DECENCIÈRE
et Thomas WALTER

COMPOSITION DU JURY :

Mr Nicolas PASSAT
Université de Reims Champagne-Ardenne
Président

Mme Corinne VACHIER
Université Paris Est Créteil
Rapporteur

Mme Thérèse BALDEWECK
L’Oréal Recherche et Innovation
Membre du jury

Mme Valery NARANJO
Universidad Politécnica de Valencia
Membre du jury

Mr Jean SERRA
ESIEE, Membre du jury

Mr Etienne DECENCIÈRE
MINES ParisTech, Membre du jury

Mr Thomas WALTER
MINES ParisTech, Membre du jury

a

Remerciements
a
Cette thèse a été réalisée au Centre de Morphologie Mathématique (CMM), sur le site de Fontaine-
bleau de MINES ParisTech. Je tiens à remercier mes deux encadrants, Etienne Decencière (CMM)
et Thomas Walter (Centre de Bio-Informatique de l’Ecole) pour leur aide et leur confiance tout au
long de ces trois années. Leur implication, leur soutien et leurs conseils avisés m’ont permis de
beaucoup progresser et d’avoir toujours envie de me dépasser.

Je souhaiterais remercier les membres de mon jury, Mr Nicolas Passat (président du jury et rap-
porteur), Mme Corinne Vachier-Lagorre (rapporteur), Mme Thérèse Baldeweck (examinatrice),
Mme Valery Naranjo (examinatrice) et Mr Jean Serra (examinateur), pour leur intérêt pour les
waterpixels et de m’avoir permis d’obtenir le titre de Docteur en Morphologie Mathématique.

Pour qu’un enfant grandisse, il faut tout un village. (Proverbe africain) Cette thèse n’aurait
pas été si épanouissante, tant d’un point de vue scientifique que personnel, sans la présence d’un
grand nombre de personnes. J’ai eu la chance de pouvoir vivre cette belle expérience entourée
par la grande famille du CMM. Je tiens donc à remercier Fernand Meyer et Michel Bilodeau de
m’avoir accueillie pour mon stage puis ma thèse respectivement, et tous les collègues que j’ai pu
rencontrés pendant ces deux périodes: Dominique Jeulin, Serge Beucher, Jesus Angulo, Beatriz
Marcotegui, Petr Dokladal, Petr Matula, François Willot, Matthieu Faessel, Serge Koudoro, Bruno
Figliuzzi, Santiago Velasco-Forero, mais aussi Julie, Hellen, Vincent, Thibaud, Xiwei, Torben, El
Hadji, André, John, Dario, Andres, Bassam, Enguerrand, Emmanuel, Amira, Luc, Nicolas, Jia-
Xin, Joris, Jean-Charles, Gianni, Haisheng, Sebastien, Amin, Jean-Baptiste, Théodore, Robin,
Antoine, Kaiwen et Albane. Je n’oublierai pas les bons moments passés ensemble et toutes les
discussions que nous avons eu pour refaire le monde (avec ou sans morphologie mathématique).
Mention spéciale à mi hermanito, qui a été un modèle pour moi tout au long de ma thèse, et à la
team de printemps/été/automne/hiver qui a toujours été là pour moi et qui a été exceptionnelle en
toutes circonstances. Last but not least, rien n’aurait pu se faire sans la participation de Catherine
Moysan et Anne-Marie De Castro, deux secrétaires en or, d’une générosité sans bornes.

Je souhaiterais aussi remercier les collègues rencontrés en dehors du CMM, notamment Gaëlle,
Pascale, Laura, Claudie, Jihane, Emilie, Marine, Ricardo, Dariouche, Pierre, Nelson, Angélique,
Arezki, Julia, Aurélie et Lydia. Votre amitié a été très précieuse. Merci également à toute la team
du mardi, qui m’a suivie dans ce merveilleux projet avec confiance et enthousiasme. Vos sourires
et votre détermination ont été pour moi la plus belle des récompenses.

Je tiens à remercier tous nos collaborateurs sur ce projet : Peter Naylor du CBIO, Nicolas
Passat, Jimmy Francky Randrianasoa, Andrés Troya-Galvis, Pierre Gançarski en Alsace, David
Cardenas Pena en Colombie, Thérèse Baldeweck de L’Oréal Recherche et Innovation; ainsi que
nos collaborateurs lors de mon stage : Marie-Claire Schanne-Klein, Stéphane Bancelin, Carole
Aimé, Thibaud Coradin et Claire Albert.

Merci à Sabine Süsstrunk, Kawalina, Flavien, Kaem et Marine, Céline et Cain, Carolina et
Mehdi Kerkouche de m’avoir inspirée au cours de ces trois années. Merci aussi à Mme El Mejri,
Mme Rivière, Mme Adams, Mme Turin, Mohammed, Mr Baume et Mr Hébert pour leurs en-

1

seignements qui m’ont guidée jusqu’ici.

Je voudrais remercier tous mes amis pour leur soutien, en particulier Fabrice, Anthony, Cather-
ine, Murielle, Ouarda, Severine, Sixtine, Guianie et Julien.

Enfin un immense merci à toute ma famille, en particulier à mes parents et ma soeur Lara qui
ont toujours été là pour moi. Je vous aime.

Je terminerai avec deux citations utiles à tout doctorant préparant une thèse :

It always seems impossible until it’s done. Nelson Mandela.

Quand tu arrives en haut de la montagne, continue de grimper. Proverbe tibétain.

2

a
a

a

Résumé
a
a

a
a
L’objectif de ces travaux est de fournir une méthode de segmentation sémantique qui soit générale
et automatique, c’est-à-dire une méthode qui puisse s’adapter par elle-même à tout type de base
d’images, afin d’être utilisée directement par les non-experts en traitement d’image, comme les
biologistes.

Pour cela, nous proposons d’utiliser la classification de pixel, une approche classique d’appren
-tissage supervisé, où l’objectif est d’attribuer à chaque pixel l’étiquette de l’objet auquel il appar-
tient. Les descripteurs des pixels à classer sont souvent calculés sur des supports fixes, par exemple
une fenêtre centrée sur chaque pixel, ce qui conduit à des erreurs de classification, notamment au
niveau des contours d’objets. Nous nous intéressons donc à un autre support, plus large que le
pixel et s’adaptant au contenu de l’image : le superpixel.

Les superpixels sont des régions homogènes et régulières, issues d’une segmentation de bas
niveau. Nous proposons une nouvelle façon de les générer grâce à la ligne de partage des eaux,
les waterpixels, méthode rapide, performante et facile à prendre en main par l’utilisateur. Ces
superpixels sont ensuite utilisés dans la chaîne de classification, soit à la place des pixels à classer,
soit comme support pertinent pour calculer les descripteurs, appelés SAF (Superpixel-Adaptive
Features). Cette seconde approche constitue une méthode générale de segmentation dont la perti-
nence est évaluée qualitativement et quantitativement sur trois bases d’images provenant du milieu
biomédical.

a
a

a
a

3

a

4

a
a

a

Abstract
a
a

a
a
In this work, we would like to provide a general method for automatic semantic segmentation,
which could adapt itself to any image database in order to be directly used by non-experts in im-
age analysis (such as biologists).

To address this problem, we first propose to use pixel classification, a classic approach based
on supervised learning, where the aim is to assign to each pixel the label of the object it belongs
to. Features describing each pixel properties, and which are used to determine the class label, are
often computed on a fixed-shape support (such as a centered window), which leads, in particular,
to misclassifications on object contours. Therefore, we consider another support which is wider
than the pixel itself and adapts to the image content: the superpixel.

Superpixels are homogeneous and rather regular regions resulting from a low-level segmen-
tation. We propose a new superpixel generation method based on the watershed, the waterpixels,
which are efficient, fast to compute and easy to handle by the user. They are then inserted in the
classification pipeline, either in replacement of pixels to be classified, or as relevant supports to
compute the features, called Superpixel-Adaptive Features (SAF). This second approach consti-
tutes a general segmentation method whose pertinence is qualitatively and quantitatively evaluated
on three databases from the biological field.

a
a

a
a

5

a

6

a
a

a

List of the main abbreviations
a
a

a
a

CS Computational support
GT Groundtruth
ML Machine learning

MOMA Mathematical morphology
SAF Superpixel-adaptive feature
SP Superpixel
UC Unit of classification
WP Waterpixel

a
a

a
a

7

a

Contents

1 Introduction . 13

1.1 Context and motivation 13

1.2 Thesis outline 15

I Segmentation and Classification

2 Segmentation as a classification task . 21

2.1 General scheme for pixel classification 21

2.2 Features 22
2.2.1 Definitions . 23
2.2.2 Operators Ω and computational supports CS . 24

2.3 A powerful machine learning method: Random Forests 25
2.3.1 Principle and application to classification . 25
2.3.2 Settings . 28

2.4 Conclusion 29

3 Tools for segmentation evaluation: Application to the pixel classifi-
cation workflow . 31

3.1 Evaluation procedure 31
3.1.1 The L’Oréal database D1 . 32
3.1.2 The CAMELYON database D2 . 32
3.1.3 The Coelho database D3 . 35
3.1.4 Evaluation criteria . 35

3.2 Assessment of the pixel classification workflow on the three databases 39
3.2.1 Construction of the pixel classification pipeline . 39
3.2.2 Preliminary study on D1 . 41
3.2.3 Final results on the three databases . 42

3.3 Conclusion 44

II Waterpixels

4 Superpixels: A special case of low-level segmentation 57

4.1 Definition and properties 57
4.2 Related work 58
4.2.1 State-of-the-art generation methods . 59
4.2.2 Superpixels and watershed . 61

4.3 Evaluation procedure to assess superpixel performance 61

5 Waterpixels: A new superpixel generation method based on the wa-
tershed transformation . 65

5.1 Construction of Waterpixels 65
5.1.1 Selection of the markers . 66
5.1.2 Spatial regularization of the gradient and watershed . 72

5.2 Recap of the proposed method 73
5.3 Comparison with other watershed superpixels methods 73
5.4 Benchmark 74
5.4.1 Implementation details . 74
5.4.2 Results . 74
5.4.3 Computation time . 78

5.5 Conclusion, discussion and prospects 79

III Learning Segmentation with Waterpixels

6 How superpixels are used in the literature . 85

6.1 Examples of use in the literature 85
6.2 Superpixel classification 89
6.2.1 Principle . 89
6.2.2 Preliminary study on D1 . 90

6.3 Discussion and conclusion 96

7 SAF: Superpixel-Adaptive Features . 103

7.1 Principle 103
7.2 Comparison with other state-of-the-art methods 104
7.3 Preliminary study on D1 106
7.3.1 Best achievable prediction with waterpixels . 106
7.3.2 Study with different families of features . 106

7.4 Final results on the three databases 109
7.4.1 Presentation of the final results . 109
7.4.2 Discussion of the results . 112

7.5 Conclusion and prospects on SAF 121
7.5.1 Conclusion . 121
7.5.2 Prospects . 121

8 Conclusion and Prospects . 123

8.1 Conclusion 123
8.2 Prospects 124

A Appendices
A.1 Optimization of Random Forest parameters 129
A.2 Mean mismatch factor definition 130

B Bibliography

1 Introduction

Hope is a choice.
Mary Margaret, Once Upon a Time.

Résumé
L’objectif de ces travaux est de fournir aux non-experts en analyse d’image une méthode
générale de segmentation qui puisse s’appliquer facilement à toute base d’images sans
avoir besoin d’être adaptée à chaque fois par l’utilisateur. Ce chapitre présente le sujet
de thèse ainsi que le plan du manuscrit.

1.1 Context and motivation

Object recognition is one of the most challenging tasks in image analysis. It is particularly useful
in the biomedical field, for example, where progress in imaging techniques makes it possible to
acquire more and more images with an increasing precision in order to help biologists in their
analysis for instance. Processing this data (e.g. counting cells to compute the proportion of abnor-
mal ones, tracking a specific structure through hundreds of slices of a 3D volume corresponding
to the MRI of a brain, etc) turns out to be not only tedious (and a potential cause of errors) but
also a waste of time in the elaboration of the diagnosis or in the scientific progress towards a better
knowledge of biomedical phenomena. Therefore, images are more and more dealt with in an auto-
matic way, in order to save time and ease biologists every day life. This is also true in many other
fields, such as in security, urban scene understanding, remote sensing, or even social networks.

In this work, we focus on a special task of object recognition: semantic segmentation. Se-
mantically segmenting an image consists in partitioning it into regions which have a meaning, i.e.
which correspond to real objects in the scene. Each region of this resulting partition is defined
by a set of pixels which have the same intensity value. This value, called label, corresponds to a
unique class of objects (e.g. cars, cells, persons, . . .).

Chapter 1. Introduction

Figure 1.1 shows some examples of images with their corresponding possible semantic seg-
mentations. The case of image 1 illustrates the search for the main object in the foreground (here
a tree) in opposition to the background. Thus, the final segmentation presents only two labels.
Figure 1.1.d presents a segmentation of nuclei of image 2, which are assigned the same label as
they belong to the same class “nucleus”. Finally, the third case, image 3, emphasizes the fact
that, for a given image, a segmentation is not unique as we may want to isolate different types
of objects, leading each time to a different segmentation result. Figures 1.1.f and 1.1.g are two
possible segmentations of image 3, targeting respectively all figures and only the eight. Therefore,
the corresponding segmentation method must be designed to find the specified target. Moreover,
due to the difficulty of creating such a method, commonly used segmentation tools are often opti-
mized not only for a specific type of object but also to a specific type of images (imaging device,
acquisition conditions, etc). Dealing with new images and new objects hence requires, most of
the time, a different segmentation method to be designed, which takes time. It is worth noting that
in most cases, images are to be dealt with not one by one but rather gathered into databases, i.e.
sets of images sharing similar properties (same types of objects and/or same acquisition conditions
etc). Unfortunately, due to the variety of objects and images to be analyzed, it also takes time to
design for each database a specific segmentation method, as pointed out above.

(a) Image 1
a

(b) Segmentation of
the main object in (a)

(c) Image 2
a

(d) Segmentation
of nuclei in (c)

(e) Image 3
a

(f) Segmentation
of figures in (e)

(g) Segmentation
of eight in (e)

Figure 1.1: Segmentations of different images. Each segmentation presented here is a
groundtruth, i.e. what we would like to obtain at the end of the segmentation procedure. Often per-
formed manually, groundtruth is used as reference when evaluating quantitatively the performance
of a segmentation method.

In this work, our aim is to provide a general segmentation method which could be easily ap-
plied to any image database and by any user regardless of the latter’s potential (non-)knowledge
of image analysis tools.

We will address this issue with a classification framework (supervised learning). Image pixels
(or more precisely the vectors representing them) will constitute the data samples (at least in a
first phase) and the classes will represent the different objects we would like to find in the image
database. This approach requires that for each database, we already know the labels of some pixels
to perform the training phase, i.e. we know to which objects some pixels belong. For this purpose,

14

1.2 Thesis outline

we will use some images of the database which are already segmented by hand by the experts
needing the segmentation of their database. The machine learning method we use will hence try
to reproduce the best it can the way experts work when they visually analyze the content of their
images.

Remark 1: Thanks to our collaborations, we will focus mainly on databases coming from the
biomedical field (see Chap. 3). However, the proposed method is general and can be applied to
any other databases.

Remark 2: The considered databases presented groundtruth with complete annotations (i.e. pixels
were labeled), but only a set of examples for each object class would have been enough to perform
the training phase.

1.2 Thesis outline
As we have seen, the aim of this work is to provide a general segmentation method achieving good
performance on any image database without needing to be modified each time by the user (expert
or not in image analysis), as far as the latter provides some examples already segmented by hand
within the database to be segmented.

As previously announced, we first propose, inspired by the literature, to address this issue
with pixel classification, a general approach based on supervised learning. Part I is dedicated to
the set up and assessment of such a workflow. This method is indeed constituted of several steps,
which are expounded in Chap. 2. We then evaluate qualitatively and quantitatively this pipeline
on different databases to check if it achieves good segmentation results no matter what the asked
segmentation task is (see Chap. 3). This leads us to consider the solutions which could improve
this already promising method.

We subsequently focus on another image representation, superpixels, producing a special low-
level segmentation of the image. As pointed out by an abundant literature, this structure seems to
be a promising lead to improve segmentation performance when using the general framework of
classification.

In Part II, we remind what superpixels are and which specific properties they should satisfy
(see Chap. 4). With the help of another field of image analysis, namely Mathematical Morphol-
ogy, we propose a new method to generate them based on the watershed transformation (see Chap.
5). We show that these superpixels, hence called waterpixels, offer good performance in terms of
quality and computation time.

Once generated, these superpixels can be used to improve the classification pipeline performed
to obtain the final segmentation. Part III presents two different uses of waterpixels in such a work-
flow: superpixel classification (as proposed in the literature) and a novel application: Superpixel-
Adapative Features (SAF). They are expounded in Chap. 6 and Chap. 7 respectively.

Conclusion and prospects are then presented in Chap. 8.
a

15

Chapter 1. Introduction

While the aim of this work is to provide a general segmentation method, the main contribu-
tion of this PhD is to study the relevance of the image representation embodied by superpixels
in the proposed workflow.

On another level, we also would like to show that Machine Learning and Mathematical Mor-
phology are two powerful fields which can benefit from each other in order to go one step further
towards efficient and automatic object recognition.

We have decided to make our codes available to the scientific community. They can be down-
loaded on our website: http://cmm.ensmp.fr/∼machairas/. Programming was done in Python,
with the help of Morph-M (see Koudoro et al. [2012]), SMIL (see Faessel and Bilodeau [2013]),
scikit image (van der Walt et al. [2014]), numpy (Dubois et al. [1996], Ascher et al. [1999] and
Oliphant [2006]), mahotas (Coelho [2012]), scikit learn (Pedregosa et al. [2011a]) and Vigra li-
braries (Köthe [2000]).

16

I

2 Segmentation as a classification task . 21
2.1 General scheme for pixel classification
2.2 Features
2.3 A powerful machine learning method: Random

Forests
2.4 Conclusion

3 Tools for segmentation evaluation: Appli-
cation to the pixel classification workflow
31

3.1 Evaluation procedure
3.2 Assessment of the pixel classification workflow on

the three databases
3.3 Conclusion

Segmentation and
Classification

The aim of this thesis is to provide a general method to segment every image database by
supervised learning.

In this part, we propose to address this issue with a classic approach often used in the liter-
ature: pixel classification. Indeed, it consists in assigning to each pixel the label of the object
type it belongs to. At the end of the process, all pixels which have obtained the same label form
one or more connected components which belong to the same type of structures (e.g. cells, cars,
background, . . .). The result constitutes the semantic segmentation of the image.

If it is appropriately designed, this pipeline can perform supervised learning on every database,
requiring only, from the user, to provide each time some examples of images already segmented
by hand. This is why it is used by general segmentation software dedicated, for instance, to the
biological field (such as Ilastik by Sommer et al. [2011]).

In a first phase, we expound and set up such a workflow with general features (standard opera-
tors used by Ilastik, operators from mathematical morphology, textural features: Haralick and Ga-
bor filters) and Random Forests (Breiman [2001]). We apply this pixel classification to three dif-
ferent databases coming from the biological field (L’Oréal, CAMELYON16, Coelho et al. [2009])
and analyse the segmentation performance of this approach.

We conclude by suggesting to insert superpixels in this pipeline, a solution which is more
thoroughly presented and assessed in Parts 2 and 3.

19

2 Segmentation as a classification
task

La philosophie est écrite dans ce grand livre qui s’étend chaque jour devant nos yeux : l’univers.
Mais on ne peut le comprendre si nous n’apprenons d’abord son langage

et si nous ne comprenons les symboles avec lesquels il est écrit.
Galilée

Résumé
Dans ce chapitre, nous décrivons une approche classique de segmentation d’image qui
utilise l’apprentissage statistique pour s’adapter à tous types de bases d’images. En ef-
fet, le choix a été fait dans ces travaux de thèse de voir la segmentation comme une
tâche de classification, où l’objectif est d’assigner à chaque pixel l’étiquette du type
d’objet auquel il appartient. Nous exposons comment construire une chaîne de classi-
fication de pixels en utilisant des descripteurs de pixels généraux issus de la littérature
ainsi qu’une méthode d’apprentissage robuste et efficace : les forêts aléatoires (Breiman
[2001]). Cette chaîne sera évaluée qualitativement et quantitativement sur plusieurs
bases d’images dans le chapitre suivant.

In this work, we have decided to consider segmentation as a classification task, where the aim
is to assign to each pixel the label of the object it belongs to. This chapter is dedicated to expound
how pixel classification works (see Sec. 2.1), how we build this classic pipeline with elements
from the literature (see Sec. 2.2 and Sec. 2.3) and why it enables to design a general segmentation
method working on different databases.

2.1 General scheme for pixel classification

In this section, we will expound how pixel classification works on a given image database D . Note
that this procedure should be performed every time the image database changes.

Recall that database D is split into two subsets: DT (manual segmentations available) used
for training phase and DP (images to be segmented) used for prediction phase.

Let f : D→V be an image of D , where D is a rectangular subset of Z2, and V a set of values,

Chapter 2. Segmentation as a classification task

Figure 2.1: General scheme for pixel classification.

for example {0, . . . ,255} when f is an 8 bit grey level image or {0, . . . ,255}3 for color images.
The aim is to assign to each pixel x ∈ D a label l(x) ∈ C , where C= {c1,c2, . . . ,cK} is the set
of labels corresponding to the K categories of objects to be found. The scope of this work will
be limited to binary classification (i.e. C= {0,1}) but can easily be extended to more than two
classes. At this stage, the two classes could be “object (1) vs. background (0)” or “contour of an
object (1) vs. not an object contour (0)”. We will prefer here the region approach corresponding
to the former. This also implies that the groundtruth should be provided in the same format.

The general scheme for pixel classification is illustrated in Fig. 2.1. Note that pixels constitute
units of classification (UC), i.e. they are the elements to which we would like to assign a label
at the end of the process. As a supervised learning technique, classification is comprised of two
phases: a training step and a prediction step. The aim of training is to establish the classifica-
tion rules assigning a label to each pixel. As explained in the previous chapter, this first phase
is performed on the set of pixels of DT for which labels are already known since they are part
of the images which have already been manually segmented by experts. The task of the learning
method (notation: ML method) is to understand the link between this already known label and
the pixel’s properties which are subsumed into its vector of features. Then, in the second phase,
called prediction, any new pixel from DP can be assigned the label of the object it belongs to by
computing its vector of features and giving the latter as input to the learning method which will
apply the learned prediction function and find the pixel’s label.

Notation 2.1. If p is the number of features computed for a pixel x, then each vector v(x) is in Rp.
We denote by X ∈ Rn×p the data matrix which is given as input to the ML method for training,
where n is the number of pixels in DT .

In the following, we will get in more detail about the computation of the vector of features
(see Sec. 2.2) and the machine learning method used (see Sec. 2.3).

2.2 Features
In this section, we will explain how to obtain the vector of features v(x) ∈Rp of each pixel x used
for training or prediction.

22

2.2 Features

2.2.1 Definitions
First of all, what is a feature? A feature describes a pixel property. For instance, what is the inten-
sity of the pixel? Or what is its position on the x-axis in the image? As an example, if the former is
computed on a pixel of an 8-bit image, the answer will lie in the range [0,255]. Note that the result
may not be a number, e.g. when asking yes/no questions (Boolean) (e.g. is intensity greater than
140?), or if we get an histogram. In this work, all features used will be adapted so as to obtain a
single value in R: yes/no can be converted to {0,1}, an histogram with B bins can be converted to
B features, etc. Indeed, this conversion step, easy to perform, is necessary as it is compulsory for
the learning method used afterwards.

What is a “good” feature? A good feature is a feature that helps discriminate the data (here
the pixels) into the two classes defined in the ground truth, as illustrated in Fig. 2.2.a, where each
feature is represented by one dimension of the space: we can see that f1 is a discriminant feature
(it is easy to find a threshold which can split perfectly the data into two pure groups), whereas f2
is not. Note that, even if a feature is not discriminant on its own, it can still be useful combined
with others, as shown in Fig. 2.2.b. where the separation between the two classes must take into
account the two features f1 and f2 to be efficient. In our case, we have decided to compute a large
number of general features (i.e. not specific to a given task) in order to ensure the generality of
our method. Then, for each database, the power of discrimination of a given feature can vary, as
well as for all their possible combinations. To ensure a good classification performance, we have
chosen a machine learning method which is able, as far as possible, to discard “bad” features and
use only “good” ones among the general set provided (see Sec. 2.3).

Figure 2.2: What is a good feature?

More formally, a feature is defined as follows:

Definition 2.2.1 — Feature. A feature F can be described by the set of following elements:

F = {c,Ω,GEO,CS,Σ}

where:
1. Ω is the operator which is applied to the image (e.g. Identity, linear or non-linear filter-

23

Chapter 2. Segmentation as a classification task

ings, etc).
a

2. c is the channel, or the combination of channels, on which the operator is applied (e.g.:
Identity on the red channel to obtain the red intensity; L, a and b channels to compute the
Lab gradient, etc). In this work, all operators will be applied on a single channel.
a

3. CS is the computational support, i.e. the support on which the feature is computed. In-
deed, when describing a pixel, looking only at this very pixel may be somewhat limited.
On the contrary, widening the field of view may capture richer information. Therefore,
one can use various computational supports, from the pixel itself to some fixed neigh-
borhood or some fixed window centered on it.
a

4. Σ is the integrator. Indeed, when widening the computational support, the set of pix-
els included in the latter will give a set of corresponding values. If the computational
support has the same shape and size for every pixel, all these V values can be kept, thus
corresponding to V features, or they can be “integrated” into one to give a statistical rep-
resentation of this richer support, using, for example, the mean, the max, the min or the
standard deviation value.
a

5. GEO is a boolean corresponding to the way operators are applied on images (geodesic or
non-geodesic way). It will be explained into more details in Chapt. 6. For the moment,
we assume that each operator is applied to the whole image and that the integrated value
is computed afterwards on the computational support.
a

Remark: Note that we call unit of classification (notation: UC) the unit to be classified, i.e. the
unit to which we would like to assign a label at the end of the classification process. In this chap-
ter, UCs are the pixels. It is different from the concept of computational support (CS) which is
used as support to compute a feature in order to describe the properties of the chosen UC while
computing the latter’s vector of features. They can be the same (for example when we perform
a pixel classification with features computed on this very pixel) or different (pixel classification
with features computed on centered windows for instance).

In the following paragraph, we will review some operators and their combination with some
typical computational supports used in the literature for pixel classification. They will serve in the
next chapter to build a general pixel classification pipeline.

2.2.2 Operators Ω and computational supports CS

In addition to the Identity operator, all transformations and filtering techniques can be used as
operators to compute features. We will consider in particular four families of operators:

1. Standard operators previously used for pixel classification as in Sommer et al. [2011]:
Gaussian smoothing, Laplacian of Gaussian, Difference of Gaussian, Gaussian Gradient
Magnitude, eigenvalues of structure tensor (×2), eigenvalues of Hessian of Gaussian (×2).
Varying the parameter σ of the Gaussian leads to different filter responses.

2. MOMA, a set of non-linear transformations from the field of Mathematical Morphology:
erosion ε , dilation δ , opening γ , closing φ , white top hat T H, black top hat T Hi and morpho-
logical gradient MG (see Soille [2003] for a review). The structuring element neighborhood
and size are indicated each time as power and index respectively. Example: εV 6

3 denotes an
erosion whose structuring element is defined by size 3 and 6-connectivity neighborhood.

3. Gabor filters (Kamarainen [2003]), textural features, parametrized by the bandwidth of the

24

2.3 A powerful machine learning method: Random Forests

Gaussian, and two parameters for the sinusoide: its frequency and its direction.
4. Haralick features (Haralick et al. [1973]), textural features, averaged over all directions.
a

We have used the implementations of vigra (Köthe [2000]), SMIL (Faessel and Bilodeau [2013]),
scikit image (van der Walt et al. [2014]) and mahotas (Coelho [2012]) libraries for these four fam-
ilies respectively.

As far as computational supports are concerned, we focus on two usual CS to perform pixel
classification: the pixel itself and the window centered on it. Figures 2.3 and 2.4 show examples
of operators applied on the same image and integrated over these two CS respectively (Σ: mean).

Remark: Some of these operators highlight contour pixels vs. non contour pixels, instead of
highlighting objects pixel vs. background pixels. If the CS is the pixel, these features will not help
to discriminate objects vs. background as they will be considered as “bad” features discarded by
the Random Forests. If the CS is wider, such as a sliding window, they will give information on
contour statistics in this area; hence they can serve as textural features enabling to discriminate
objects from one another.

2.3 A powerful machine learning method: Random Forests
Random Forests (RF), an efficient machine learning method, have been chosen to process the data.
Proposed by Breiman [2001], a random forest relies on a set of decision trees which each outputs
a probability, for each data sample, to belong to a given class, and realizes afterwards a consensus
between their classification results to obtain the final labels. This section expounds more thor-
oughly how random forests work and thus why they are well suited for the design of a general
segmentation paradigm using classification.

2.3.1 Principle and application to classification
Binary decision tree and classification
A random forest is a collection of B binary decision trees. In this paragraph, we will define what
is a binary decision tree and show how to use it for the binary classification of data samples (i.e.,
in our case, pixels of a given database D). More information can be found in Breiman [2001] and
Peter et al. [2015].

Definition 2.3.1 — Binary decision tree. A binary decision tree b is a hierarchically organized
set of nodes such that, starting from a root node, each node has exactly 0 or 2 child nodes. A
node without children is called a leaf (or terminal node). Each non-terminal node contains a
binary decision called splitting function designed to route instances towards the left or right
child node. Each instance sent initially to the root recursively passes through the tree until it
reaches a leaf.

It is possible to use a binary decision tree for classification: the idea is to route every data
sample, sent initially to the root, through the nodes until it reaches a leaf which will contain
information on its most probable class label. The construction of such a tree is performed during
the training phase, during which all splitting functions are found, with the help of the already
known labels of the training set. The aim of a splitting function is to split data seen by a given
node into two subsets which are “purer” than the set seen by this very node, i.e. that each subset
should then contain an increased majority of one data class label over the other one. How can
we find the splitting function associated to a given node i? Let F be the set of features used to

25

Chapter 2. Segmentation as a classification task

(a) Identity (b) Erosion εV 6
3 (c) Dilation δV 6

3 (d) Opening γV 6
3

(d) Closing φV 6
3

a
(e) Morphological

gradient
(f) Top Hat T HV 6

3
a

(g) Inverse Top Hat
T HiV 6

3

(h) Gaussian
smoothing

(i) Laplacian of
Gaussian

(j) Difference of
Gaussians

(k) Gaussian Gradient
Magnitude

(l) Eigenvalue 1 of
structure tensor

(m) Eigenvalue 2 of
structure tensor

(n) Eigenvalue 1 of
Hessian of Gaussian

(o) Eigenvalue 2 of
Hessian of Gaussian

(p) Gabor filter 0° (q) Gabor filter 45° (r) Gabor filter 90° (s) Gabor filter 135°

Figure 2.3: Application of some operators (with typical parameter values) on an image from the
Berkeley segmentation Database (Martin et al. [2001]). CS: pixel.

compute the vector of features of each pixel, with values in R. A splitting function can be defined
as a couple (f ,θ) ∈F ×R where f is a feature and θ is a threshold. For a given node i seeing a
subset of data Si, we define the two subsets S f ,θ

i,L = {x ∈ Si| f (x)≤ θ} and S f ,θ
i,R = {x ∈ Si| f (x)> θ}

and the information gain generated by this split as:

IG(Si, f ,θ) = G(Si)−
|S f ,θ

i,L |
|Si|
×G(S f ,θ

i,L)−
|S f ,θ

i,R |
|Si|
×G(S f ,θ

i,R) (2.1)

where G(Si) is a purity measure of the set Si (the Gini index, Gini [1912], in our case). In practice,
to create a split given a feature f and a set of samples Si, we consider t thresholds θ1,θ2, . . . ,θt

regularly distributed between the extreme values of f (p) observed over all p ∈ Si. The threshold
providing the highest information gain is retained and defines the information gain IG(Si, f) of
the feature f given Si. Then, the retained splitting function (f̂ , θ̂) is determined by keeping the
feature f̂ providing the highest information gain, together with its corresponding best threshold θ̂ .

26

2.3 A powerful machine learning method: Random Forests

(a) Identity (b) Erosion εV 6
3 (c) Dilation δV 6

3 (d) Opening γV 6
3

(d) Closing φV 6
3

a
(e) Morphological

gradient
(f) Top Hat T HV 6

3
a

(g) Inverse Top Hat
T HiV 6

3

(h) Gaussian
smoothing

(i) Laplacian of
Gaussian

(j) Difference of
Gaussians

(k) Gaussian Gradient
Magnitude

(l) Eigenvalue 1 of
structure tensor

(m) Eigenvalue 2 of
structure tensor

(n) Eigenvalue 1 of
Hessian of Gaussian

(o) Eigenvalue 2 of
Hessian of Gaussian

(p) Gabor filter 0° (q) Gabor filter 45° (r) Gabor filter 90° (s) Gabor filter 135°

Figure 2.4: Application of some operators (with typical parameter values) on an image from the
Berkeley segmentation Database (Martin et al. [2001]). CS: window of radius r = 10.

After splitting, S f̂ ,θ̂
i,L and S f̂ ,θ̂

i,R are respectively sent to the left and right child nodes. The process is
recursively repeated until a maximum depth of the tree is reached or until the number of samples
sent to child nodes is too low, in which case a leaf is created. The posterior probability stored at a
leaf is defined as the class distribution over the arriving subset of labeled samples.

This way, after the training phase is performed, any unlabeled data sample (pixel from DP)
passes through the tree starting from the root and reaches a leaf. The label of the majority class in
the posterior probability of this leaf (stored during training) is then assigned to this data.

Random forests and classification

If a binary decision tree is a good candidate for classification, it is nevertheless prone to over-fitting
(i.e. fitting too well to the training data and losing the generality, i.e. the ability to adapt well to
any new data). The idea of random forests is thus to combine the decision of a large number of

27

Chapter 2. Segmentation as a classification task

trees to limit over-fitting. For this to be successful, trees must be as decorrelated from one another
as possible. Two sources of randomness are introduced to enforce the specialization of the trees:

1. Each tree sees a different subset of the training data. If |DT |=m, then each tree sees m data
samples which have been selected in DT by uniform random sampling with replacement.

2. At each node, only a uniform randomly sampled subset of features is considered when
looking for the best candidate and hence best splitting function.

Note that, for prediction, the final label assigned to a data sample is the most represented label
among the b labels output by the b trees.

2.3.2 Settings
a

Subsampling
To reduce the computation time of the training phase, a random and balanced sub-sampling has
been applied to the training set DT , which was reduced to 100 000 samples.

Missing values
Random forests are not able to deal with missing values in the data matrix X given as input. Yet, it
may not be possible to compute some features in certain cases, leading to missing values. We can
manage those by replacing them with consistent values. Our replacement strategy is the following.
We remind that in the data matrix X ∈ Rn×p, the rows correspond to samples and the columns to
features. For each row i (i∈ {1, . . . ,n}), we define by Ji the set of column numbers for which there
is a missing value:

Ji = { j ∈ [1, p]|X(i, j)is a missing value} (2.2)

Let us suppose that there is one or more missing values in row i0. We search for the five other
rows i1, i2, i3, i4 and i5 (without missing values) which are the most similar to row i0, i.e. which
minimize the most the following cost:

∑
j/∈Ji0

(X(i, j)−X(i0, j))2 (2.3)

Once the {il}l∈[1,5] are found, each missing value in i0 is replaced by the average of the other five
values located in the same column:

∀ j ∈ Ji,X(i0, j) =
1
5

5

∑
l=1

X(il, j) (2.4)

Random Forest parameters
Random forests offer many parameters that must be tuned to achieve good classification perfor-
mance. The main parameters are the number of trees, the purity criterion, the number of features
to be considered when looking for the best split and the maximal depth of a tree. Parameter values
have to be optimized based on the number of training samples, the number of features used and
the database considered. In practice, we will perform a model selection procedure during training
to find the best possible tuple of values (v values if there are v parameters). Let us suppose that the
considered database D is split into 3 subsets called train, validation and test subsets (D train, Dval
and D test respectively). Let M= {M′,M∞, . . . ,ML } be the set of model candidates (i.e. random
forests with different sets of parameters values). The correct procedure should be as follows:

1. Each model M l, l ∈ [0,L] is trained on D train, then applied on Dval for prediction and
evaluation of the classification performances.

2. The model M l̂ which achieves the best performances on Dval is chosen.

28

2.4 Conclusion

3. The selected model M l̂ is applied for prediction on the test subset D test to obtain the final
classification performance estimation.

If the database is only constituted of a train and a test subsets DT and DP , which is generally
the case, the first subset should itself be split into train and val parts: DT = {D train;Dval}. But
how can we be sure that this split does not impact the classification performance, i.e. that another
split could not have led to different classification performance? To address this issue, we generally
perform cross-validation to evaluate a model candidate. It consists in randomly splitting DT into
k folds, performing the training on k−1 folds and prediction on the remaining fold, repeating this
process k times (one for each of the k different folds). The k results are then averaged to give a
fair evaluation of the candidate model. Note that two folds should not contain pixels of the same
image in order to avoid the overestimation of classification performance.

How to choose the features?
As, in the most widely used version of RF, the split at each node of the tree is performed with a
feature that is selected among some random subset of the original feature set, such that it optimizes
the separation of training samples, there is an inherent feature selection. If the number of irrelevant
features is not too high, the model will therefore tend to disregard the most irrelevant features by
construction. Hence, no feature selection, and therefore no input is required from the user.

Implementation
In this work, we have used the random forests implemented in scikit learn (Pedregosa et al.
[2011b]), a Python machine learning library. We have used typical values for RF parameters
(see Breiman [2001]), except for two parameters which were automatically optimized for each
database: the number of trees n_estimators (increasing this number aims at reducing over-fitting
but also increases computation time) and min_samples_lea f which is linked to the depth of the
trees (the minimum number of data samples in a leaf for the latter to be kept while building the
tree during training).

2.4 Conclusion
In conclusion, we have presented in this chapter the pipeline of pixel classification which will serve
as general segmentation method to be applied on different databases. We have reviewed how to
compute the features and how the machine learning method works. Next chapter is dedicated to
the construction and assessment of such a workflow on various databases.

29

3 Tools for segmentation evaluation:
Application to the pixel
classification workflow

Great dancers are not great because of their technique,
they are great because of their passion.

Martha Graham

Résumé
L’objectif de ce chapitre est d’évaluer les performances de la segmentation par classi-
fication de pixels. Nous nous intéressons en particulier aux différences que l’on peut
observer entre deux supports de calcul utilisés classiquement pour calculer les descrip-
teurs associés au pixel : soit le pixel lui-même, soit la fenêtre glissante centrée chaque
fois sur le pixel. Nous terminons en proposant d’utiliser un support plus adapté au calcul
afin d’améliorer les performances de segmentation. Cette solution sera ensuite dévelop-
pée dans les parties 2 et 3 du manuscrit.

The aim of this chapter is to assess the pixel classification pipeline on different databases
in order to evaluate its segmentation performance and its general behavior. As previously said,
general features are favored to compute the data matrix X which is given as input to the random
forest. More specifically, we investigate two computational supports to classify a pixel: either the
pixel itself, or a window of a given size centered on this very pixel. The evaluation procedure is
described in the first section.

3.1 Evaluation procedure

This section expounds how pixel classification, as well as other future pipelines proposed in this
manuscript, will be evaluated. To check if the method used is general, we choose three databases,
called D1, D2 and D3, which exhibit different properties (size, types of objects, acquisition pro-
cedures, etc). They come from the biological field. Segmentation in all three cases plays a crucial
role for quantification of experimental outcomes. The concrete applications however are very di-
verse and range from fundamental research in cell biology to industrial applications. They are
presented in paragraphs 3.1.1 to 3.1.3. Paragraph 3.1.4 focuses on the quantitative criteria used to
evaluate segmentation perfomances of the considered approach(es).

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

3.1.1 The L’Oréal database D1

The first database D1 is provided by L’Oréal Recherche et Innovation, thanks to the collaboration
with Thérèse Baldeweck.

This database contains images of reconstructed skin, acquired by multiphoton microscopy. In
these images, we can distinguish melanocytes (bright elongated cells) as well as keratinocytes
(circular structures). The role of both types of cells is illustrated in Fig. 3.1.a. Melanocytes are
melanin-producing cells located in the bottom layer (the stratum basale) of the skin’s epidermis,
the middle layer of the eye (the uvea), the inner ear, meninges, bones, and heart. Melanin is the
pigment primarily responsible for skin color. Once synthesised, melanin is contained in a special
organelle called a melanosome. Melanosoma are moved along the dendrites (arm-like structures)
of the melanocytes, so as to reach the keratinocytes which will migrate to the surface of the epi-
dermis, protecting themselves (i.e. their DNA) thanks to the melanin. An example image from the
database can be seen in Fig. 3.1.b., with a zoom on a melanocyte in Fig. 3.1.c. and a zoom on a
keratinocyte in Fig. 3.1.d. .

The database D1 contains 8 2D grey-level images of size 511x511 pixels. The aim is to seg-
ment all melanocytes in D1, i.e. to obtain the label 1 for all pixels belonging to a melanocyte and
the label 0 for any other pixel (background, keratinocytes, etc). The corresponding groundtruth
have been produced by an expert from L’Oréal Recherche et Innovation. The eight pairs of corre-
sponding images are presented in Fig. 3.2 (with enhanced contrast).

Specific segmentation methods exist for this database, proposed in Serna et al. [2014]. The au-
thors provide a new segmentation method working well on elongated objects such as melanocytes.
Images are represented as component trees using threshold decomposition. Elongation and area
stability attributes are combined to define area-stable elongated regions. A qualitative and quanti-
tative comparison is made with another segmentation method from the state-of-the-art: maximally
stable extremal regions (MSER) by Matas et al. [2002]. This method is general but has to be
specifically tuned in order to achieve good performance on the considered database. In the follow-
ing, we will benchmark our pipeline(s) against these two approaches, denoted by Serna et al. and
MSER.

3.1.2 The CAMELYON database D2

This database is extracted from the recent CAMELYON16 challenge database (ISBI16). This
challenge aims at facilitating and improving breast cancer diagnosis by automatically detecting
metastases in whole-slide digitized images of lymph nodes. Indeed, metastatic involvement of
lymph nodes is a highly relevant variable for breast cancer prognosis; however, the diagnosis pro-
cedure for pathologists is “tedious, time-consuming and prone to misinterpretation” as pointed out
by the organizers. Hence, an automatic and efficient detection of such structures becomes essen-
tial. Their database is constituted of 400 whole-slides images (270 for train, with GT, and 130 for
test, without GT) collected in the Radboud University Medical Center as well as in the Univer-
sity Medical Center Utrecht from the Netherlands (see Fig. 3.3 and Fig. 3.4). These images are
provided in a multi-resolution pyramid structure, which makes their processing even more chal-
lenging (e.g. one slide is too big to be stored in RAM for pertinent high resolutions). Therefore,
we extract a simplified database, consisting in selected crops of size 500×500 pixels at resolution
2 of the train slides (for which GT are provided). These regions of interest are equally chosen

32

3.1 Evaluation procedure

(a) General Scheme

(b) Image of D1 (c) Zoom on a melanocyte (d) Zoom on a keratinocyte

Figure 3.1: Melanocytes and keratinocytes. Scheme provided by L’Oréal.

33

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

(a) im1 (b) im2 (c) im3 (d) im4

(e) im5 (f) im6 (g) im7 (h) im8

(i) GT of im1 (j) GT of im2 (k) GT of im3 (l) GT of im4

(m) GT of im5 (n) GT of im6 (o) GT of im7 (p) GT of im8

Figure 3.2: The L’Oréal database D1.

34

3.1 Evaluation procedure

among four configurations1 to be representative of the original database and ensure a pertinent
new training. What we call the CAMELYON database D2 is then constituted of 317 images of
size 500×500 pixels (217 for train and and 100 for test). Some examples are shown in Fig. 3.3
and Fig. 3.4. Note that two images from train and test subsets respectively must come from two
different slides in order to ensure a pertinent evaluation of classification performance. The same
remark can be made for cross-validation: two folds should not contain crops, or pixels, coming
from the same slide.

Our aim is to segment (and not only detect) all metastatic regions in D2, i.e. assign the label
1 to all pixels belonging to a tumoral region and the label 0 otherwise. Groundtruth, performed by
a pathologist, are also shown in Fig. 3.4.

As this challenge is recent (April, 2016), and to the best of our knowledge, only participating
teams’ solutions are available for this database. However, the challenge task consisted in detecting
tumoral regions (only one point per region being required) rather than precisely segmenting them.
Therefore, no specific method can be used to benchmark our general pipeline(s) in the following.

3.1.3 The Coelho database D3

This database has been made available by Coelho et al. [2009]. Originally created for a study
of pattern unmixing algorithms, it is now often used for benchmarking segmentation methods. It
contains 50 images (of size 1349×1030 pixels) of U2OS cell nuclei (human bone osteosarcoma
epithelial cells nuclei), acquired by fluorescence microscopy. We split the database into a train
(30 images) and test (18 = 20-2 images, two images being discarded as in Coelho et al. [2009])
subsets. For this database, the aim is to segment the cell nuclei, as shown in Fig. 3.5.

One specific segmentation method, designed by Thomas Walter, can be used to benchmark
our general pipeline(s) in the following. It consists in a three-level Otsu thresholding, after toggle-
mapping and median filterings.

Examples of segmentations performed by competing specific methods will be shown together with
our general pipeline classification results in this very chapter as well as in the final chapter (Chapt.
7).

3.1.4 Evaluation criteria

Defining what is a good segmentation is often challenging in the field of image analysis. In our
framework however, this task happens to be easy as the groundtruth of each image is provided
(at least in the train and val sets of the database). Hence, the more a segmentation resembles its
corresponding groundtruth, the higher its quality is. We have chosen five well-known classifica-
tion evaluation criteria to measure this similarity, namely precision P, recall R, F-score F , Jaccard
index J and overall pixel accuracy Acc. They are defined in the next paragraph.

Let I : D→V be an image of a given database D , where D is a rectangular subset of Z2, and
V a set of values. Let IGT : D→ {0,1} be a groundtruth of I and IRES : D→ {0,1} be the result
of the classification procedure applied to I. A pixel x ∈ D is said to be detected if IRES(x) = 1, i.e.
if it has obtained the label 1 at the end of the classification process. Then, we define true positive,

11) tumoral tissue only, 2) non-tumoral tissue only, 3) frontier between tumoral and non-tumoral tissues, 4) frontier
between tissue and white background. Extraction implemented by Peter Naylor and performed by Thomas Walter, both
from CBIO, MINES ParisTech.

35

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

Figure 3.3: One image example from database D2.

36

3.1 Evaluation procedure

(a) Example 1 (b) GT of (a)

(c) Example 2 (d) GT of (c)

(e) Example 3 (f) GT of (e)

Figure 3.4: Examples from the CAMELYON16 database D2.

37

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

true negative, false positive and false negative as follows:

Definition 3.1.1 — True positive (TP). A pixel x ∈ D is said to be a true positive if and only if
IRES(x) = 1 and IGT (x) = 1, i.e. it has been detected and it truly corresponds to an object pixel
in the groundtruth.

Definition 3.1.2 — True negative (TN). A pixel x ∈ D is said to be a true negative if and only
if IRES(x) = 0 and IGT (x) = 0, i.e. it has not been detected and it corresponds to a background
pixel in the groundtruth.

Definition 3.1.3 — False positive (FP). A pixel x ∈ D is said to be a false positive if and only
if IRES(x) = 1 and IGT (x) = 0, i.e. it has been detected but it does not correspond to an object
pixel in the groundtruth.

Definition 3.1.4 — False negative (FN). A pixel x ∈ D is said to be a false negative if and
only if IRES(x) = 0 and IGT (x) = 1, i.e. it has not been detected but it corresponds to an object
pixel in the groundtruth.

In the following, we call TP (respectively TN, FP and FN) the subset of pixels which are true
positives (respectively true negatives, false positives and false negatives) among a set of pixels
coming from one or more images.

Definition 3.1.5 — Evaluation criteria. Let P be a set of pixels.
• The precision P of P gives the proportion of detected pixels which are truly object

pixels:

P =
|T P|

|T P|+ |FP|
(3.1)

• The recall R of P indicates the proportion of object pixels which have been detected:

R =
|T P|

|T P|+ |FN|
(3.2)

• The F-score F of P realizes a trade-off between P and R by taking their harmonic mean:

F =
2×P×R

P+R
(3.3)

• The Jaccard index J proposed in Jaccard [1901]: for each image, two sets are considered:
the object pixels and the detected pixels. The cardinal of their union and the cardinal of
their intersection are computed. The process is repeated and summed over all images
constituting the set P . The Jaccard index expresses the ratio between the total cardinal
of the intersections over the total cardinal of the unions:

J =
vol(intersection)

vol(union)
(3.4)

38

3.2 Assessment of the pixel classification workflow on the three databases

• The overall pixel accuracy Acc is the percentage of pixels which have been correctly
classified:

Acc =
1
|P| ∑p∈P

Ind(p) (3.5)

where Ind is a function which equals 1 in p if Ires(p) = IDET (p) and 0 otherwise.

To these five criteria evaluating the classification performance at the pixel level, we also add
one criterion specific to segmentation: the average number of connected components Nb_cc.
This measure highlights the parcelling out of the detected objects. Indeed, let Nb be the number
of objects to be found in an image. We would like Nb_cc to be as close as possible to Nb. The
higher Nb_cc is compared to Nb, the more objects are split into different parts, which makes their
future analysis more difficult, or even meaningless. This measure is thus important to evaluate the
quality of a segmentation.

These six measures are to be applied on a binary image. Note that Random Forests output, for
each image to be segmented, a probability map giving for each pixel of the image the probability
to belong to class of label 1 (the object class in our case). Thresholding this probability map with
different thresholds will give different resulting binary images. For preliminary studies (see Sec.
3.2.2, 6.2.2 and 7.3), we will use an intermediate probability threshold of 0.5 and display examples
obtained with this very threshold. For final results, presented in 3.2.3 and 7.4, the six criteria will
be expressed as a function of this probability threshold, and thresholds used for illustration images
will be specified every time. Last but not least, evaluating performance with varying thresholds
allows us to use another usual curve: the receiver operator characteristics (ROC curve). This
curve is created by plotting the true positive rate against the false positive rate. The true positive
rate (TPR), also called sensitivity or detection rate, is equal to recall R. The false positive rate
(FPR), also know as 1-specifity, fall-out or probability of false alarm, is defined by:

FPR = 1− T N
T N +FP

=
FP

T N +FP
(3.6)

We are now going to apply the pixel classification pipeline to the three different databases and
analyze their results thanks to the six aforementioned criteria.

3.2 Assessment of the pixel classification workflow on the three databases
In this section, the pixel classification workflow is assessed with the evaluation procedure de-
scribed in Sec. 4.3.

3.2.1 Construction of the pixel classification pipeline
As explained in the previous chapter, the first solution we propose in order to address our problem-
atic is to set up the usual pixel classification pipeline. Usually, the different steps are specifically
optimized for the considered database to provide the best possible performance. However, in our
case, we must ensure that these steps keep general or adapt themselves without requiring an input
from the user (as soon as she/he provided the training set). Let us study the dependence in the
database for each step of the pipeline :
a

• The unit of classification (UC), i.e. the pixel, exists and is the same for each database. Hence
no tuning is required.

• The set of features used to compute the data vector of each UC should be discriminant for the
given database and the given segmentation task to offer good performance, that is why it is

39

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

(a) Image from D3 (b) GT of (a)

(c) Image from D3 (d) Image from D3 (e) Image from D3

Figure 3.5: Examples from the Coelho database D3.

often specifically optimized in the literature. The problem is that a set of features optimized
for a given database is likely to perform badly, or at least with decreased performance, on
another database. In our case, the idea will be to use a set of general features and rely on
random forests to find, for each database, the most discriminant features among them while
discarding as much as possible the non-pertinent ones. The advantage is to avoid a manual
feature selection step which would require a time-consuming (and sometimes not obvious)
input from the user otherwise.

• The parameter values of the random forest (machine learning method) are also to be tuned
for each database. However, these parameters can be optimized automatically by cross-
validation (nested cross-validation for D1), so no tuning has to be manually done by the
user. Moreover, the subsampling parameters are kept constant for all training phases.

a
To sum up, only the feature selection procedure must be performed carefully to achieve good per-
formance whatever the database is. We also pay attention to the fact that their computation should
not be prohibitive for the user, in particular as far as computation time is concerned. That is why
we limit the number of selected features in the pipeline, computing them only on the most infor-
mative channel for each database for instance.

As far as the CS is concerned, we will focus on two usual supports: the pixel itself and the
sliding window centered on this very pixel. Therefore, we will compare the segmentation perfor-
mance for two different versions of the pipeline:
a

• Pipeline P pix: pixel classification with CS = pixel only.
a

• Pipeline Pwin: pixel classification with CS = sliding window only.
a

There is no parameter to be tuned for the CS when it is the pixel. For CS = sliding window
however, we must set its shape and size. We will use four different sizes of square windows to inte-

40

3.2 Assessment of the pixel classification workflow on the three databases

Pipeline Family # scales a CS-scale = Sum
P pix Identity 1 x1 x1 pixel 1

MOMA 7 x3 sizeSE ∈ {1,3,5} x1 pixel 21
Gabor 1 x(3x4x3) bd ∈ {1,2,3} x1 pixel 36 58

θ ∈ {0, π

4 ,
π

2 ,3
π

4 }
f req ∈ {0.3,0.5,0.7}

Pwin Identity 1 x1 x4 r ∈ {5,10,15,20} 4
MOMA 7 x3 sizeSE ∈ {1,3,5} x4 r ∈ {5,10,15,20} 84
Gabor 1 x(3x4x3) bd ∈ {1,2,3} x4 r ∈ {5,10,15,20} 144 232

θ ∈ {0, π

4 ,
π

2 ,3
π

4 }
f req ∈ {0.3,0.5,0.7}

Table 3.1: Recap of the features used for pipelines P pix and Pwin. Note: MOMA stands for
“mathematical morphology operators”, Gabor for “Gabor filters”.

grate multi-scale information (radius r ∈ {5,10,15,20} corresponding to squares of sizes 11×11,
21×21, 31×31 and 41×41 respectively). For operators, we take identity, the seven operators from
Mathematical Morphology presented in Chapt. 2, with three scales of structuring element (V6
neighborhood), as well as Gabor filters with different bandwidths bd, directions θ and frequencies
f req. This leads us to a set of 58 features for P pix and a set 232 features for Pwin (see a recap in
Tab.3.1).

Remark: The lowest scale (11×11) is intended to define a support smaller than the smallest object
in the image. If it is not the case, i.e. if the window is wider than the objects of interest, we advise
the user to adapt the image resolution for objects to span more pixels and be more easily detected.

To understand better the behavior of both pipelines, we first conduct a preliminary study on
database D1 with different families of operators.

3.2.2 Preliminary study on D1

In this subsection, we focus on the L’Oréal database. Random forest parameters are not yet opti-
mized but are set to consistent values to perform the comparison (100 trees, 100 data samples at
least in each leaf at the end of training). Since this database contains few images, a leave-one-out
procedure is applied to evaluate the segmentation performance.

Quantitative results for both pipelines and for different families of features are presented in
Tab. 3.2.

Let us start by the analysis of pipeline P pix’s performance (CS = pixel). We can see that using
only the identity is not enough to capture the main information, as classification performance is
poor: F = 63%, J = 46% and Acc = 86%. This is not surprising due to the high amount of noise in
these images. Moreover, the number of connected components is very high (Nb_cc= 8153±147),
which traduces a poor spatial coherence of detected objects. Indeed, there are, in average, five
melanocytes to detect per image. The higher Nb_cc is compared to five, the more detected objects
are parceled out, which is not desirable. Using families of features with richer operators, such as
MOMA, enables to improve these classification performance, leading to an increase by 14% of
the F-score (F = 72%) and 22% of the Jaccard index (J = 56%). The accuracy Acc only increases
of 5%, but this measure should be analyzed with caution as we are dealing with a database with
unbalanced classes: in the ground truth, 15% of the pixels have been assigned the label 1 and

41

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

85% the label 0. We will focus on these two families of operators (“standard” and “MOMA”).
Both offer similar classification performance. We can also notice that they notably decrease the
number of connected components, even if the latter is still too high to guarantee spatial coherence
of detected objects.

For the second pipeline Pwin, corresponding to CS = window (4 scales), morphological op-
erators seem to be more discriminant than standard ones (F = 75% instead of F = 72%). More
importantly, the comparison between both pipelines tells us that using sliding windows system-
atically maintains or improves the classification performance compared to using the pixel
alone. For example, the F-score obtained with the identity operator increases by 13% from P pix

to Pwin. It is also important to note that sliding windows impact more positively the spatial co-
herence of detected objects compared to pixels: for the three families, Nb_cc decreases by 95%,
28% and 50% respectively. Therefore, we can conclude, as expected, that sliding windows outper-
forms the pixels taken alone because these wider supports enable to capture richer and multi-scale
information in the neighborhood of the pixel to be classified.

Ω CS P R F J Acc Nb_cc
Identity pixel 54 75 63 46 86 8153 ± 147

windows (4) 60 87 71 55 89 380 ± 160
Standard pixel 60 87 71 55 89 179 ± 68

windows (4) 61 87 72 56 89 129 ± 32
MOMA pixel 61 87 72 56 90 203 ± 71

windows (4) 64 89 75 59 91 101 ± 33

Table 3.2: Pixel classification: comparison between CS = pixel and CS = windows for database
D1. Results are given on the test subset. Note: standard and MOMA denote usual operators used
by Sommer et al. [2011] and operators from mathematical morphology respectively, all introduced
in Chapt. 2.

Figure 3.6 illustrates on an image of D1 the effect of both pipelines with the three families of
features.

3.2.3 Final results on the three databases
We now evaluate the performance of the two pipelines P pix and Pwin on the three databases D1,
D2 and D3. This time, RF parameters are optimized by cross-validation (see resulting values in
Tab. A.1 of appendix A.1). The features used are those presented in Tab. 3.1.

Qualitative analysis: Figures 3.7, 3.8 and 3.9 show some examples of classification results for
the three databases. In Fig. 3.7, the task is to segment the tumoral region which is in the left part
of the image. Corresponding probability maps are presented for P pix and Pwin, along with a grey
level profile taken along the yellow line. These profiles reveal that it is easier to discriminate the
two regions when using the window as CS rather than the pixel. Indeed, a wider support captures
more information on the texture, a discriminant characteristic in this case. Figure 3.8 presents the
probability maps for both pipelines for im1 of D1 and binary results associated to three thresholds:
0.2, 0.5 and 0.8. The higher the threshold is, the higher the confidence is to be an object pixel.
Therefore, increasing the threshold value tends to decrease the number of detected pixels. We can
observe that using the window as CS decreases the number of detected connected components,
which traduces a better spatial coherence than for the pixel-CS. Finally, results seem to be rather

42

3.2 Assessment of the pixel classification workflow on the three databases

(a) Ω = Identity, CS = pixel (b) Ω = Identity, CS = windows (4)

(c) Ω = Standard, CS = pixel (d) Ω = Standard, CS = windows (4)

(e) Ω = MOMA, CS = pixel (f) Ω = MOMA, CS = windows (4)

Figure 3.6: Classification results for im1 of D1. Legend: TP, TN, FP and FN are shown in green,
white, red and blue respectively.

43

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

good and equivalent for both pipelines in Fig. 3.9 which is dedicated to an example of D3.

Quantitative analysis: Figures 3.10, 3.11 and 3.12 are dedicated to the quantitative evaluation of
the pipelines on the three databases. D3 shows the best performance and D2 is more challenging,
but overall performance is already satisfactory for these two general methods. Comparing the com-
putational supports, classification results are better for the window approach, except for D3 where
they are equivalent. This last observation may be explained by the fact that the D3 database can be
easily segmented with reasonable performance at the pixel level (a simple thresholding of pixels
with positive values would even be enough, even if not perfect). The window approach is advan-
tageous when contextual information around the pixel, such as texture, is needed to discriminate
classes. This is also confirmed by the ROC curves presented in Fig. 3.13. Besides, for databases
D1 and D2, Pwin offers a better spatial coherence, with a smaller number of detected connected
components compared to P pix. As far as specific segmentation methods are concerned, they are
equivalent (D1) or outperformed (D3) by the general approaches embodied by both pipelines.

3.3 Conclusion
To sum up, we have seen that, when performing pixel classification, using a window instead of the
pixel itself as CS achieves better performance for several reasons:

• Using a wider support enables to capture richer information on the pixel to be classified.
a

• Using several sizes of windows enables to capture multi-scale information, which is all the
more valuable in our case as databases can present objects of different sizes and shapes.
a

Yet, even the results obtained by calculating features in a sliding window could be further im-
proved, regarding classification as well as spatial coherence of detected objects. In particular, this
second approach mainly suffers from misclassifications on contours, as illustrated in Fig. 3.14.
Figure 3.14.b is a crop on a contour of the simplified (filtered) image 3.14.a. Let us suppose that
we would like to classify a pixel (shown in black in Fig. 3.14.c) with a feature consisting in taking
the mean intensity value over the sliding window drawn in yellow. We can see that if the win-
dow had been entirely included in the white object or in the black background, the mean intensity
would have been really close to the white or to the black respectively; thus the pixel would have
been easily classified as belonging to one or the other. However, for pixels lying close to a contour
as in this case, the feature’s value is not representative of either class (see Fig. 3.14.d), which
leads to a higher misclassification rate in this area. This contour issue is due to the fact that the
computational support does not adapt to the image content.

In the following, we decide to focus on another computational support which is wider than the
pixel and which adapts to the image content: the superpixel. In the next part, we will expound
how to generate such a support. Eventually, we will study, in Part 3, the pertinence of its insertion
in our general classification pipeline.

——————————————————————————–

44

3.3 Conclusion

(a) Original image (b) GT of (a)

(c) Probability map for P pix
(d) Profile forP pix

(e) Probability map for Pwin
(f) Profile forPwin

Figure 3.7: Classification results for an image of D2. Grey level profiles are evaluated along the
yellow line.

45

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

(a) Probability map
P pix

(b) Probability map
Pwin

(c) threshold = 0.2
P pix

(d) threshold = 0.2
Pwin

(e) threshold = 0.5
P pix

(f) threshold = 0.5
Pwin

(g) threshold = 0.8
P pix

(h) threshold = 0.8
Pwin

Figure 3.8: Classification results on im1 of D1.

46

3.3 Conclusion

(a) Probability map
P pix

(b) Probability map
Pwin

(c) threshold = 0.2
P pix

(d) threshold = 0.2
Pwin

(e) threshold = 0.5
P pix

(f) threshold = 0.5
Pwin

(g) threshold = 0.8
P pix

(h) threshold = 0.8
Pwin

Figure 3.9: Final classification results on a crop of image dna-30 of D3. Legend: TP, TN, FP
and FN are shown in green, white, red and blue respectively.

47

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

Figure 3.10: Quantitative results for D1.

48

3.3 Conclusion

Figure 3.11: Quantitative results for D2.

49

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

Figure 3.12: Quantitative results for D3.

50

3.3 Conclusion

(a) ROC curve for D1

(b) ROC curve for D2

(c) ROC curve for D3

Figure 3.13: ROC curves for the three databases.

51

Chapter 3. Tools for segmentation evaluation: Application to the pixel
classification workflow

(a) crop from im5
a

(b) zoom of (a)
a

(c) sliding window
a

(d) feature
computation

Figure 3.14: Sliding windows: the contour issue.

52

II

4 Superpixels: A special case of low-level
segmentation . 57

4.1 Definition and properties
4.2 Related work
4.3 Evaluation procedure to assess superpixel perfor-

mance

5 Waterpixels: A new superpixel generation
method based on the watershed transfor-
mation . 65

5.1 Construction of Waterpixels
5.2 Recap of the proposed method
5.3 Comparison with other watershed superpixels

methods
5.4 Benchmark
5.5 Conclusion, discussion and prospects

Waterpixels

In this part, we focus on superpixels, a special case of low-level segmentation.

We present the properties they should satisfy, the state-of-the-art of methods enabling to gen-
erate them, as well as how to evaluate their performance.

We then propose a new generation method based on the watershed transformation. The re-
sulting superpixels are hence called waterpixels. In addition to their good quality performance,
they offer many advantages such as their low computation time and their easiness of generation
(few, understandable, parameters to be tuned by the user), which makes them competitive with the
state-of-the-art.

(a) Original image (b) Superpixels

Figure 3.15: Illustration of superpixels (waterpixels)

Related Publications and Conferences
a

• Waterpixels
V. Machairas, M. Faessel, D. Cardenas-Pena, T. Chabardes, T. Walter and E. Decencière
IEEE Transaction on Image Processing, 24(11):3707–3716, 2015
a

• Waterpixels: Superpixels Based on The Watershed Transformation
V. Machairas, T. Walter and E. Decencière
International Conference on Image Processing (ICIP), pp. 4343-4347, 2014
a

• Spatial Repulsion Between Markers Improves Watershed Performance
V. Machairas, E. Decencière and T. Walter
International Symposium on Mathematical Morphology (ISMM), pp. 194–202, 2015
a

• Watervoxel Representation for Supporting MRI Volume Segmentation
D. Cardenas-Pena, V. Machairas, G. Castellanos-Dominguez, E. Decencière, T. Walter
Journée Géodis, Reims, France, 2014
a

• Waterpixels: Superpixels Partition from Watershed Transformation
V. Machairas, E. Decencière and T. Walter
37th session of ISS France, 2014
a

55

4 Superpixels: A special case of
low-level segmentation

It was, he thought, the difference between being dragged into the arena to face a battle to the death and walking into
the arena with your head held high. Some people, perhaps, would say that there was little to choose

between the two ways, but Dumbledore knew [. . .] that there was all the difference in the world.
J.K. Rowling, Harry Potter and the Half-Blood Prince.

Résumé
Dans ce chapitre, nous donnons la définition des superpixels et les propriétés essentielles
qu’ils doivent remplir, notamment vis-à-vis de leur utilisation future dans des pipelines
d’analyse d’image comme la classification. Nous présentons ensuite un certain nombre
de méthodes qui ont été proposées dans la littérature pour générer efficacement des su-
perpixels, en mettant en avant leurs avantages et leurs inconvénients. Nous rappelons
ce qu’est la ligne de partage des eaux (watershed en anglais) et expliquons pourquoi
nous pensons que c’est un outil pertinent pour générer efficacement des superpixels de
manière compétitive. Nous terminons en présentant comment évaluer la qualité d’une
partition en superpixels.

This chapter is dedicated to the concept of superpixels (SPs), a special-case of low-level seg-
mentation. We present the properties they should satisfy, the state-of-the-art of methods enabling
to generate them, as well as how to evaluate their performance. In the next chapter, we will propose
a new generation method: waterpixels (WP).

4.1 Definition and properties

We have seen that a classical approach to segment an image is to perform a classification of each
of its pixels. The term superpixels has been chosen in the literature to express the fact that we can
use “bigger pixels” instead of single pixels for the same task. Indeed, pixels are the result of the
sensors we use and hence do not convey a perceptual meaning. The idea is then to group together
pixels in order to obtain a new semantic unit. The natural way to achieve such a partition is to
perform a low-level segmentation of the image (see Fig. 4.1). Moreover, recent methods highlight
the need for shape and size similarity between such regions. There exist different variants of su-
perpixels’ characteristics in the corresponding and abundant literature. In the following, we will

Chapter 4. Superpixels: A special case of low-level segmentation

(a) Original image (b) Superpixels

Figure 4.1: Illustration of superpixels (waterpixels)

refer to, as superpixels, regions which have the following properties:

1. Connected partition: the SPs constitute a partition of the image and each SP is made of a
single connected component.
a

2. Homogeneity: pixels of a given SP should present similar colors or grey levels.
a

3. Adherence to object boundaries: objects boundaries should be included in SPs boundaries.
a

4. Regularity: SPs should form a regular pattern on the image.
a

5. Easiness of computation: SPs partition should be fast to compute and easily tuned by the
user (few, understandable, parameters to control SP characteristics).
a

Indeed, superpixels are thought of as “pieces of an object” which will be assigned a unique
object label. Therefore, properties 1 to 3 are required to avoid a superpixel from containing pixels
lying on different objects (which is the case when it overlaps a contour between two objects, or
is likely to happen when it is split into spatially separated connected components). On the other
hand, property 4 enables to perform pertinent comparison of feature values for learning. Of course,
the requirements on regularity and boundary adherence are to a certain extent oppositional, and a
good generation method must aim at finding a compromise between both of them. Last but not
least, property 5 is often an essential aspect (as in our case), as SPs are typically only the first step
of an often complex and potentially time consuming workflow.

4.2 Related work

Low-level segmentations have been used for a long time as a first step towards segmentation (see
the work of Monga [1987] and Marcotegui and Meyer [1997] for example). The term superpixel
was coined much later by Ren and Malik [2003], albeit in a more constrained framework. This
approach has raised increasing interest since then. Various methods exist to compute regular and
non-regular SPs: Normalized cuts by Shi and Malik [2000] and Ren and Malik [2003], Mean
Shift by Comaniciu and Meer [2002], graph-based superpixels by Felzenszwalb and Huttenlocher
[2004], TurboPixels by Levinshtein et al. [2009], Veksler et al. [2010], Zeng et al. [2011], VCells
by Wang and Wang [2012], SLIC by Achanta et al. [2012], Shen et al. [2014], or Duan and La-
farge [2015] to cite just a few. We have also proposed a new method called Waterpixels (notation :
WP, see Machairas et al. [2014] and Machairas et al. [2015]) which is presented in the next chapter.

58

4.2 Related work

These methods offer various properties and varying performance. Some are based on graphs
(Felzenszwalb and Huttenlocher [2004]), others on geometrical flows (Levinshtein et al. [2009])
or on k-means (Achanta et al. [2012]). Some only produce non-regular SPs or show high complex-
ity. For our application, we need efficient and regular SPs that are as fast as possible to compute.
That is why, in the following, we focus on linear complexity methods generating regular SPs:
TurboPixels by Levinshtein et al. [2009], superpixels by Zeng et al. [2011], VCells by Wang and
Wang [2012] and SLIC by Achanta et al. [2012].

Remark: Actually, the method proposed by Zeng et al. [2011] enables to generate superpixels
which are similar in shape but not in size. Their superpixels aim at being compact but their size
adapts to the image content (larger in homogeneous area, smaller in more textured regions). If this
property seems appealing at first sight with regards to segmentation purposes, it is nevertheless
non desirable in our application as we need similarity of supports to provide a fair comparison of
feature values. Moreover, some parametrized feature families, such as Haralick features, may not
be defined for regions which are small compared to the chosen parameter. A large variability in
terms of superpixel size would therefore necessarily lead to missing values, which is not desired.
Yet, these superpixels are presented here as they aim at coping with the trade-off between bound-
ary adherence and compactness with state-of-the-art lowest complexity.

4.2.1 State-of-the-art generation methods
Methods for SP generation are all based on two steps: an initialization step where either seeds or
a starting partition are defined and a (potentially iterative) assignment step, where each pixel is
assigned to one superpixel, starting from the initialization.

Method Levinshtein Wang Zeng Achanta WP
2009 2012 2011 2012 2014

Generation type 1 2 1 (iterated) 2 1
Seed type A C C C B
Exact control on number of
SPs

yes yes yes no yes

Control on regularity no yes no yes yes
Post-processing free no no no no yes
Complexity O(n) O(in

√
N) O(in) O(n) O(n)

Table 4.1: Recap chart of existing methods to compute regular superpixels (n is the number of
pixels in the image; i is the number of iterations required; N the number of superpixels). “WP”
corresponds to our method, called “Waterpixels” (presented in the next chapter).

Choosing the seeds
In the first step, a set of seeds is chosen, which are typically spaced regularly over the image plane
and which can be either regions or single pixels:

• Type A seeds are independent of the image content. These are typically the cells or the
centers of a regular grid.

• Type B seeds depend on the content of the image (compromise between a regular cover of
the image plane and an adaption to the contour).

• Type C seeds are initially image independent, then they are iteratively refined to take into
account the image contents.

59

Chapter 4. Superpixels: A special case of low-level segmentation

If the seeds do not depend on the image, an iterative refinement is usually preferable, and
therefore more time is spent on the computation of the SP. Type B methods may spend more time
on finding appropriate seeds, but can therefore afford not to iterate the SP generation.

Building superpixels from seeds
In the second step, the partition into superpixels is built from the seeds. Among the methods with
linear complexity, there are two main strategies for this:

Shortest Path methods (type 1) [Levinshtein et al. [2009]; Zeng et al. [2011]]: these methods
are based on region growing: they start from a set of seeds (points or regions) and successively
extend them by incorporating pixels in their neighborhood according to a usually image dependent
cost function until every pixel of the image plane has been assigned to exactly one superpixel. This
process may or may not be iterated.

Shortest Distance methods (type 2) [Wang and Wang [2012]; Achanta et al. [2012]]: these are
iterative procedures inspired by the field of unsupervised learning, where at each iteration step,
seeds (such as centroids) are calculated from the previous partition and pixels are then re-assigned
to the closest seed (like for example the k-means approach).

Even though methods inspired by general clustering methods (type 2) seem appealing at first
sight, in particular when they globally optimize a cost function, this class of methods does not guar-
antee connectivity of the superpixels for arbitrary choices of the pixel-seed distance (see Achanta
et al. [2012],Wang and Wang [2012]). For instance, the distance metric proposed in Achanta
et al. [2012] (a combination of Euclidean and color distance), leads to non-connected superpixels,
which is undesirable. To tackle this issue, a post-processing step is necessary, consisting either in
relabeling the image so that every connected component has its own label (see Wang and Wang
[2012]), leading to a less regular distribution of SP sizes and shapes, or in reassigning isolated re-
gions to the closest large enough superpixel, as in Achanta et al. [2012], leading to non-optimality
of the solution. In both cases, the number of superpixels becomes unpredictable. In addition, such
post-processing increases the computational cost and can turn out to be the most time-consuming
step when the image contains numerous small objects/details compared to the average size of the
superpixels.

By contrast, methods based on region growing (type 1) inherently implement a “path-type”
distance, where the distance between two pixels does not only depend on the value and position of
the pixels themselves, but on values and positions along the path connecting them. Type 1 methods
yield connected superpixel regions, for which the number of superpixels is exactly the number of
seeds.

Other properties
It is generally accepted that a good superpixel-generation method should provide to the user total
control over the number of resulting superpixels. While this property is achieved by Levinshtein
et al. [2009], Veksler et al. [2010], Wang and Wang [2012] and Zeng et al. [2011], some only
reach approximatively this number because of post-processing (either by splitting too big super-
pixels, or removing small isolated superpixels as in Achanta et al. [2012]). Another parameter is
the control on superpixels regularity in the trade-off between regularity and adherence to contours.
Only Wang and Wang [2012] and Achanta et al. [2012] enable the user to weight the importance
of regularity compared to boundary adherence, so that it can be adapted to the application.

As far as performance is concerned, one of the main criteria is undoubtedly the complexity

60

4.3 Evaluation procedure to assess superpixel performance

that the method requires. Indeed, for superpixels to be used as primitives for further analysis such
as classification, their computation should neither take too long nor too much memory. This is the
reason why we focus on linear complexity methods. Among them, SLIC, proposed by Achanta
et al. [2012], appears to offer the best performance with regards to the trade-off between adherence
to boundaries and regularity. Moreover, since its recent inception, this method has become very
popular in the computer vision community. We will therefore use it as reference for the quantitative
evaluation of our method (see Chapt. 5).

4.2.2 Superpixels and watershed
In principle, the watershed transformation (see Soille [2003] for a review) is well suited for SP
generation:

1. It yields a good adherence to object boundaries when computed on the image gradient.
2. It allows to control the number and spatial arrangement of the resulting regions through the

choice of markers.
3. The connectivity of resulting regions is guaranteed and no postprocessing is required.
4. It offers linear complexity with the number of pixels in the image.
Indeed, it has been used to produce low-level segmentations in several applications, including

computationally intensive 3D applications (see for instance the work of Andres et al. [2008] and
Stawiaski and Decencière [2008]) and in Hanbury [2008], in particular when shape regularity of
the elementary regions was not required.

Previous publications claimed that the watershed transformation does not allow for the gener-
ation of spatially regular SP (Levinshtein et al. [2009]; Achanta et al. [2012]). Recently, we and
others (Machairas et al. [2014], Machairas et al. [2015], Neubert and Protzel [2014], Benesova
and Kottman [2014], Hu et al. [2015]) have shown that in principle the watershed transformation
can be applied to SP generation. In the next chapter, we will introduce waterpixels, a family of
methods based on the watershed transformation to compute superpixels.

4.3 Evaluation procedure to assess superpixel performance

In this section, we propose an evaluation procedure to assess the performance of any superpixel
partition. It will be used in the next chapter to evaluate our method as well as state-of-the-art ones.

Database
Most of state-of-the-art methods are evaluated on the Berkeley segmentation database, introduced
in Martin et al. [2001]. This database is divided into three subsets, “train”, “test” and “val”,
containing respectively 200, 200 and 100 images of sizes 321×481 or 481×321 pixels. Approx-
imately 6 human-annotated ground-truth segmentations are given for each image. These ground-
truth images correspond to manually drawn contours.

Evaluation criteria
SP methods produce an image partition {si}1≤i≤N . In order to compute the SP borders, we use a
morphological gradient with a 4-connectivity neighborhood. Note that the resulting contours are
two pixels wide. To this set of contours Sc, we add the one pixel wide image borders Sb. The
final set is denoted C. The ground truth image corresponding to the contours of the objects to be
segmented, provided in the Berkeley segmentation database, is called GT .

In superpixel generation, we look for an image decomposition into regular regions that adhere
well to object boundaries. We propose to use three measures to evaluate this trade-off, namely
boundary-recall, contour density and average mismatch factor, as well as computation time. If

61

Chapter 4. Superpixels: A special case of low-level segmentation

boundary-recall and computation time are classic measures, we also add contour density and mis-
match factor to better estimate superpixel performance.

There are two levels of regularity: (1) the number of pixels required to describe the SP con-
tours, which can be seen as a measure of complexity of individual SP, and (2) the similarity in size
and shape between SP.

The first property is evaluated by the Contour Density, which is defined as the number of SP
contour pixels divided by the total number of pixels in the image:

CD =
1
2 |Sc|+ |Sb|
|D|

(4.1)

Note that |Sc| is divided by 2 since contours are two-pixel-wide.

The second property, i.e. similarity in size and shape, is evaluated by an adapted version of
the mismatch factor of Strachan et al. [1990]. The mismatch factor measures the shape and size
dissimilarity between two regions. Given two sets, A and B, the mismatch factor m f between them
is defined as:

m f (A,B) :=
|A∪B\A∩B|
|A∪B|

(4.2)

=1− |A∩B|
|A∪B|

The mismatch factor and the Jaccard index thus sum to one. Aiming to measure the superpixel
regularity, we adapted the mismatch factor to estimate the spread of size and shape distribution.
Hence, the average mismatch factor MF is proposed as:

MF =
1
N

N

∑
i=1

m f (s∗i , ŝ
∗) (4.3)

where s∗i is the centered version of superpixel si, and ŝ∗ is the average centered shape of all
superpixels. The complete definition of the average mismatch factor is given in appendix A.2.

Note that although compactness is sometimes used in superpixel evaluation (see Schick et al.
[2014]), it is a poor measurement for region regularity. For example, perfectly-rectangular regions
are regular but not compact (because they are different from discs). Our method, waterpixels, can
in principle tend towards differently shaped superpixels (rectangles, hexagons or other). Since
the average mismatch factor compares each superpixel against an image dependent template, this
measure is more appropriate for evaluating regularity than compactness.

To quantify the adherence to object boundaries, a classical measure used in the superpixel
literature is the boundary-recall (BR). It is similar as the recall measure R introduced in Chapt.
3 but it is, this time, expressed for contour pixels (label 1) vs. non contour pixels (label 0).
Boundary-recall is now defined as the percentage of ground-truth contour pixels GT which fall
within strictly less than 3 pixels from superpixel boundaries C:

BR =
|{p ∈ GT,d(p,C)< 3}|

|GT |
(4.4)

62

4.3 Evaluation procedure to assess superpixel performance

where d is the L1 (or Manhattan) distance.

While precision cannot be directly used in the context of over-segmentations, boundary-recall
has to be, in this particular case of superpixels, interpreted with caution. Indeed, as also noted by
Kalinin and Sirota [2015], very tortuous contours systematically lead to better performance: be-
cause of their higher number, SP contour pixels have a higher chance of matching a true contour,
artificially increasing the boundary-recall. Hence, we propose to always consider the trade-off
between boundary-recall and contour density to properly evaluate the adherence to object bound-
aries, penalizing at the same time the cost in pixels to describe SP contours.

Finally, computation time is also evaluated. The lower it is, the better it is, since superpixels
constitute most of the time only a pre-processing step towards further image analysis.

In the next chapter, we will introduce waterpixels, a family of methods based on the watershed
transformation to efficiently generate superpixels.

63

5 Waterpixels: A new superpixel
generation method based on the
watershed transformation

What’s in a name? that which we call a rose
By any other name would smell as sweet;

W. Shakespeare, Romeo and Juliet

Résumé
Dans ce chapitre, nous proposons une nouvelle famille de méthodes s’appuyant sur la
ligne de partage des eaux morphologique (watershed) pour générer rapidement et effi-
cacement des superpixels. Nous appelons les superpixels ainsi créés les waterpixels.
Nous évaluons ensuite qualitativement et quantitativement les performances de ces wa-
terpixels à l’aide des critères suivants : adhérence aux contours des objets, régularité de
leur support et temps de calcul. Nous poursuivons avec une discussion des résultats et
proposons des perspectives d’amélioration.

As announced in the previous chapter, we now propose to use the watershed transformation
in order to efficiently generate superpixels. The resulting superpixels will be called waterpixels.
Actually, this will lead us to construct a family of waterpixel-methods, presented and evaluated in
this very chapter.

One must keep in mind that the watershed transformation enables to obtain a low-level-
segmentation which, alone, already shows good adherence to object boundaries. Our contribution
is therefore to enforce regularity of resulting regions while keeping a reasonable trade-off between
the two qualities. Moreover, the proposed family of methods satisfies two additional requirements
which are keeping a low complexity and being easily handled by the user. As explained in the
next section, there are only two main parameters, which control the size (step σ) and the regular-
ity (weight k) of waterpixels.

5.1 Construction of Waterpixels

In this section, we will explain how to generate the partition of a given image f into a set of

Chapter 5. Waterpixels

Figure 5.1: Illustration of waterpixels generation: (a) original image; (b) corresponding Lab
gradient; (c) selected markers within the regular grid of hexagonal cells (step σ = 40 pixels); (d)
distance function to markers; (g) distance function to cell centers; (e) and (h) spatially regularized
gradient with distance functions to selected markers (d) and to cell centers (g) respectively; (f) and
(i) resulting waterpixels obtained by respectively applying the watershed transformation to (e) and
(h), with markers (c).

N waterpixels {si}1≤i≤N . The different steps are illustrated in figure 5.1 and developed in the next
paragraphs.

Again, we will denote by f : D→ V the image, where D is a rectangular subset of Z2, and V
a set of values, for example {0, . . . ,255} when f is a 8 bit grey level image, or {0, . . . ,255}3 for
color images.

The marker-controlled version of the watershed is chosen here since it offers more control
on the resulting regions. This transformation requires two steps: the definition of a gradient (the
image to be flooded), and the definition of markers, from which the flooding starts. We would like
to enforce regularity through this two steps, as explained in the following.

5.1.1 Selection of the markers
How can we select the markers so as to impose a control on the number and the regularity of re-
sulting waterpixels? Firstly, we know that the number of markers should be equal to the number of
desired superpixels in the final partition. Secondly, to obtain regions which are similar in shapes
and sizes, one simple idea is to select the N markers so that they are regularly spaced out over the
image.

66

5.1 Construction of Waterpixels

For this purpose, we compute a grid of N regular cells which will serve as a stake to grow
superpixels throughout the whole procedure. Indeed, these cells serve as model towards which
superpixels will tend at the end of the process. We will then propose to select a unique marker per
cell of the grid, which will enable to satisfy both requirements, i.e. the number and the regularity
of final regions. These two steps, creating the grid and selecting one marker per cell, are investi-
gated in the next paragraphs.

Creating the grid
To define such cells, we first choose a set of N points {oi}1≤i≤N in D, called cell centers, so that
they are placed on the vertices of a regular grid of the size of the image f (a square or hexagonal
one for example, leading respectively to square or hexagonal superpixels in the end). Given a
distance d on D, we denote by σ the grid step, i.e. the distance between closest grid points. A
Voronoi tesselation allows to associate to each oi a Voronoi cell. For each such cell, a homothety
centered on oi with factor ρ (0 < ρ ≤ 1) leads to the computation of the final cell Ci. This last step
allows for the creation of a margin between neighbouring cells, in order to avoid the selection of
markers too close from each other.

Selecting one marker per grid cell
How to find the best candidate for each cell, i.e. the marker which will enable to obtain the best
performance in terms of boundary adherence and regularity? We could choose a marker indepen-
dently from the image content, taking for instance the center of the cell. While this simple solution
seems appealing at first sight (attempting to enforce regularity), it can sometimes lead to smaller
size of SPs and hence a larger variability in size, decreasing the regularity and segmentation per-
formance of the final partition. On the contrary, we advise to select, instead, one of the minima of
the gradient in this very cell. Indeed, markers are often chosen among the minima of the gradient
as dams of the corresponding watershed are likely to fall on object contours, which is relevant for
segmentation purposes.

Therefore, we first compute the gradient image g of the image f . The choice of the gradient
operator depends on the image type, e.g. for grey level images we might choose a morphological
gradient. We then consider the minima of the whole gradient image g. Each minimum is a con-
nected component, composed of one or more pixels. These minima are truncated along the grid,
i.e. pixels which fall on the margins between cells are removed.

Each cell Ci of the grid defines a region of interest where the content of g is analyzed to select
a unique marker. Three cases may happen:

1. There is no minimum of g in Ci.
2. There is a unique minimum of g in Ci.
3. There is more than one minimum of g in Ci.
The choice of the marker in the second case is obvious as only one candidate is available. If

more than one minimum is present (third case), we must set up a strategy to select only one among
them (see Fig. 5.2). We could choose randomly among the candidates or take the one which the
closest to the center. Instead, we prefer to use a quantifiable criterion which will help determine
which is the best candidate enabling to provide the best performances. Therefore, we focus on the
extinction values introduced by Vachier and Meyer [1995].

Figure 5.2.a shows how to compute the surface extinction value of a given minimum. Let’s
consider a couple of minima {m1,m2} for which we would like to find the surface extinction values

67

Chapter 5. Waterpixels

val1
extS and val2

extS. Just before the corresponding fusion during flooding, the area of their respec-
tive lakes is computed: A 1 for m1 and A 2 for m2. In this illustration, A 1>A 2. The minimum
presenting the smaller lake area, m2 in our case, will be assigned this very value as surface ex-
tinction value: val2

extS =A 2. The fusion process will then keep on, and for each other later fusion
regarding m1, A 1 will be evaluated again and compared to its new competiting minimum’s area.
When the later is higher than A 1, m1 is assigned the current area value as surface extinction value:
val1

extS =A 1. At the end of the fusion process, we obtain the extinction values af all minima. Dy-
namic and volume extinction values can be explained in the same way, with the evaluation of the
dynamic and the volume of the lake instead of the surface. The reader might consult Vachier and
Meyer [1995] for further insight into extinction values.

(a) Illustration of surface extinction values
(b) Marker selection procedure

Figure 5.2: Illustration of the marker selection procedure

Thus, if several minima are present, we choose the one with the highest surface extinction
value. Indeed, this criterion encourages adherence to object boundaries as well as regularity of re-
sulting regions. We found surface extinction values to give the best performances compared with
volume and dynamic extinction values (data not shown).

It may happen that there is no minimum in a cell (first case). In such cases, we must add a
marker for the cell which is not a minimum of g, in order to keep regularity. Once again, we will
avoid to choose the center of the cell. We propose instead to take, as marker, the flat zone with
minimum value of the gradient inside this very cell.

In all cases (i.e. either there exists at least one minimum in the cell or there is not), the selected
marker has to be composed of a unique connected component to ensure regularity and connectivity
of the resulting superpixel. However, it might not be the case, either if more than one minimum
have the same highest extinction value, or if more than one flat zone present the same lowest gra-
dient value in the cell. Therefore, an additional step enables to keep only one of the connected
components if there is more than one potential “best” candidate.

The set of resulting markers is denoted {Mi}1≥i≥N , Mi ⊂D. The result of the marker selection
procedure is shown in Figure 5.1.c.

68

5.1 Construction of Waterpixels

Impact of the spatial repulsion between markers on the segmentation performance
We have efficiently selected our N markers. Before presenting the gradient used for flooding, we
would like to study the impact of the markers’ distribution on the segmentation performances. We
have encouraged the regularity of final regions by spacing out rather regularly the markers over
the image, which can be seen as the introduction of a model of spatial repulsion between markers.
What is the impact of such spatial repulsion on adherence to object boundaries?

To address this issue, we will compare the segmentation performance when the N markers are
chosen as in the waterpixels method (selecting one marker per cell of a regular grid; notation: WP)
or freely over the image (notation: WS). In both cases, the criterion to find the best candidates will
be the extinction values (dynamic, surface and volumic) and the gradient used is image g. We will
use hexagonal cells with a margin factor ρ equal to 2

3 .

(a) Original image

(b) Watershed without spatial constraint
(WS)

(c) Watershed with spatial constraint
(WP)

Figure 5.3: Low-level segmentation obtained without and with spatial repulsion.

As an illustration, both methods are applied on an image of the Berkeley segmentation database
(see Fig. 5.3). Results for boundary-recall, expressed as a function of contour density, are aver-
aged over the subset “val” of the database and shown in Fig. 5.4 for each extinction value (volume,
surface and dynamic). The red curve corresponds to the watershed without repulsion constraint
and the blue curve corresponds to watershed with the markers’ spatial constraint used for water-
pixels, for different values of N (number of markers, which is also the number of regions in the
final partition). The ideal case being the highest boundary-recall for the lowest contour density, we
can see that waterpixels outperform the usual watershed. We have found that the same behavior
can be observed when the grid used for waterpixel generation is composed of square cells instead
of hexagonal ones (data not shown).

Qualitative results for surface extinction value can be seen in Fig. 5.5 on an image from the

69

Chapter 5. Waterpixels

(a) Surface extinction value

(b) Volumic extinction value

(c) Dynamic extinction value

Figure 5.4: Low-level segmentation obtained without and with spatial repulsion.

70

5.1 Construction of Waterpixels

Figure 5.5: Selected markers for WS and WP and their impact on the adherence to object
boundaries: (a) Original image from the Berkeley segmentation database. (b) Lab-gradient of
(a). (c) and (d) selected markers superimposed on the gradient respectively in green for WP and
in yellow for WS. Left example (e) a region where WP (left column) catches a contour that WS
(right column) misses. Right example (f) a region where WS (right column) catches a contour
that WP (left column) misses. Note that missed contours appear in red whereas reached contours
appear in green.

71

Chapter 5. Waterpixels

Berkeley segmentation database. In the first row, we see that the spatial distribution of markers for
WP is rather regular thanks to the choice of one marker per grid cell, contrary to the markers of
WS. It is interesting to note that most of the markers for WS are trapped in the sea because it is a
highly textured region. Thanks to the repulsion constraint between markers for WP, these ones are
less numerous in the highly textured regions to the profit of other regions such as the sail: in the
left example, we can see a contour which has been caught by WP but missed by WS. By imposing
a repulsion between markers, we give a chance to weaker contours to be caught, which would not
have been caught when we consider only the N best markers without any spatial constraint. The
example on the right, on the other hand, enables to understand when WP is outperformed by WS:
by imposing a margin between two markers, WP cannot entirely catch small details, i.e. objects
smaller than waterpixels size. WS on the other hand can afford to locally increase the number of
markers to catch these small objects.

With this study (see Machairas et al. [2016]), we have shown that when we select markers
among the minima with a pertinence criterion such as the extinction values, using in addition spa-
tial repulsion for marker selection, improves the recovery of pertinent boundaries. As explained,
we believe that it is mainly due to the fact that a high percentage of markers are trapped in tex-
tured regions when no constraint on their spacing is imposed, which leads to missing weaker but
nonetheless meaningful contours.

It is also interesting to note that, if we randomly choose the marker of each cell for waterpixels
(instead of taking the best in terms of surface extinction value), we will still obtain results as good
as the“optimal marker choice” according only to extinction values, i.e. WS.

We now close the topic of the impact of spatial repulsion between markers on segmenta-
tion performances to address the construction of the gradient used for flooding in the waterpixels
method.

5.1.2 Spatial regularization of the gradient and watershed
The selection of markers has enforced the pertinence of future superpixel-boundaries but also the
regularity of their pattern (by imposing only one marker per cell). In this paragraph, we design
a spatially regularized gradient in order to further compromise between boundary adherence and
regularity.

Let Q = {qi}1≤i≤N be a set of N connected components of the image f . For all p ∈ D, we can
define a distance function dQ with respect to Q as follows:

∀p ∈ D, dQ(p) =
2
σ

min
i∈[1,N]

d(p,qi) (5.1)

where σ is the grid step defined in the previous section. The normalization by σ is introduced
to make the regularization independent from the chosen SP size. We have studied two possible
choices of the qi. The first one is to choose them equal to the markers: qi = Mi. Resulting wa-
terpixels are called m-waterpixels. The second one consists in setting them at the cell centers:
qi = oi, which leads to c-waterpixels. We have found that the first gives the best adherence to
object boundaries, while the second produces more regular superpixels. At any rate, varying the
set Q of connected components qi leads us to a family of waterpixels methods.

The spatially regularized gradient greg is defined as follows:

greg = g+ kdQ (5.2)

72

5.2 Recap of the proposed method

where g is the gradient of the image f , dQ is the distance function defined above and k is the spatial
regularization parameter, which takes its values within ℜ+. The choice of k is application depen-
dent: when k equals zero, no regularization of the gradient is applied; when k→ ∞, we approach
the Voronoi tessellation of the set {qi}1≥i≥N in the spatial domain.

In the final step, we apply the watershed transformation on the spatially regularized gradient
greg, starting the flooding from the markers {Mi}1≤i≤N , so that an image partition {si}1≤i≤N is
obtained. The si are the resulting waterpixels.

5.2 Recap of the proposed method

We now propose a recap of the proposed family of methods. A waterpixel-generation method is
characterized by the following steps:

1. Computation of the gradient of the image;
2. Definition of regular cells on the image, centered on the vertices of a regular grid;
3. Selection of one marker per cell;
4. Spatial regularization of the gradient with the help of a distance function;
5. Application of the watershed transformation on the regularized gradient defined in step 4

from the markers defined in step 2.

a
Remark 1: This type of methods requires four parameters: three to generate the grid of regular
cells (step σ controlling the size, and hence the number of SPs, the shape of the cells and the ho-
mothety factor ρ for the margin) and one to spatially regularize the gradient (the weight k). Note
that creating the grid is the step which requires the higher number of parameters as it is designed
to have a strong impact on waterpixels’ properties. In practice, parameters of shape and margin
are set to consistent and robust default values (see implementation details in 5.4.1), which only
requires to the user to deal with the size σ and the amount of regularization k. Thus, the proposed
family of methods not only offers an efficient control on final superpixels but is also easy for the
user to handle.

Remark 2: Only the gradient image is needed to compute waterpixels. This gives flexibility to
the user, as the latter can produce her/his own gradient image, optimized according to the type of
objects to be dealt with, and give it directly as input to the waterpixel method.

An implementation of waterpixels is available from http://cmm.ensmp.fr/∼machairas/waterpixels.

5.3 Comparison with other watershed superpixels methods

In parallel and after the publication of waterpixels, other methods have been proposed to generate
regular superpixels with the watershed transformation. In Neubert and Protzel [2014] and Hu et al.
[2015], the distance function to the markers is taken into account while performing the flooding
of the watershed tranformation. However, the markers are only the centers of the (square) cells,
which yields poorer performance. In Benesova and Kottman [2014], on the contrary, the markers
are chosen among the minima of the gradient after pertinent filtering of the original image (one
per cell, even if the exact selection procedure is not explained into detail), but the gradient is not
regularized afterwards.

73

Chapter 5. Waterpixels

5.4 Benchmark
We are now going to compare waterpixels to the state-of-the-art method SLIC proposed by Achanta
et al. [2012] on the Berkeley segmentation database. This approach offers the best performance
among the methods generating regular SPs with low complexity (linear with the number of pixels
in the image).

5.4.1 Implementation details
We have found that it is beneficial to pre-process the images from the database using an area open-
ing followed by an area closing, both of size σ2/16 (where σ is the chosen step size of the regular
grid). This operation efficiently removes details which are clearly smaller than the expected wa-
terpixel area and which should therefore not give rise to a superpixel contour. In practice, filtering
only impacts the regularity of final regions.

The Lab-gradient is adopted here in order to best reflect our visual perception of color differ-
ences and hence the pertinence of detected objects. The margin parameter ρ , described in 5.1.1, is
set to 2

3 .

The cell centers correspond to the vertices of a square or a hexagonal grid of step σ . The grid
is computed in one pass over the image, by first analytically calculating the coordinates of the set
of pixels belonging to each cell and then assigning to them the label of their corresponding cell.
We will display the results for the hexagonal grid, as hexagons are more isotropic than squares.
Interestingly, they also lead to a better quantitative performance, which was intuitively expected.

5.4.2 Results

Figure 5.6 shows various images from the Berkeley segmentation database and their corre-
sponding waterpixels (m-waterpixels for distance function to the marker and c-waterpixels for
distance function to the cells, hexagonal and square grids, different steps). Figures 5.6.b and 5.6.c
(zooms of the original image presented in 5.6.a for m-waterpixels and c-waterpixels respectively)
show the influence of the regularization parameter k (0, 4, 8, 16) for a homogeneous (blue sky)
and a textured (orange rock) regions. As expected, when k→ ∞, m-waterpixels tend towards the
Voronoi tessellation of the markers, while c-waterpixels approach the regular grid of hexagonal
cells. Both show good adherence to object boundaries, as shown in Figures 5.6.d, 5.6.e, 5.6.f. Of
course, enforcing regularity decreases the adherence to object boundaries (see the zoom in Figure
5.6.f for k=16). One advantage of waterpixels is that the user can choose the shape (and size) of the
resulting superpixels depending on the application requisites. Figure 5.6.d, for example, presents
waterpixels for hexagonal (second and third columns) and square (fourth column) grids.

As a gradient-based approach, the quality of the watershed is dependent on the borders’ con-
trast. If we look at the contours of objects missed by waterpixels, we see that it is due to the
weakness of the gradient, as illustrated in Figure 5.8.

In the following, we will use m-waterpixels and denote them directly as “waterpixels” for the
sake of simplicity.

During the design of the algorithm, we used intermediate results from the train and test sub-
sets of the Berkeley database. Therefore, we report the results obtained for the validation subset

74

5.4 Benchmark

Figure 5.6: Illustrations of waterpixels on the Berkeley segmentation database: All water-
pixels images are computed with a hexagonal grid with step σ = 30 pixels and a regularization
parameter k = 8, unless otherwise specified. (a) original image (middle) with corresponding m-
waterpixels (left) and c-waterpixels (right). σ = 25 pixels, k=16. (b) zooms of m-waterpixels (a)
for k = 0,4,8,16. (c) zooms of c-waterpixels (a) for k = 0,4,8,16. (d) original image - m-wat. -
c-wat. - m-wat. with square grid and σ = 40 pixels. (e) original image - m-wat. - c-wat. - zoom
of c-wat.. (f) original image - m-wat. - c-wat. - zoom of m-wat. with k = 16.

75

Chapter 5. Waterpixels

(a) Contour density against
boundary-recall.

(b) Contour density against number of
superpixels.

(c) Mismatch factor against
boundary-recall.

Figure 5.7: Benchmark: performance comparison between waterpixels and SLIC.

76

5.4 Benchmark

Figure 5.8: Contours missed by waterpixels: (a) original image from the Berkeley segmentation
database. (b) m-waterpixels with step = 27 and k = 10. (c) c-waterpixels with step = 27 and k =
10. (d)–(f) zoom of (a)–(c) respectively. (g) zoom of the non-regularized gradient image. (h) and
(i) reached (green) and missed (red) contours, respectively by m-waterpixels and c-waterpixels.

(a) SLIC k′ = 15 (b) Waterpixels k = 8

Figure 5.9: Comparison between Waterpixels and SLIC superpixels for σ = 25 pixels on a zoom
of an image from the Berkeley segmentation database.

77

Chapter 5. Waterpixels

("val"), which contains 100 images. Results for boundary-recall, average mismatch factor and
contour density are averaged for this subset and shown in Figure 5.7. Blue and red curves cor-
respond to varying regularization parameters k and k′ respectively for waterpixels and SLIC. The
values for k and k′ have been chosen such that they cover a reasonable portion of the regularization
space between no regularization (k = 0) and a still acceptable level of regularization.

Figure 5.7.a shows contour density against boundary-recall for waterpixels and SLIC. The
ideal case being the lowest contour density for the highest boundary-recall, we can see that the
trade-off between both properties increases with decreasing regularization, as expected. On the
other hand, SLIC exhibits another behavior: the trade-off improves, then gets worse with regular-
ization. At any rate, it is important to note that waterpixels achieves a better “best” trade-off than
SLIC (see waterpixel k = 0 and SLIC k′ = 15). Besides, this observation is valid for the whole
family of waterpixel-methods as the zero-value regularization does not take into account dQ. In
order to make a fair comparison between waterpixels and SLIC over all criteria, we choose corre-
sponding curves in the trade-off contour density/boundary-recall, i.e. waterpixels with k = 8 and
SLIC with k′ = 15, and compare this couple for the other criteria.

Figure 5.7.b shows that, for a given number of superpixels, contour density of waterpixels is
more stable and most of the time lower than SLIC when varying regularization. More particularly,
contour density is lower for waterpixels (k = 8) than for SLIC (k′ = 15). This means that for the
same number of superpixels, waterpixels contours are shorter than SLIC contours, which is ex-
plained, to a large extent, by less tortuous contours.

Figure 5.7.c shows average mismatch factor against boundary-recall for waterpixels and SLIC.
We can see that the curves for waterpixels with k = 8 and SLIC with k′ = 15 are here again close
to each other.

These properties are illustrated in Figure 5.9, where we can see examples of reached and
missed contours by both methods, as well as their different behaviors in terms of regularity (shape,
size, tortuosity).

5.4.3 Computation time

Computing time was measured on a personal computer based on Intel(R) Core(TM) i7 central
processing units (4 physical cores, 4 virtual ones), operating at 2.93GHz.

The implementation of the waterpixels was done using the Simple Morphological Image Li-
brary (SMIL, Faessel and Bilodeau [2013]). SMIL is a Mathematical Morphology library that
aims to be fast, lightweight and portable. It brings most classical morphological operators re-
designed in order to take advantage of recent computer features (SIMD, parallel processing, . . .)
enabling to handle very large images and real time processing.

Both methods have linear complexity with the number of pixels in the image. For an image of
size 481×321, average computing time for SLIC was 149 ms, and 132 ms for waterpixels (82 ms
without pre-filtering).

A more detailed comparison of computation times is presented in Figure 5.10 (showing aver-
age and standard deviation for different numbers of superpixels). We can see that waterpixels are
generally faster to compute than SLIC superpixels . Contrary to the latter’s, their computation time

78

5.5 Conclusion, discussion and prospects

Figure 5.10: Computation time comparison with images of the Berkeley database.

increases slightly with the number of superpixels. An analysis of computation times for the differ-
ent steps of waterpixels reveals that this variability is only introduced by the grid computation and
the minima selection procedure. When it comes to the grid computation time, it rises from 2 ms
for small numbers of waterpixels to 27 ms for large numbers of waterpixels. This simply means
that we still have to optimize this step. Concerning the computation time of the minima selection
procedure, it decreases as waterpixels become larger because of the pre-filtering step. Indeed, the
size of this filtering is directly proportional to the cell size. As such, resulting images contain less
minima, which simplifies the selection procedure. Besides, the variance observed when we change
images is explained by the fact that the difficulty of minima evaluation/computation depends on
the content of each image. We are currently working on a new implementation of minima compu-
tation/evaluation which would be less dependent on the number of superpixels.

To conclude this section, waterpixels are generally faster to compute than SLIC superpixels,
and they are at least as performant in terms of the trade-off between adherence to object boundaries
and regularity in shape and size, while using much less pixels to describe their contours.

5.5 Conclusion, discussion and prospects

This chapter introduces waterpixels, a family of methods for computing regular superpixels based
on the watershed transformation. Both adherence to object boundaries and regularity of resulting
regions are encouraged thanks to the choice of the markers and the gradient to be flooded. Dif-
ferent design options, such as the distance function used to spatially regularize the gradient, lead
to different trade-offs between both properties. The computational complexity of waterpixels is
linear. Our current implementation makes it one of the fastest superpixel methods. Experimental
results show that waterpixels are competitive with respect to the state-of the art, and even tend to
outperform one of the best and most widely used methods for superpixel generation, albeit with
only a small margin. The trade-off between speed and segmentation quality achieved by water-
pixels, as well as their ability to generate hierarchical segmentations at negligible extra cost, offer
interesting perspectives for this superpixel generation method.

We have shown that waterpixels produce competitive results with respect to the state-of-the-
art. These advantages are valuable in the classification/detection/segmentation pipeline, where

79

Chapter 5. Waterpixels

superpixels play the part of primitives. Moreover, there is one major difference in the construction
of the algorithm: the SLIC approach does not impose any connectivity constraint. The resulting
superpixels are therefore not necessarily connected, which requires an ad hoc postprocessing step.
In contrast, waterpixels are connected by definition thanks to the watershed.

The proposed approach is gradient-based. Standard methods can be used to compute this gra-
dient, or a specific gradient computation method can be designed for a given application. In any
case, this offers flexibility to waterpixels. One limitation, though, is the quality of the signal in
such a gradient image. As seen in 5.8, alteration by noise or insufficiently contrasted contours
may lead to the prevalence of regularity over adherence to object boundaries. If filtering steps are
usually enough to deal with noise and remove irrelevant small details, parameter values have to
be optimized for each database. Future work will aim at overcoming this limitation by adding a
learning step of optimal filtering values for specific databases.

The general design of waterpixels offers many prospects. Among them, one promising field of
improvement resides in the placement of markers, as they constitute the main degree of freedom
of the method. Future work could investigate the possibility to select the markers in an optimal
manner, for example by formulating the marker placement as a p-dispersion problem (see Erkut
[1990]) in an augmented space.

Last but not least, waterpixels lead to the efficient construction of hierarchical partitions based
on superpixels. Indeed, the computation of the watershed can produce at the same time a seg-
mentation and a hierarchy of partitions based on that segmentation, with only minor overhead
computation times (see Meyer [1994]; Beucher [1994]; Meyer [2001]).

We are now going to use waterpixels as pertinent supports in the classification pipeline to learn
segmentation.

——————————————————————————–

80

III

6 How superpixels are used in the literature
85

6.1 Examples of use in the literature
6.2 Superpixel classification
6.3 Discussion and conclusion

7 SAF: Superpixel-Adaptive Features . . 103
7.1 Principle
7.2 Comparison with other state-of-the-art methods
7.3 Preliminary study on D1
7.4 Final results on the three databases
7.5 Conclusion and prospects on SAF

Learning Segmentation with
Waterpixels

Our aim is to provide a general segmentation method enabling to offer good performance on
any database with the only help of supervised learning.

In Part 1, we have decided to address this issue with pixel classification (UC: pixel). We have
noticed that a wider computational support (CS), such as the window, could capture a richer in-
formation than the pixel itself. However, performance could be further improved (especially on
object borders) with a support adapting to the image content.

Therefore, in Part 2, we have focused on another image representation: superpixels. Indeed,
contrary to windows, superpixels seem to constitute a more pertinent support as they adapt well to
the image content (these regions result from a special case of low-level segmentation). We have
proposed a novel superpixel generation method, waterpixels, which is efficient, fast and easy to
compute for the user. These advantages make them a good candidate to be used for this generation
pre-processing step.

Part 3 is hence dedicated to the insertion of waterpixels in the classification pipeline and the
study of their pertinence in such a workflow, as illustrated in Fig. 5.11. In this example, we can
see that computing a feature (for instance the mean intensity in the support) on a superpixel rather
than on a window will lead to an easier and hence better classification result on borders. We will
now present two ways of using superpixel-CS in this workflow.

(a) crop from im5
a

(b) zoom of (a)
a

(c) sliding window
a

(d) Feature
computation

(e) Waterpixels
partition

a

(f) zoom of (e)
a

(g) Waterpixel
a

(h) Feature
computation

Figure 5.11: Comparison between CS = window and CS = superpixel.

83

Related Publications and Conferences
a

• New General Features Based on Superpixels for Image Segmentation Learning
V. Machairas, T. Baldeweck, T. Walter and E. Decencière
International Symposium on Biomedical Imaging (ISBI), 2016
a

• SAF: A New Superpixel-Based Feature for Pixel Classification
V. Machairas, T. Baldeweck, T. Walter and E. Decencière
39th session of ISS France, 2016
a

84

6 How superpixels are used in the
literature

I learned that courage was not the absence of fear, but the triumph over it.
The brave man is not he who does not feel afraid, but he who conquers that fear.

Nelson Mandela

Résumé
Ce chapitre présente un état de l’art de l’utilisation des superpixels pour la segmenta-
tion/détection d’objets dans les images. Nous nous intéressons en particulier à la clas-
sification de superpixels, alternative qui semble pertinente pour améliorer la chaîne de
classification de pixels. Nous montrons que les waterpixels sont des superpixels qui of-
frent de bonnes performances de sur-segmentation et qu’ils constituent des supports plus
adaptés pour le calcul des descripteurs permettant de les classer.

In this chapter, we explain how superpixels are used in the literature. We then focus on one
particular application, superpixel classification, which is a good candidate to replace pixel classi-
fication. After expounding the process, we quantitatively evaluate the segmentation performance
of this approach, benchmarked against the pixel and sliding window ones.

6.1 Examples of use in the literature

Superpixels have raised huge interest over the past years, as they provide a compact representation
of an image and can be efficiently computed. They can be found in many applications, for instance
in text detection (Zhou et al. [2012]) or street scene segmentation (Micusik and Kosecka [2009]).
They are of course widely used in the biological and medical fields where the data desperately
needs such a simplification (high resolution and 3D lead to big data). We can cite tumor segmen-
tation (brain in Wu et al. [2014], liver in Conze et al. [2015] and Conze et al. [2016]), optic cup
localization (Xu et al. [2012], Tan et al. [2015]), and segmentation of EM images (Lucchi et al.
[2012], Andres et al. [2008], Andres et al. [2012]).

Before analyzing the different families of methods using superpixels in the literature, we will
start by presenting four examples of articles with different approaches of their use.

Chapter 6. How superpixels are used in the literature

In Xu et al. [2012], the aim is to segment the optic cup in eye fundus images in order to
compute the cup-to-disk ratio, a useful clinical indicator of glaucoma (a pathology causing blind-
ness). The proposed method consists in partitioning each image into superpixels, removing those
corresponding to the blood vessels and the outside area of the optic disk, and classifying those
which remain into “cup” and “rim” regions. They use normalized features to describe superpix-
els, based on spatial information, mean RGB colors and grey-level histograms. A SVM classifier
with linear kernel performs the learning. They eventually provide a superpixel label refinement
scheme integrating prior knowledge on such biological structures (taking into account the distance
to the center of the optical disk as well as the labels of the neighboring superpixels), which enables
them to outperform state-of-the-art methods based on pixel classification and sliding window ap-
proaches applied on the same task.

In Andres et al. [2008], the aim is to segment neurons present in 3D images acquired by serial
block-face scanning electron microscopy (SBFSEM). The proposed method consists in partition-
ing each image into superpixels, and classifying each face (i.e. each frontier between two adjacent
superpixels) as “real object contour” (1) or “false object contour” (0). They use intensity distri-
bution characteristics as well as the difference of mean intensities between the two corresponding
superpixels to compute the vector of features of each face, and a random forest classifier to perform
the learning. It is also interesting to note that the first step, SP partitioning, also contains a learning
approach, consisting in two phases. First, a voxel classification procedure is applied on the images
to determine if each voxel belongs or not to an object contour. Second, the resulting probability
map, considered as a topographical surface, is flooded starting by a reduced number of minima
(marker-controlled watershed) to obtain a partition of non-regular but nonetheless homogeneous
regions used as SPs. The authors show that they achieve the same accuracy as the state-of-the-art
method based on a convolutional neural network (CNN) designed for the same task, and with a
lower cost (training a CNN being quite expensive).

The approach of Levinshtein et al. [2010] also considers the faces between adjacent super-
pixels. However, contrary to the previous paper, they are not dealing with classification but with
fusion of such units. Indeed, they focus on contour closure, a general problem consisting in
finding the best cycle of contour fragments that enables to separate a figure from a background.
To reduce the computational complexity of state-of-the-art methods which perform an exhaustive
search over all grouping possibilities, they propose to partition each image into superpixels and
then find the “best” subset of superpixels, defined as the one whose overall boundary is the most
strongly supported by image edges. Thus, they only consider the pixels lying on SP contours. The
edginess of such an SP contour pixel, i.e. the probability that it belongs to an object contour, is
learned, its vector of features containing information on the local geometry of the SP boundary at
this point and on the detected image edge evidence in its neighborhood. Then, the best closure is
detected by minimizing, with parametric maxflow, the amount of points with weak edginess along
the boundary of an SP grouping. The result is then a cycle of SP faces which enables to perform
the best separation between the figure and its background.

The last example, Chai et al. [2011], addresses the pre-processing step of background re-
moval, useful, later on, to ease and improve multi-class classification of objects found in the fore-
ground. For this unsupervised first phase, a GrabCut approach is used to segment each image of
the database into “foreground” and “background” parts. The idea of GrabCut is to estimate the
Gaussian mixture of each class in order to infer how to cut the graph of corresponding pixels.
However, when computing this estimation, they propose to weight the importance of each pixel

86

6.1 Examples of use in the literature

by taking into account information provided by superpixels. Indeed, the GrabCut method works
well on a given image, but is less efficient on the whole dataset as classes’ Gaussian mixtures are
more likely to overlap so are less easy to discriminate. Therefore, the idea consists in adding a
supervised step, i.e. the classification of superpixels (of the whole dataset this time) into the same
two classes, “foreground” and “background”, performed with a linear SVM. Each superpixel is
then assigned the distance to the learned separating hyperplane in the feature space. This value
is then used to weight every pixel of a given superpixel, when computing the Gaussian mixture
estimation of a class. We can thus notice that superpixels sometimes do not constitute the main
workflow but can serve as a help to improve the performance of another segmentation method.

Through these four examples, we have seen that superpixels can be used in many different
ways, specific or not to a given type of objects and images. We now propose to give different
categorizations of the literature, highlighting each time a different aspect such as the use or not of
classification, the nature of the classification unit, the importance of SPs in the pipeline etc.

(a) SP as a region.
(b) A face between two SPs.

Figure 6.1: Region and face : two classification units for superpixels.

Region / Face: A superpixel can be seen either as a region (as in Xu et al. [2012]) or a set of faces
(as in Manfredi et al. [2014]), each face corresponding to a frontier between itself and one of its
neighbors. We can then choose to deal with a region or a face for the unit of classification “su-
perpixel” (see Fig. 6.1.a. vs. Fig. 6.1.b.). This choice determines the meaning of the labels when
performing classification, for instance. In our case, working on regions lead to labels “object” (1)
and “background” (0), whereas working on faces imposes labels “contour” (1) and “not a contour”
(0). It also guides the design of associated features: a region will be described by its inner color
and texture, whereas a face is defined mainly by the difference of such properties between its cor-
responding pair of superpixels, as well as by its intensity distribution along itself. In this work,
we choose the region approach for two reasons. First because its results can easily be transferred
to the second approach. Second because the result of face classification may not always lead to a
proper segmentation and would hence require an additional pruning step (which has a cost and is
also an additional potential source of errors). We will then deal with superpixels as regions in the
following.

Classification / Fusion: We have expounded how pixel classification works in Part I. Superpixel
classification is similar, however superpixels, instead of pixels, are used as classification units, i.e.
the aim is to assign to each superpixel the label of the object it belongs to. All pixels of a given
superpixel will thus obtain the same label. This approach enables to reduce the computational cost
by reducing the number of classification units, as well as to integrate a more pertinent information
on the objects by using a computational support which is wider than a pixel and which adapts to
the image content (contrary to a fixed window). Classification of superpixels (either regions or
their faces) is hence pretty often used in the literature, as in Andres et al. [2012], Manfredi et al.
[2014] or Xu et al. [2012] for instance. Another way to start with this low-level segmentation

87

Chapter 6. How superpixels are used in the literature

(a) SPs and corresponding GT
values

(b) Classification
a

(c) Fusion
a

Figure 6.2: Classification vs. fusion (of SPs considered as regions).

(a) Single scale a (b) Multiple scales a

Figure 6.3: Single-scale vs. multi-scale.

into superpixels and end with a final segmentation is to perform a fusion process on these very
units. It can be achieved locally, gathering two neighboring regions if they satisfy or optimize a
given criterion (see Fig. 6.2.c.). The result is a hierarchy of partitions whose finest partition is the
superpixels and the coarsest is the final segmentation or the whole image according to the criterion
used. In the later case, the best partition can be found by searching the “best” cut in the hierachy
according to a learned cost for instance. Or the aim can be to study each possible grouping of
superpixels to say whether this gathering is optimal or not (either being a group of regions, or
a cycle of fragments). In our work, we will focus on superpixel classification so that it can be
compared to the pixel and window approaches.

One partition / multiple partitions: Classification and fusion, as previously explained, only deal
with a unique partition of superpixels. However, as pointed out in the work of Malisiewicz et al.
among others, it is incautious to rely on a unique low-level segmentation. Firstly because it has
its own part of mistakes (some missed contours). Secondly because the information which is cap-
tured is conditioned by the method and parameters used to obtain such a partition. Let us consider
for instance the impact of the parameter controlling the size of superpixels. We can easily see that
objects which are smaller than the superpixel size will not, or not entirely, be detected. Hence the
size of the regions has an impact on the segmentation performance. But how can we choose the
best size to compute the unique partition? A unique answer may not even be possible to give, as
there may be objects with different sizes in the images, hence corresponding to different superpixel
sizes. Thus, the idea is to produce different partitions, one for each size, and “combine” them to
obtain the final segmentation taking into account multi-scale information. But size is only one of
the parameters. This procedure could also be enriched by partitions coming from the variation of
other parameters’values, or even being generated by different SP generation methods, on differ-
ent images of the same scene (another wavelength, another acquisition time, . . .). The advantage
of combining multiple partitions, such as in Conze et al. [2016] and Geremia et al. [2013], is to

88

6.2 Superpixel classification

Figure 6.4: General scheme for superpixel classification.

capture more information on the image content, leading to an improvement of the segmentation
performance.

Principal element / support element: As we have seen in the four examples, superpixels may
be at the core of the segmentation pipeline, or just serve as a help to improve other segmenta-
tion/detection methods. In both cases, they are used as pertinent supports because they adapt to
the image content.

To replace pixel classification (either with pixel or window supports), we are now going to
investigate one solution proposed in this literature: superpixel classification (based on one partition
of SPs). This second pipeline will also be assessed on the three databases D1, D2 and D3 to see
the impact on segmentation performance.

6.2 Superpixel classification

This section is dedicated to the investigation of superpixel classification, and its benchmark against
pixel and window approaches.

6.2.1 Principle
As explained in the previous section, superpixels are now used as classification units, instead of
pixels. They are also their own (and only) computational support to compute features, as shown
in Fig. 6.4. Features

{
Fj
}

j are defined the same way as in Chapt. 2: Fj = {c,Ω,GEO,CS,Σ},
where c is the channel, Ω is the operator, GEO is a Boolean for geodesic or non-geodesic way of
applying Ω, CS is the computational support (here, the superpixel) and Σ is the integrator of the
CS. It is important to note that the integration over the CS (resulting in a unique value) is now
compulsory to ensure that all vectors of features have the same length (superpixels do not have
exactly the same number of pixels even when regularity is enforced) and can thus be processed by
the machine learning method. As far as groundtruth is concerned, for training, each SP is assigned
the label of the majority class among its pixels. Note that evaluation is performed afterwards with
the pixel form, as previously explained in Chapt. 3. Figure 6.5 illustrates the difference between
pixel and superpixel features (and groundtruth).

89

Chapter 6. How superpixels are used in the literature

(a) im1 from D1
a

(b) GT of im1
(pixel form)

(c) Dilation δV 6
5

CS = pixel

(d) Waterpixels
(σ = 40, k=4)

(e) GT of im1
(superpixel form)

(f) Dilation δV 6
5

CS = waterpixels (d)

Figure 6.5: Superpixel features vs. pixel features.

In the following, waterpixels will be computed to obtain superpixels, but any other efficient
and fast SP-generation method could have been used. Figure 6.6 shows more examples of fea-
tures computed on the two other databases D2 and D3, taking each time the mean value over the
waterpixels. They are to be compared with the groundtruth (shown in the second column in their
pixel partition form). This set of features have been chosen on purpose in this illustration as they
are rather discriminant, thus likely to be used by random forests to perform a good classification
of superpixels.

As far as the parameter GEO is concerned, it is set to false (i.e. non-geodesic way) when the
operator Ω is first applied to the image before integrating over the CS. On the contrary, the geodesic
way consists in applying the operator directly on the CS, and then integrating information of this
very CS into a unique value. The second way enables to prevent border influence, as illustrated
in Fig. 6.7 where two operators (two dilations: δV 6

5 of size 5 and δV 6
10 of size 10, both with

V6 neighborhood) are applied in both geodesic and non-geodesic ways with the same waterpixel
partition. The geodesic way seems to better help discrimination between objects and background,
but there may also be cases where the non-geodesic way is preferable in order to incorporate
contextual information.

6.2.2 Preliminary study on D1

As in Chapt. 3, a preliminary study is conducted on the L’Oréal database D1. We remind that
the random forest parameters have been set to consistent values (100 trees, 100 data at least in
each leaf at the end of training) and that a leave-one-out procedure is applied to evaluate the seg-
mentation performance. General results, including results on the other two databases, will only be
shown in the next chapter for the new proposed method (see Chapt. 7).

90

6.2 Superpixel classification

(a) crop from D2 (b) GT of (a) (c) F1 applied on (a)

(d) crop from D2 (e) GT of (d) (f) F2 applied on (d)

(g) crop from D3 (h) GT of (g) (i) F3 applied on (g)

Figure 6.6: Examples of features computed on the three databases. Leg-
end: F1 = {0,Haralick′SumAverage′,False,waterpixels(σ = 20,k = 4),meanvalue},
F2 = {0,Haralick′SumAverage′,False,waterpixels(σ = 40,k = 50),meanvalue},
F3 = {0, Identity,False,waterpixels(σ = 10,k = 4),meanvalue}

Waterpixels on D1

In this paragraph, we show that waterpixels achieve an efficient low-level segmentation of D1 im-
ages, and are hence suitable for classification purposes.

As explained in the previous paragraph, this approach enables to perform a single-scale classi-
fication since superpixels used as UC are generated with a given size (i.e. step σ for waterpixels).
We will study the performance for 4 different sizes (the same used previously for windows as
shown in Tab. 6.1) leading each time to a different classification result.

radius (windows) σ (waterpixels)
5 10

10 20
15 30
20 40

Table 6.1: Corresponding sizes (in pixels) for windows and waterpixels support.

91

Chapter 6. How superpixels are used in the literature

(a) δV 6
5 , GEO = False (b) δV 6

5 , GEO = True (c) δV 6
10 , GEO = False (d) δV 6

10 , GEO = True

(e) crop 1 (f) GT of crop 1 (g) crop 2 (h) GT of crop 2

(i) δV 6
5 , GEO = False (j) δV 6

5 , GEO = True (k) δV 6
10 , GEO = False (l) δV 6

10 , GEO = True

(m) δV 6
5 , GEO = False (n) δV 6

5 , GEO = True (o) δV 6
10 , GEO = False (p) δV 6

10 , GEO = True

Figure 6.7: Geodesic and non-geodesic ways of applying operators.

92

6.2 Superpixel classification

Figure 6.8 shows how waterpixels behave on the D1 database: four crops (columns) are par-
titioned into superpixels of four different sizes (rows). These low-level segmentations succeed in
catching most object contours, especially in the third and fourth cases (third and fourth columns).
Sometimes, a given scale is preferable, as for crop 1 where the object can be better distinguished
with the larger scale (σ = 40), or for crop 2 where a lower size (e.g. σ = 20) enables to detect
thinner parts of melanocytes.

To go further on waterpixels evaluation, we compute the performance of the best segmentation
achievable with waterpixels of each size. To do so, we simulate a perfect superpixel classification
by assigning to each SP the label of the majority class among its pixels (as done to compute the
groundtruth in the training phase). This will give us the best reachable performance with this ap-
proach. Figures 6.9 and 6.10 show the results for the eight images of database D1. Qualitatively,
we can observe that objects are nearly entirely recovered for all sizes, which confirms that water-
pixels perform well also on this database. The study of each size emphasizes once again the fact
that superpixels detect objects which are equal or bigger than their own size. This phenomenon is
highlighted with the case of im3 for instance, where we can see that objects which are big enough
are kept for all sizes while thin elongated parts tend to be split or assimilated to the background
when σ increases.

Table 6.2 gives the corresponding quantitative results, computing the precision, recall, F-score,
Jaccard index and accuracy. As observed before, performance increases when σ decreases: recall
is higher since thinner structures can be caught by SP contours, increasing from 76% to 91%.
Precision stays rather stable when σ varies (Pσ10=93, Pσ20,σ30,σ40=91), which means that errors due
to SP overlapping remain low and are approximately constant. These mistakes are then more due
to the quality of image content more than to an effect of SP size. On the whole (apart from im6
which appears more difficult to segment due to the presence of objects with many different sizes),
the images present rather similar and good results, which means that waterpixels are rather robust
over the database. This can be clearly noted when considering the largest σ .

Study with different families of features
We are now going to study the segmentation performance obtained when classifying superpixels
of D1 with two sets of features: features based on operators from Mathematical Morphology (no-
tation: MOMA) and Haralick. Let us start by operators from Mathematical Morphology.

Figure 6.11 shows classification results for im1, im5 and im3 of D1, when using as UC and
CS waterpixels of size σ=10, 20, 30 and 40 respectively. The integrator Σ is the mean over the wa-
terpixel. Colors mark pixels as follows (as previously done in Chapt. 3): green for true positives,
white for true negatives, red for false positives and blue for false negatives. The case of im1 illus-
trates well the effect of size on segmentation performance. We can see that when σ increases, the
number of false positives decreases. Indeed, small artifacts, which can induce errors when dealing
with the region they are contained in, have less impact when the region is larger. For the same
reason, small parts of real objects have not enough importance in larger regions to be assigned the
good label. Hence, the number of false negatives also increases with σ . This behavior can also
be observed on the case of im5 (second row). False positives are less spread over the image, but
more and more gathered. Image 3 constitutes a more difficult case because of the distribution of
illumination in the original image (see Fig. 3.2.c in Chapt. 3). Thus, more false positives can be
observed in the center of the image.

Quantitative results taking into account the eight images of the database are shown in Tab. 6.3.

93

Chapter 6. How superpixels are used in the literature

Measure σ im1 im2 im3 im4 im5 im6 im7 im8 all images
Precision 10 93 93 93 93 95 90 92 93 93

20 91 93 90 91 95 86 91 93 91
30 89 92 92 92 93 89 91 91 91
40 91 91 89 91 95 87 87 90 91

Recall 10 94 89 90 91 91 90 92 92 91
20 89 84 87 88 86 81 86 87 86
30 84 79 83 80 86 68 84 80 81
40 80 73 73 76 78 62 80 83 76

F-score 10 93 91 91 92 93 90 92 92 92
20 90 88 88 89 90 83 88 90 88
30 86 85 87 86 89 77 87 85 86
40 85 81 80 83 86 72 83 86 83

Jaccard index 10 88 84 84 85 86 82 85 86 85
20 83 79 79 81 82 72 79 81 80
30 76 74 78 75 80 62 77 74 75
40 74 68 68 70 75 54 72 76 70

Accuracy 10 98 96 98 97 98 98 97 98 98
20 97 95 98 97 97 96 96 97 97
30 96 94 98 96 96 95 96 96 96
40 96 93 96 95 95 94 95 96 95

Table 6.2: Ideal classification of waterpixels: performance on D1.

For Σ = mean, precision tends to increase with σ , while recall decreases. It is difficult to find
the best size for D1, as the best precision is achieved for σ3 whereas the best recall is reached
for σ1. For Σ = standard deviation, it is σ2 which seems to be the best suited. In any case, the
number of connected components, Nbcc decreases with σ , which means that increasing the size of
superpixels enables to improve the spatial coherence of the detected objects. It is also true if we
consider Haralick features instead of features based on operators from Mathematical Morphology.
The number of connected components gets closer to the real number of objects in the images when
we increase the size of the support (see Tab. 6.4). This time, the biggest studied size seems to be
the best to compute these features, as highlighted by the classification performance.

What we can conclude on D1 is that the first three scales σ1, σ2 and σ3 seem to be rather
suitable whereas σ4 is too large compared to the size of the objects we would like to detect. How-
ever, choosing the best size among the three appears to be difficult as we have seen that one can
be better for a given criterion and another better for another criterion. Besides, it also depends
on the considered feature. Features of texture such as Haralick have to be computed on supports
which are rather similar and large enough for the texture to be fairly estimated. Hence, we must
use in this case more regular waterpixels (increasing parameter k) and with high σ (which should
not exceed the size of the largest objects though). This is illustrated in Fig. 6.13 where the feature
“SumAverage” is applied on an image of D2. The larger and the more regular waterpixels are,
the better the texture is estimated. As texture is very helpful to discrimininate tumoral and normal
tissues in this database, it is important to use supports which will not bias its estimation. At this
stage, we can already highlight the need not only for multiple scales but also for multiple partitions
to improve segmentation results.

94

6.2 Superpixel classification

UC/CS base P R F J Acc Nb_cc

SP mean train 66 88 75 60 91 33±2
σ1 test 63 86 72 57 90 35±10

SP mean train 72 86 78 64 93 13±1
σ2 test 65 81 72 57 91 14±3

SP mean train 72 86 79 65 93 7±0
σ3 test 67 80 73 57 91 8±2

SP mean train 70 85 77 62 92 6±1
σ4 test 64 76 69 53 90 7±3

SP std train 62 87 73 57 90 47±3
σ1 test 60 85 71 55 89 50±16

SP std train 67 88 76 61 91 13±1
σ2 test 63 85 72 57 90 13±4

SP std train 67 88 76 61 91 7±1
σ3 test 62 84 71 55 90 9±3

SP std train 67 86 75 60 91 6±0
σ4 test 61 82 70 54 89 6±2

UC = pixel train 63 88 74 58 90 202±14
CS = pixel test 61 87 72 56 90 203±71
UC = pixel train 67 90 76 62 92 97±7

CS = windows (4), Σ = mean test 64 89 75 59 91 101±33

Table 6.3: Classification results with MOMA operators on D1. Waterpixels: σ1 = 10, σ2 = 20,
σ3 = 30, σ4 = 40; k=4.

Comparison with pixel and window supports

Figure 6.12 and Tab. 6.3 deal with the comparison between three computational supports: pixel,
window and waterpixel. Note that the first two are used when classifying pixels, whereas the
last one also constitutes the unit of classification UC. In Fig. 6.12, we can see that waterpixels
offer a better spatial coherence of detected objects than pixels and windows supports. This
observation is also quantitatively confirmed in Tab. 6.3, as the number of connected components
Nb_cc is always smaller (thus closer to the real number of objects) for waterpixels (from 50 to 6)
than for pixels (203) and windows (101). Classification performance is close to the one offered by
pixels and windows, but the latter still shows an improvement due to the advantage of integrating
multi-scale information.

σ base P R F J Acc Nb_cc
σ1 train 66 88 76 61 91 38±1

test 61 83 70 54 89 41±10
σ2 train 72 91 81 68 93 9±1

test 64 82 72 56 90 13±1
σ3 train 70 90 79 65 93 9±1

test 65 82 73 57 91 8±2

Table 6.4: Classification results with Haralick operators on D1. Waterpixels :σ1 = 10,σ2 =
20,σ3 = 30; k = 4.

95

Chapter 6. How superpixels are used in the literature

6.3 Discussion and conclusion
In conclusion, the advantage of superpixel classification over pixel classification (either with CS =
pixel or CS = window) is to use a support which adapts to the content of the image, hence using
a more relevant support for feature computation. The drawback of superpixel classification com-
pared to pixel classification with windows support is that it does not allow to capture multi-scales
information as it uses only one partition of SPs.

Some solutions exist to integrate multiple partitions with SP classification. Among them, one
possibility is to perform a classification for each scale/partition and combine the different classifi-
cation results with a given consensus rule. Another way would be to combine first all SP partitions
into one and apply classification on the latter, as illustrated in Fig. 6.14. This second solution is
equivalent to classifying each region in the new partition. However, regions are no longer regular,
which is not good to compute features (as pointed out earlier, regularity is necessary for some
features such as Haralick). Also, the works of Conze et al. [2016] and Geremia et al. [2013] in-
tegrate multi-scale information while performing superpixel classification (see the comparison in
Chapt.7).

In the next chapter, we will introduce a novel way to integrate multiple partitions of SPs (not
only multi-scale): the Superpixel-Adaptive Features (SAF).

96

6.3 Discussion and conclusion

(a) zoom of im1 (b) zoom of im3 (c) zoom of im4 (d) zoom of im5
a

Waterpixels σ = 10, k = 4 a
a

(e) WP of (a) (f) WP of (b) (g) WP of (c) (h) WP of (d)
a

Waterpixels σ = 20, k = 4 a
a

(i) WP of (a) (j) WP of (b) (k) WP of (c) (l) WP of (d)
a

Waterpixels σ = 30, k = 4 a
a

(m) WP of (a) (n) WP of (b) (o) WP of (c) (p) WP of (d)
a

Waterpixels σ = 40, k = 4 a
a

(q) WP of (a) (r) WP of (b) (s) WP of (c) (t) WP of (d)

Figure 6.8: Waterpixels applied to the L’Oréal database D1.
97

Chapter 6. How superpixels are used in the literature

(a) GT of im1 (b) GT of im2 (c) GT of im3 (d) GT of im4
a

Best predictions
for im1
↓
a

a
Best predictions

for im2
↓
a

a
Best predictions

for im3
↓
a

a
Best predictions

for im4
↓
aa

Waterpixels σ = 10, k = 4 a
a a a a

a
Waterpixels σ = 20, k = 4 a

a a a a

a
Waterpixels σ = 30, k = 4 a

a a a a

a
Waterpixels σ = 40, k = 4 a

a a a a

Figure 6.9: Best prediction at each scale for the L’Oréal database D1 (1/2).

98

6.3 Discussion and conclusion

(aa) GT of im5 (b) GT of im6 (c) GT of im7 (d) GT of im8
a

Best predictions
for im5
↓
a

a
Best predictions

for im6
↓
a

a
Best predictions

for im7
↓
a

a
Best predictions

for im8
↓
aa

Waterpixels σ = 10, k = 4 a
a a a a

a
Waterpixels σ = 20, k = 4 a

a a a a

a
Waterpixels σ = 30, k = 4 a

a a a a

a
Waterpixels σ = 40, k = 4 a

a a a a

Figure 6.10: Best prediction at each scale for the L’Oréal database D1 (2/2).

99

Chapter 6. How superpixels are used in the literature

(a) im1, σ = 10 (b) im1, σ = 20 (c) im1, σ = 30 (d) im1, σ = 40

(e) im5, σ = 10 (f) im5, σ = 20 (g) im5, σ = 30 (h) im5, σ = 40

(i) im3, σ = 10 (j) im3, σ = 20 (k) im3, σ = 30 (l) im3, σ = 40

Figure 6.11: Classification results with MOMA operators and waterpixels (σ=10, 20, 30, 40;
k=4). Legend: green = true positive, white = true negative, red = false positive, blue = false
negative.

(a) im1, CS = pixel
a

(b) im1, CS = windows (4)
a

(c) im1, CS = waterpixels
(σ = 20, k = 4)

Figure 6.12: Comparison of classification results (MOMA operators) with three different CS:
pixel, window and waterpixel. Legend: green = true positive, white = true negative, red = false
positive, blue = false negative.

100

6.3 Discussion and conclusion

(a) CS = waterpixels
σ = 20, k = 10

(b) CS = waterpixels
σ = 30, k = 10

(c) CS = waterpixels
σ = 30, k = 50

(d) CS = waterpixels
σ = 40, k = 50

Figure 6.13: Haralick features need large as well as similar supports to be fairly estimated and
compared (regions of different textures are more distinguishable in the last configuration).

a
Multiple superpixel partitions

a

Combination of
multiple partitions

a

Figure 6.14: How to combine multiple partitions (second solution).

101

7 SAF: Superpixel-Adaptive Features

It always seems impossible until it’s done.
Nelson Mandela

Résumé
Dans ce chapitre, nous proposons une nouvelle méthode permettant de répondre au su-
jet de thèse. Elle consiste à réaliser une classification de pixels, s’aidant cette fois-ci
des superpixels (les waterpixels dans notre cas) pour calculer leurs descripteurs. Elle a
l’avantage de permettre l’intégration de l’information sur un support plus pertinent que
le pixel et la fenêtre, ainsi que de permettre une approche multi-échelle contrairement à
la classification de superpixels habituelle.

In this chapter, we present a novel general segmentation method based on pixel classification
using superpixels as computational supports (see Sec. 7.1). This approach is then assessed on the
three databases D1, D2 and D3 and compared to the other previously introduced pipelines (from
Chap.3 and 6). It is also benchmarked against state-of-the-art segmentation methods designed
specifically for these very databases.

7.1 Principle

In this chapter, we propose to perform pixel classification using superpixels as computational sup-
ports instead of windows. The proposed strategy is summarized in Fig. 7.1. As previously done
for superpixel classification (Chapt. 6), superpixels are used as pertinent supports to compute fea-
tures. However, this time, pixels constitute the classification units. We call these pixel features
computed on SP supports the Superpixel-Adaptive Features (SAF).

Let us consider a given partition into superpixels {s j} j. For each superpixel s j, one feature (or
more) is calculated and the resulting value is stored in the vector of features of every pixel belong-
ing to s j. This enforces similarity between vectors of pixels belonging to the same superpixel and
hence improves their chance of being classified with the same label.

Chapter 7. SAF: Superpixel-Adaptive Features

Figure 7.1: General scheme for our new approach: Superpixel-Adaptive Features (SAF).

Actually, if we use only one partition, vectors of pixels belonging to the same superpixel will
be identical, which is equivalent to using the superpixel as classification unit. But here the process
is repeated on different partitions of superpixels (computed with different parameters such as size,
or even with different generation methods) in order to enrich the pixel’s vector of features with
information captured with different points of view. Figure 7.2 shows the similarity between the
two pipelines of pixel classification using CS = windows and CS = superpixels (waterpixels in our
case) respectively. They both enable multi-scale integration of the information; however, super-
pixels are more pertinent supports as they adapt to the image content.

Remark: Using the pixel itself as CS is a special case of SAF as it can be seen as a superpixel of
size one pixel.

7.2 Comparison with other state-of-the-art methods

In this section, we present (to the limit of our knowledge) two interesting methods from the lit-
erature which succeed in integrating multi-scale information provided by different partitions of
superpixels.

The work of Conze et al. [2016], done in parallel and published at the same time, is, for ex-
ample, close to ours, as features are computed on superpixels of different sizes. This paper deals
with liver tumor segmentation in dynamic contrast-enhanced CT scans. The need for multi-scale
is motivated by the variety of tissues, as well as by the tediousness of the required (manually ex-
haustive) scale optimization which would have to be done by the user otherwise. In a first phase,
a hierarchy of K partitions is built where each layer corresponds to a given SP size (decreasing
from top to bottom). Starting from a coarse SLIC superpixel partition, each region is iteratively
split into a set of smaller superpixels. This guarantees the hierarchical property between all SP
partitions (which would not have hold if each partition, i.e. each scale, had been computed di-
rectly on the whole image, independently from the others). This ensures that all superpixels in
the finest partition have exactly K−1 superpixel parents (one in each of the K−1 other partitions
of the hierarchy). The former are taken as classification units and their features are computed on
their K−1 parents as well as on themselves (leading to K supports). This idea is interesting as it

104

7.2 Comparison with other state-of-the-art methods

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.2: Using multiple partitions to compute different CS: comparison between windows
and superpixels (SAF features). Legend: (a)–(c) windows with increasing size (radius r),
(d) using windows (a), (b) and (c) ; (e)–(g) waterpixels of increasing size (step σ), (h) using
waterpixels (e), (f) and (g).

reduces the computational cost by reducing the number of classification units (the set of smallest
superpixels instead of all pixels). However, a hierarchy property is required between the parti-
tion, which limits the type of partitions used to enrich the vector of features. On the contrary, our
method does not require any relation between partitions, therefore they can be generated not only
with different scales but also by making more parameters vary, with different generation methods
or even on different complementary channels (wavelengths, etc) according to our needs. A richer
information is hence available with SAF.

Similarly to the work of Conze et al. [2016], the approach proposed by Geremia et al. [2013]
is also based on superpixel classification with the help of multi-scale information captured on su-
perpixels of different sizes (which are no more regular after fusion). This time, the hierarchy of SP
partitions is built bottom-up (clustering superpixels of a given layer to obtain a coarser partition
in the layer above). Let k be the index of a layer in this hierarchy, ranging from 0 (finest) to K
(coarsest). The procedure starts by performing a superpixel classification with random forests (as
explained in the previous chapter) where the classification units are SPs from the coarsest parti-
tion (layer K). Note that it is not possible to use the same procedure as in Conze et al. [2016] to
integrate multi-scale information in this case: indeed, all nodes of a given layer, i.e. superpixels
of a given partitions, do not have exactly the same number of children in the hierarchy. Hence,
vectors of features corresponding to SPs to be classified would not have the same size, which can-
not be handled by random forests. The multi-scale information is rather captured in a different
way. The idea is that the computational support is always equal to the classification unit, how-
ever the classification unit can change in the RF learning procedure. Indeed, during training, if a
set of classification units (a set of SPs from the coarser partition at the beginning) is not easy to
discriminate with the available features computed on themselves, then the classification units are
“split”, i.e. become each one a set of smaller superpixels (present in the next lower layer) to be
considered, in turn, as new classification units. Features are then recomputed on these regions of
lower size and routed towards the next RF child node. Note that for each node, this new scale k
is stored together with the split function (f ,Θ̂) during training. The number of total classifica-

105

Chapter 7. SAF: Superpixel-Adaptive Features

tion units hence increases during the procedure, but at the end it is still less than the number of
SPs in the finest scale (layer 0). The aim here is to quickly classify “easy” regions (such as large
homogeneous ones) and only consider finer scales if needed to better classify “difficult” (mixed)
regions. Contrary to the previous approach as well as to ours, multiple partitions are integrated in
the random forest procedure, whereas in the other two cases, the integration is independent from
the machine learning method which can thus be changed without impacting the construction of
the pipeline. Once again, this technique only enables to catch multi-scale information (and not
information from other type of partitions) because it relies on a hierarchy.

In conclusion, we have presented two methods which are based on superpixel classification
and which integrate multi-scale information thanks to superpixels of different sizes. Contrary to
the SAF approach (pixel classification), both require a relation of hierarchy between the different
SPs partitions, which limits the type of partitions used, and thus the diversity of captured informa-
tion.

7.3 Preliminary study on D1

As in Chap. 3 and 6, we start by some preliminary studies on the L’Oréal database D1. We remind
that the random forest parameters have been set to consistent values (100 trees, 100 data at least
in each leaf at the end of training) and that a leave-one-out procedure is applied to evaluate the
segmentation performance. Four sizes of waterpixels will be used to compute SAF in the pixel
classification pipeline: σ ∈ {10,20,30,40} and k = 4.

7.3.1 Best achievable prediction with waterpixels
It is interesting to note that the proposed approach is equivalent to a classification pipeline where
the UCs are the (irregular) regions obtained by combining the four SP partitions (see Fig. 6.14 in
Chap.6 for an illustration). However, this time, features are guaranteed to be computed on regu-
lar supports, i.e. waterpixels, which overcomes the issue arising when directly performing region
classification (as in Chap.6) of such a partition.

Therefore, we first simulate perfect classification by assigning to each of these regions the
label of the majority class among its pixels (as done in order to compute the groundtruth in the
training phase), which gives us the best performance reachable by this approach. Figure 7.3 shows
the eight resulting images of D1. We can see that objects are almost perfectly detected. Very
few misclassifications appear, mainly on objects contours (due to noise and GT own imprecision)
and on elongated object parts that are thinner than the smaller SP size used (see the case of im2).
Quantitative results, presented in Tab. 7.1, confirm that the SAF approach outperforms single-scale
superpixel classification (even the smallest one) on the five classification criteria used: precision
P, recall R, F-score F , Jaccard index J and accuracy Acc. This observation validates the intuition
that using multiple scales enables to capture more information on object contours and hence helps
to more accurately classify the pixels.

7.3.2 Study with different families of features
We now use SAF features to compute the feature vector v(p) of each pixel p.

Table 7.2 presents the quantitative results for MOMA operators. For each integrator Σ = mean
and Σ = standard deviation (notation: std), we can observe that the SAF approach outperforms the
four pipelines of superpixel classification in terms of classification performance. This confirms

106

7.3 Preliminary study on D1

Measure σ im1 im2 im3 im4 im5 im6 im7 im8 all images
Precision 10 93 93 93 93 95 90 92 93 93

20 91 93 90 91 95 86 91 93 91
30 89 92 92 92 93 89 91 91 91
40 91 91 89 91 95 87 87 90 91
4 σ 95 95 95 95 96 94 95 95 95

Recall 10 94 89 90 91 91 90 92 92 91
20 89 84 87 88 86 81 86 87 86
30 84 79 83 80 86 68 84 80 81
40 80 73 73 76 78 62 80 83 76
4 σ 95 92 93 93 93 93 93 94 93

F-score 10 93 91 91 92 93 90 92 92 92
20 90 88 88 89 90 83 88 90 88
30 86 85 87 86 89 77 87 85 86
40 85 81 80 83 86 72 83 86 83
4 σ 95 93 94 94 94 93 94 94 94

Jaccard index 10 88 84 84 85 86 82 85 86 85
20 83 79 79 81 82 72 79 81 80
30 76 74 78 75 80 62 77 74 75
40 74 68 68 70 75 54 72 76 70
4 σ 91 87 89 89 89 87 89 90 89

Accuracy 10 98 96 98 97 98 98 97 98 98
20 97 95 98 97 97 96 96 97 97
30 96 94 98 96 96 95 96 96 96
40 96 93 96 95 95 94 95 96 95
4 σ 99 97 99 98 98 98 98 98 98

Table 7.1: Ideal classification: performance on D1.

107

Chapter 7. SAF: Superpixel-Adaptive Features

(a) GT of im1 (b) GT of im2 (c) GT of im3 (d) GT of im4

(e) Best pred. for im1 (f) Best pred. for im2 (g) Best pred. for im3 (h) Best pred. for im4

(i) GT of im5 (j) GT of im6 (k) GT of im7 (l) GT of im8

(m) Best pred. for im5 (n) Best pred. for im6 (o) Best pred. for im7 (p) Best pred. for im8

Figure 7.3: Best achievable prediction for the L’Oréal database D1 with four scales of SAF.

the advantage of using a multi-scale method instead of a single-scale one. Taking into account
different integrators also improves classification performance, as shown in the last row of the table
(F = 78%, J = 63%). The same observations can be done for Haralick features (see Tab. 7.3).

Thanks to this richer information, the SAF approach is, as expected, more efficient than the
pixel classification with pixel support. With MOMA operators, F increases from 72% to 76%
with mean integrator (or even 78% when using both integrators), J increases from 56% to 61% (or
63% respectively). Interestingly, it also shows an improvement compared to multi-scale windows
support, apart from recall which is equivalent or a little smaller (Rwin = 89% vs. Rsa f = 86% for Σ

= mean): the precision is better by 6%, the Jaccard index by 3% and the accuracy by 1%. Again,
we can highlight the same observations for identity and standard operators1 (Tab. 7.4 and Tab. 7.5).

As far as the spatial coherence of detected object is concerned, the number of connected com-
ponents of SAF with MOMA operators is slightly higher than (Σ = mean) or equivalent (Σ = std) to

1Operators presented in Sec. 2.2.2.

108

7.4 Final results on the three databases

the single scale pipelines. This is due to the fact that there are more UCs (regions) to classify in the
former approach as we consider all regions created by the intersection of the four SPs partitions.
Still, this number stays reasonably low compared to pixel and windows supports (Nb_ccpix = 203
and Nb_ccwin = 101 vs. Nb_ccSAFmean = 40, Nb_ccSAFstd = 30). Using both mean and std in-
tegrators enables to further decrease this number as using different types of information leads to
fewer region misclassifications. These observations are also confirmed with identity and standard
operators (see Tab. 7.4 and Tab. 7.5).

Qualitative results can be seen in Fig. 7.4. The first example is presented in Fig. 7.4.a and its
superimposed GT (in red) in Fig. 7.4.b. We can already see that the manual groundtruth does not
perfectly coincide with the object in the image. The third row presents the classification results
when using SAF with Σ = mean. The object and the background are nearly recovered, except for
the frontier area. We can distinguish different types of errors:

1. Pixels considered as misclassified compared to the GT but are in fact well classified accord-
ing to the image. Example: false positives and false negatives in the upper right part of the
melanocyte arm.

2. Some superpixels (or fragments of them in the SAF case) overlapping object contours due
to the high level of noise in the image. Thus, a certain number of their pixels will be
misclassified. Example: aggregated false positives in the lower left part.

3. Good superpixels which are nonetheless misclassified by RF based on their vector of fea-
tures (in difficult areas, for example when noise prevails). Example: the isolated connected
component considered as a false positive in the upper left part.
a

Adding features computed with another integrator (Σ = std) increases performance by decreasing
the number of good SP misclassifications (3rd case), as shown in Fig. 7.4.c. Finally, Fig. 7.4.d
shows the tendency of the window computational support to enlarge object with numerous false
positives on borders (even when removing type 1 errors): misclassifications on borders were ex-
pected for this approach as explained in Chapt. 3. These observations can also be made for the
other two crops. Note that the third example emphasizes the fact that SAF succeed in catching
more accurately the shape of the melanocyte termination than the GT itself (artificially increasing
the number of type 1 errors).

7.4 Final results on the three databases

We now proceed to the construction of the new pipeline based on SAF: Psa f . It will be assessed
and compared to the previous considered general approaches, P pix and Pwin, and specific meth-
ods (all presented in Chap. 3) for the three databases. A recap of the features used is provided in
Tab. 7.6. Random Forest parameter values are optimized by cross-validation (see appendix A.1).

7.4.1 Presentation of the final results

Qualitative analysis: Figures 7.7, 7.8 and 7.9 show examples of classification for the three
databases and the three pipelines. In the case of Fig. 7.7, where texture is a pertinent charac-
teristic, the use of adaptive supports such as superpixels leads to a better discrimination between
the classes, as shown by the profile plot along the yellow line. On the D1 database (see Fig. 7.8),
the SAF present less false positives than the other two pipelines, with a better spatial coherence of
detected objects. Figure 7.5 opposes SAF to specific methods designed for D1: Serna et al. [2014]
and MSER (Matas et al. [2002]). The MSER presents a low recall and appears to favor compact
objects (corresponding more or less to the nuclei of melanocytes), which is not desired here. Serna
et al. [2014], on the contrary, is specifically designed to detect well elongated objects, therefore

109

Chapter 7. SAF: Superpixel-Adaptive Features

CS base P R F J Acc Nb_cc
pixel train 63 88 74 58 90 202±14

test 61 87 72 56 90 203±71
windows (4) train 67 90 76 62 92 97±7

test 64 89 75 59 91 101±33
SP mean σ1 train 66 88 75 60 91 33±2

test 63 86 72 57 90 35±10
SP mean σ2 train 72 86 78 64 93 13±1

test 65 81 72 57 91 14±3
SP mean σ3 train 72 86 79 65 93 7±0

test 67 80 73 57 91 8±2
SP mean σ4 train 70 85 77 62 92 6±1

test 64 76 69 53 90 7±3
SAF mean (4) train 73 90 81 68 93 35±2

test 68 86 76 61 92 40±8
SP std σ1 train 62 87 73 57 90 47±3

test 60 85 71 55 89 50±16
SP std σ2 train 67 88 76 61 91 13±1

test 63 85 72 57 90 13±4
SP std σ3 train 67 88 76 61 91 7±1

test 62 84 71 55 90 9±3
SP std σ4 train 67 86 75 60 91 6±0

test 61 82 70 54 89 6±2
SAF std (4) train 72 91 80 67 93 26±2

test 68 87 76 62 92 30±8
SAF mean+std (4) train 75 92 82 70 94 23±2

test 70 87 78 63 92 25±7

Table 7.2: D1: MOMA (σ1 = 10, σ2 = 20, σ3 = 30, σ4 = 40).

σ P R F J Acc Nb_cc
σ1 61 83 70 54 89 41±10
σ2 64 82 72 56 90 13±1
σ3 65 82 73 57 91 8±2

SAF: 3 σ 67 86 75 61 91 32±8

Table 7.3: D1: Haralick features (σ1 = 10, σ2 = 20, σ3 = 30). Comparison between superpixel
classification (one-scale) and SAF (multi-scale). Results are given on the test subset.

CS P R F J Acc Nb_cc
pixel 54 75 63 46 86 8153±147

windows (4) 60 87 71 55 89 380±160
SAF (4) 62 86 72 56 90 44±10

Table 7.4: D1: Identity (σ1 = 10, σ2 = 20, σ3 = 30, σ4 = 40). UC: pixel. Results are given on the
test subset.

110

7.4 Final results on the three databases

CS P R F J Acc Nb_cc
pixel 60 87 71 55 89 179± 68

windows (4) 61 87 72 56 89 129±32
SAF mean (4) 65 85 74 58 91 54±11
SAF std (4) 64 86 73 58 90 32±8

SAF mean+std (4) 66 86 75 60 91 32±8

Table 7.5: D1: standard operators (σ1 = 10, σ2 = 20, σ3 = 30, σ4 = 40). UC: pixel. Results are
given on the test subset.

Pipeline Family # scales a CS-scale = Sum
P pix Identity 1 x1 x1 pixel 1

MOMA 7 x3 sizeSE ∈ {1,3,5} x1 pixel 21
Gabor 1 x(3x4x3) bd ∈ {1,2,3} x1 pixel 36 58

θ ∈ {0, π

4 ,
π

2 ,3
π

4 }
f req ∈ {0.3,0.5,0.7}

Pwin Identity 1 x1 x4 r ∈ {5,10,15,20} 4
MOMA 7 x3 sizeSE ∈ {1,3,5} x4 r ∈ {5,10,15,20} 84
Gabor 1 x(3x4x3) bd ∈ {1,2,3} x4 r ∈ {5,10,15,20} 144 232

θ ∈ {0, π

4 ,
π

2 ,3
π

4 }
f req ∈ {0.3,0.5,0.7}

Psa f Identity 1 x1 x4 σ ∈ {10,20,30,40} 4
MOMA 7 x3 sizeSE ∈ {1,3,5} x4 σ ∈ {10,20,30,40} 84
Gabor 1 x(3x4x3) bd ∈ {1,2,3} x4 σ ∈ {10,20,30,40} 144 232

θ ∈ {0, π

4 ,
π

2 ,3
π

4 }
f req ∈ {0.3,0.5,0.7}

Table 7.6: Recap of the features used for pipelines P pix, Pwin and Psa f . Note: MOMA stands
for “mathematical morphology operators”, Gabor for “Gabor filters”.

111

Chapter 7. SAF: Superpixel-Adaptive Features

(a) Crop 1
a

(b) GT of (a)
a

(c) SAF mean
a

(d) SAF
mean+std

(e) Windows
a

(f) Crop 2
a

(g) GT of (f)
a

(h) SAF mean
a

(i) SAF
mean+std

(j) Windows
a

(k) Crop 3
a

(l) GT of (k)
a

(m) SAF mean
a

(n) SAF
mean+std

(o) Windows
a

Figure 7.4: Classification results for D1: comparison between SAF and window approaches.

misses more compact ones (see the upper left of the image). Compared to this specific method,
SAF detect more components (false and true positives). For the last database, D3, performances
on contours appear to be not as good as for the other pipelines. It seems that superpixels lying on
the contour (with a potential overlap) were more challenging to classify, leading to false positives
with a low threshold, or false negatives with a high threshold, on the probability map.

Quantitative analysis: As in Chapt. 3, we present the six evaluation criteria and the ROC curve
for all these configurations (see Fig. 7.10 to 7.13). We had previously noticed that a wider sup-
port, such as the window, was advantageous for images where the pixel information is not enough,
where we need more contextual information on it (for example the texture). Indeed, SAF are also
efficient on the D2 database, and their capacity to adapt to the image content improves the classi-
fication performances obtained by the window approach. For database D1, the three pipelines are
rather equivalent, and reach (Serna et al. [2014]) or outperform (MSER) the specific segmenta-
tion methods. For database D3, SAF overall classification performances are good, better than the
specific method, but are slightly lower than P pix and Pwin. This behavior is discussed in 7.4.2.
Finally, SAF always present a better spatial coherence than the other two approaches, whatever
the database is.

7.4.2 Discussion of the results
We have seen that the SAF approach performs well on the three databases and reaches or outper-
forms the specific segmentation methods. Compared to other general segmentation approaches,
P pix and Pwin, it always offers a better spatial coherence of detected objects, which is advanta-
geous for segmentation purposes. The pertinence of using a support which is large enough and
adapts to the image content is confirmed on images where the information provided by the pixel
alone is not enough to assign this one to a class or an other (for example when texture is a de-

112

7.4 Final results on the three databases

(a) GT of im1 (b) MSER for im1 (c) Serna for im1 (d) SAF for im1

Figure 7.5: Classification results for im1 of D1: comparison between specific methods (Serna et al.
[2014] and MSER) and the general method we propose (fourth row, probability map thresholded
at 0.7).

(a) Original image
a

(b) GT contours (red)
superimposed on thresholded (a) (white)

Figure 7.6: Groundtruth imprecision for D3 database: illustration on a cell nucleus contour. Image
(a) has been thresholded at 1 (lowest possible threshold) and appears in white in image (b). The
GT should be equal or smaller than this white region. However, we can see the the GT contours
(shown in red) exceed this area by some pixels.

terminant feature as in D2). Otherwise, the three pipelines should give equivalent classification
results, as for D1. The case of D3, where SAF performances are slightly lower, is interesting,
as we could have expected them to show the same behavior as for D1. Different reasons could
be evoked to explain this phenomenon. First, there may be errors on waterpixels’ contour (over-
lapping rather than adhering to contours) due to the weakness of the gradient signal. To check
this potential source of error, one should perform the same experiments with ideal superpixels (for
example an over-segmentation of the groundtruth itself). In any case, using partitions created by
different superpixel generation methods (based on different principles) instead of only one type
could make SAF more robust to the change of database. Another possibility, if superpixels adhere
well to contours, would be that their classification by random forests is not entirely efficient (with
a potential over-fitting). A third possibility resides in the fact that our evaluation may be biased by
the imprecision of the groundtruth. We have seen it for the D1 database (see Fig. 7.4), but it is all
the more true for the D3 database where the groundtruth systematically integrates, in its objects,
pixels from the background with value 0 in the original image (see Fig. 7.6). Experiments should
be performed again allowing an error margin of some pixels, as we did for superpixel evaluation
on the Berkeley segmentation database (see Chapt. 4). This margin should be set according to the
imprecision of the GT defined for each database (around 2 pixels in the case of D3 for example).

113

Chapter 7. SAF: Superpixel-Adaptive Features

(a) Original image (b) GT of (a)

(c) Probability map for P pix
(d) Profile forP pix

(e) Probability map for Pwin
(f) Profile forPwin

(g) Probability map for Psa f
(h) Profile forPsa f

Figure 7.7: Final classification results an image of D2. Grey level profiles are evaluated on the
yellow line.

114

7.4 Final results on the three databases

(a) Probability map
P pix

(b) Probability map
Pwin

(c) Probability map
Psa f

(d) thresh = 0.2
P pix

(e) thresh = 0.2
Pwin

(f) thresh = 0.2
Psa f

(g) thresh = 0.5
P pix

(h) thresh = 0.5
Pwin

(i) thresh = 0.5
Psa f

(j) thresh = 0.8
P pix

(k) thresh = 0.8
Pwin

(l) thresh = 0.8
Psa f

Figure 7.8: Final classification results on im1 of D1.

115

Chapter 7. SAF: Superpixel-Adaptive Features

(a) Probability map
P pix

(b) Probability map
Pwin

(c) Probability map
Psa f

(d) thresh = 0.2
P pix

(e) thresh = 0.2
Pwin

(f) thresh = 0.2
Psa f

(g) thresh = 0.5
P pix

(h) thresh = 0.5
Pwin

(i) thresh = 0.5
Psa f

(j) thresh = 0.8
P pix

(k) thresh = 0.8
Pwin

(l) thresh = 0.8
Psa f

Figure 7.9: Final classification results on a crop of image dna-30 of D3. Legend: TP, TN, FP
and FN are shown in green, white, red and blue respectively.

116

7.4 Final results on the three databases

Figure 7.10: Quantitative results for D1.

117

Chapter 7. SAF: Superpixel-Adaptive Features

Figure 7.11: Quantitative results for D2.

118

7.4 Final results on the three databases

Figure 7.12: Quantitative results for D3.

119

Chapter 7. SAF: Superpixel-Adaptive Features

(a) ROC curve for D1

(b) ROC curve for D2

(c) ROC curve for D3

Figure 7.13: ROC curves for the three databases.

120

7.5 Conclusion and prospects on SAF

7.5 Conclusion and prospects on SAF
7.5.1 Conclusion

In conclusion, we have introduced a novel general segmentation method consisting in performing
pixel classification using features computed on superpixels: the Superpixel-Adaptive Features
(SAF). The advantage over the window approach is to use a type of computational support which
adapts to the image content, capturing more accurately the properties of each class. The advan-
tage over direct superpixel classification is the possibility to use multiple partitions (such as, but
not limited to, multiple scales). Compared to pixel-CS and window-CS approaches, classification
results are rather equivalent but with a much better spatial coherence of detected objects, which is
desired for segmentation purposes. SAF also succeed in reaching state-of-the-art methods specifi-
cally designed for a given database, and without requiring any adaptation/tuning step from the user
(apart from manually segmenting some examples for the training set), which is very promising for
this general method.

7.5.2 Prospects
This work offers many prospects of improvements, but also of applications. Here are two exam-
ples:

Generalization: The SAF used for pixel classification could be generalized to SAF for superpixel
classification. Note that we prefer not to build a hierarchy between the SP partitions of different
scales in this application (to avoid error propagation as well as to integrate other different kinds
of information rather than just different scales). Hence, the new superpixel-UC (unit of classifica-
tion) can be overlapped by more than one superpixel in a given partition of superpixel-supports.
The rules to assign a superpixel support to a superpixel-UC should hence be further investigated
(ex: taking the one which overlaps the most the UC, or averaging over the ones which overlap at
least 90% of the UC area, . . .). The advantage would be to reduce the number of UCs (superpixels
instead of pixels) while computing features on different superpixels coming from a wide range of
different partitions.

Other combinations of multiple partitions: There are two ways to consider SAF. Either we see
SAF as features computed on special adaptive structuring elements (V. Morard et al. [2011]), with
an advantage on computation complexity. Or we can consider them as a special kind of ensemble
clustering, a sub-field of data/image analysis which aims at combining different partitions of the
same set/image to obtain a unique final segmentation. Indeed, we use different partitions of SPs as
well as the partition into pixels (to define the UC). Thus, it can be seen as an ensemble clustering
where one partition (the partition into pixel-UC) plays a special part in the combination. This ob-
servation leads us to many prospects as other ensemble clustering methods could be used from the
abundant corresponding literature to obtain the final segmentation instead of using a classification
pipeline.

121

8 Conclusion and Prospects

Que sera sera,
What ever will be, will be.

Doris Day, The Man Who Knew Too Much.

Résumé
Ce chapitre conclut sur les waterpixels et leur pertinence dans la chaîne de classification
appliquée à la segmentation d’image. Il présente également quelques perspectives pour
continuer ces travaux.

This chapter is dedicated to the conclusion of the PhD and presents some prospects for future
work.

8.1 Conclusion

The aim of this work was to provide a general segmentation method yielding good performance on
any image database without needing to be modified each time by the user (expert or not in image
analysis), as far as the latter could provide some examples already segmented by hand within the
database to be segmented. Indeed, the goal was to alleviate the tediousness of whole-database
manual segmentation (later used for individual inspection of objects) by automating it with a sin-
gle method, in order to ease and speed up the often difficult task of image content understanding.
In this PhD, we have proposed a general segmentation method based on a classification pipeline
and confirmed the pertinence of inserting superpixels in such workflow.

Three main methodological contributions can also be highlighted. Firstly, we have designed a
new superpixel generation method based on the watershed transformation: the waterpixels. These
superpixels are efficient in terms of quality as well as computation time. Moreover, they are easy
to handle for the user and a fast implementation is available online. Secondly, we have introduced
the concept of Superpixel-Adaptive Features (SAF) which are features computed on superpixels
to classify pixels. We have confirmed that they constituted pertinent supports, with, besides, a
possibility to capture richer information thanks to multiple partitions. In practice, they also offer a

Chapter 8. Conclusion and Prospects

better spatial coherence of detected objects than classic pipelines. Thirdly, we have shown that the
spatial repulsion between markers proposed in the waterpixel method could, by itself, improve
the watershed segmentation performance.

The PhD topic raised many challenges. The first one was to ensure the general behavior of
the pipeline so that it could adapt to each database without requiring from the user any knowl-
edge in the field of image analysis. Each element/step of the proposed workflow (classification
process, waterpixels, operators, SAF, Random Forest) is guaranteed to stay general or to use the
same procedure to automatically adapt itself to each database. The second difficulty was to build a
paradigm with low computation time so that the segmentation automation corresponds also to the
user’s needs in everyday life (biologists, etc). The waterpixel generation step shows low complex-
ity and we have provided a fast implementation on our website. The other steps of the pipeline are
not optimized yet but their computation time remains reasonable. Last but not least, evolving in the
competitive field of superpixels, which required to outperform the performance of an increasing
number of competing methods with a challenging and thorough evaluation process, constituted
one of the main challenges. Our contributions have been benchmarked against state-of-the-art
methods and published in the community.

The framework of the proposed general method is defined as follows. Due to supervised
learning, it must be applied on a database (not on a single isolated image) and some examples
of already labeled pixels from each class (groundtruth) must be available for the training phase.
Due to the region approach embodied by superpixels, objects should span at least some pixels as
they are to be split into different superpixels. Moreover, as far as features are concerned, objects
should be differentiable from one another without contour information (e.g. thanks to different
colors, textures, etc). It would not be well suited for objects which can only be discriminated by
their contours. Besides, the groundtruth must be provided as a partition into regions (and not into
contour/non-contour pixels). Finally, due to waterpixels, we need a good contour signal in the
gradient to obtain a good adherence to object boundaries.

8.2 Prospects
In this section, we propose some prospects for waterpixels and their application to image segmen-
tation learning.

On Waterpixels: Waterpixels offer many prospects. Firstly, the different steps of the generation
method could be further improved. As previously said, the optimization of the marker selection
constitutes one of the most promising leads (see Chapt. 5). Secondly, they could be used in many
applications as superpixels, as regions or simply as interesting computation supports. Finally, even
though we adopted a different strategy afterwards with SAF, it is interesting to note that a hier-
archy of partitions can be easily built while computing the watershed (iterative fusion of regions,
based on a unique partition of waterpixels), which could be advantageous in other applications.

On SAF: As far as the PhD topic is concerned, the classification performance could be further
improved by enriching the feature set (using other operators, other SP partitions, etc). Going be-
yond, it would also be interesting to build SAF of superpixels and exploit the ensemble clustering
framework they can offer (see Sec. 7.5.2).

On Machine Learning and Mathematical Morphology: This work confirms once again that
Machine Learning and Mathematical Morphology are two powerful fields which could benefit
from each other in order to go one step further towards efficient and automatic object recognition.

124

8.2 Prospects

This link could be further investigated, in particular in the context of the promising deep learning
framework. For example, it would be interesting to consider the replacement of window patches by
waterpixels in the construction of convolutional neural networks, or the insertion of SAF features
at a certain intermediary step of the network.

125

A

A.1 Optimization of Random Forest parameters
A.2 Mean mismatch factor definition

Appendices

A.1 Optimization of Random Forest parameters

Database Pipeline n_estimators min_samples_lea f
D1 P pix 200 10

Pwin 200 10
Psa f 100 100

D2 P pix 50 1
Pwin 200 1
Psa f 200 10

D3 P pix 200 1
Pwin 200 1
Psa f 50 10

Table A.1: Parameter values of random forests for the three databases and the three pipelines.

A.1 Optimization of Random Forest parameters
As explained in Chapt.2, paragraph 2.3.2, the parameters of the random forests have to be tuned
for each database and each pipeline in order to provide the best classification performance as pos-
sible. This is done by cross-validation (3-folds) on the training set. Different values of the number
of trees and the minimum number of data samples in a leaf for the latter to be kept while build-
ing the tree during training (respectively n_estimators ∈ {50,100,200} and min_samples_lea f ∈
{1,10,100}) are tested and the pair of values which offers the best f-score (see Chapt. 2) is cho-
sen for final training/prediction of the database. Table A.1 presents the values used for the three
databases and three pipelines.

Remark: We should perform a nested cross-validation for D1, i.e. a cross-validation for each of
the 8 trainings done in the leave-one-image-out procedure. To simplify this process, we perform a
simple cross-validation on three of the 8 trainings independently, and then average the parameter
values found to use them as unique values for all the 8 trainings in the final phase.

129

A.2 Mean mismatch factor definition
Let {si}1≤i≤N be a set of superpixels. The centered version s∗i of si is obtained by translating si so
that its barycenter is the origin of the coordinate system.

The average shape ŝ∗ of the {si} is computed as follows. Let us first define a function S:

S : D −→ N

xp 7−→
N
∑

i=1
1i(xp)

(A.1)

where 1i is the indicator function of s∗i . Thus, the image S corresponds to the summation image of
all centered superpixels. Let furthermore µA = 1/n∑

N
i=1 |si| be the average area of the considered

superpixels, and let St be the threshold of S at level t: St(x) = {xp ∈ D
∣∣∣ |S(xp)| ≥ t}.

The average centered shape ŝ∗ is then the set St0 , where t0 is the maximal threshold value which
enables ŝ∗ to have an area greater than or equal to µA:

t0 = max{t
∣∣∣ |St | ≥ µA} (A.2)

ŝ∗ = St0 (A.3)

Finally, the mean mismatch factor of superpixels {si}1≤i≤N is:

MF =
1
N

N

∑
i=1

m f (s∗i , ŝ
∗) (A.4)

130

B Bibliography

BIBLIOGRAPHY

Bibliography
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. SLIC superpixels compared

to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11):2274–2282, 2012.

B. Andres, U. Köthe, M. Helmstaedter, W. Denk, and F. Hamprecht. Segmentation of SBFSEM
Volume Data of Neural Tissue by Hierarchical Classification. Pattern Recognition, D:142–152,
2008.

Bjoern Andres, Ullrich Koethe, Thorben Kroeger, Moritz Helmstaedter, Kevin L. Briggman, Win-
fried Denk, and Fred A. Hamprecht. 3d segmentation of sbfsem images of neuropil by a graph-
ical model over supervoxel boundaries. Medical Image Analysis, 16(4):796–805, 2012.

David Ascher, Paul F. Dubois, Konrad Hinsen, James Hugunin, and Travis Oliphant. Numerical
Python. Lawrence Livermore National Laboratory, Livermore, CA, ucrl-ma-128569 edition,
1999.

Wanda Benesova and Michal Kottman. Fast superpixel segmentation using morphological pro-
cessing. Proceedings of the International Conference of Machine Vision and Machine Learning,
(67), 2014.

Serge Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In Jean Serra and
Pierre Soille, editors, Mathematical Morphology and its applications to signal processing (Pro-
ceedings ISMM’94), pages 69–76, Fontainebleau, France, September 1994. Kluwer Academic
Publishers.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Y. Chai, V. Lempitsky, and A. Zisserman. Bicos: A bi-level co-segmentation method for image
classification. In IEEE International Conference on Computer Vision, 2011.

Luís Pedro Coelho. Mahotas: Open source software for scriptable computer vision. CoRR,
abs/1211.4907, 2012.

Luís Pedro Coelho, Aabid Shariff, and Robert F Murphy. Nuclear segmentation in microscope
cell images: a hand-segmented dataset and comparison of algorithms. In Biomedical Imaging:
From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on, pages 518–521. IEEE,
2009.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619, May 2002.

Pierre-Henri Conze, François Rousseau, Vincent Noblet, Fabrice Heitz, Riccardo Memeo, and
Patrick Pessaux. Semi-automatic Liver Tumor Segmentation in Dynamic Contrast-Enhanced
CT Scans Using Random Forests and Supervoxels, pages 212–219. Springer International Pub-
lishing, 2015.

Pierre-Henri Conze, Vincent Noblet, F. Rousseau, Fabrice Heitz, Riccardo Memeo, and Patrick
Pessaux. Random forests on hierarchical multi-scale supervoxels for liver tumor segmentation
in dynamic contrast-enhanced CT scans. In 13th IEEE International Symposium on Biomedical
Imaging, ISBI 2016, Prague, Czech Republic, April 13-16, 2016, pages 416–419, 2016.

Liuyun Duan and Florent Lafarge. Image partitioning into convex polygons. In CVPR, pages
3119–3127. IEEE Computer Society, 2015.

133

Paul F. Dubois, Konrad Hinsen, and James Hugunin. Numerical python. Computers in Physics,
10(3), May/June 1996.

Erhan Erkut. The discrete p-dispersion problem. European Journal of Operational Research, 46
(1):48–60, May 1990.

Matthieu Faessel and Michel Bilodeau. Smil: Simple morphological image library. In Séminaire
Performance et Généricité, LRDE, 2013.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision, 59(2):167–181, September 2004.

Ezequiel Geremia, Bjoern H. Menze, and Nicholas Ayache. Spatially Adaptive Random Forest.
In 2013 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages
1332–35, San Francisco, CA, United States, 2013. IEEE.

C. Gini. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statis-
tiche. Tipogr. di P. Cuppini, 1912.

Allan Hanbury. How Do Superpixels Affect Image Segmentation?, pages 178–186. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

Robert M. Haralick, K. Sam Shanmugam, and Its’hak Dinstein. Textural features for image clas-
sification. IEEE Trans. Systems, Man, and Cybernetics, 3(6):610–621, 1973.

Zhongwen Hu, Qin Zu, and Qingquan Li. Watershed superpixel. IEEE International Conference
on Image Processing, September 2015.

P. Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions
voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:241–272, 1901.

Pavel Kalinin and Aleksandr Sirota. A graph based approach to hierarchical image over-
segmentation. Computer Vision and Image Understanding, 130:80–86, January 2015.

J.-K. Kamarainen. Feature Extraction Using Gabor Filters. PhD thesis, Lappeenranta University
of Technology, 2003.

Serge Koudoro, Matthieu Faessel, and Michel Bilodeau. Morph-m: Image processing library
specialized in mathematical morphology. Image Processing On Line Journal, 2012.

Ullrich Köthe. Generische Programmierung für die Bildverarbeitung. PhD thesis, University of
Hamburg, 2000.

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi. TurboPixels:
Fast Superpixels Using Geometric Flows. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(12):2290–2297, 2009.

Alex Levinshtein, Cristian Sminchisescu, and Sven Dickinson. Optimal Contour Closure by Su-
perpixel Grouping, pages 480–493. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

Aurélien Lucchi, Kevin Smith, Radhakrishna Achanta, Graham Knott, and Pascal Fua.
Supervoxel-based segmentation of mitochondria in em image stacks with learned shape fea-
tures. IEEE Trans. Med. Imaging, 31(2):474–486, 2012.

134

BIBLIOGRAPHY

V. Machairas, E. Decencière, and T. Walter. Waterpixels: superpixels based on the watershed
transformation. In 2014 IEEE International Conference on Image Processing (ICIP), pages
4343–4347, October 2014.

V. Machairas, M. Faessel, D. Cárdenas-Peña, T. Chabardes, T. Walter, and E. Decencière. Wa-
terpixels. IEEE Transactions on Image Processing, 24(11):3707–3716, November 2015. ISSN
1057-7149.

Vaïa Machairas, Thérèse Baldeweck, Thomas Walter, and Etienne Decencière. New general fea-
tures based on superpixels for image segmentation learning. In 13th IEEE International Sym-
posium on Biomedical Imaging, ISBI 2016, Prague, Czech Republic, April 13-16, 2016, pages
1409–1413, 2016.

Marco Manfredi, Costantino Grana, and Rita Cucchiara. Learning superpixel relations for super-
vised image segmentation. In 2014 IEEE International Conference on Image Processing, ICIP
2014, Paris, France, October 27-30, 2014, pages 4437–4441, 2014.

B. Marcotegui and F. Meyer. Bottom-up segmentation of image sequences for coding. Annales
Des Télécommunications, 52(7-8):397–407, 1997. ISSN 0003-4347, 1958-9395.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In Int.
Conf. on Computer Vision, volume 2, pages 416–423, July 2001.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable
extremal regions. In Proceedings of the British Machine Vision Conference, pages 36.1–36.10.
BMVA Press, 2002.

Fernand Meyer. Minimal spanning forests for morphological segmentation. In Jean Serra and
P. Soille, editors, Mathematical Morphology and its applications to signal processing (Pro-
ceedings ISMM’94), pages 13–14, Fontainebleau, France, September 1994. Kluwer Academic
Publishers.

Fernand Meyer. An overview of morphological segmentation. International Journal of Pattern
Recognition and Artificial Intelligence, 15(7):1089–1118, 2001.

Branislav Micusik and Jana Kosecka. Semantic segmentation of street scenes by superpixel co-
occurrence and 3d geometry. In IEEE 12th International Conference on Computer Vision Work-
shops, ICCV Workshops, Sept 2009.

O. Monga. An optimal region growing algorithm for image segmentation. International Journal
of Pattern Recognition and Artificial Intelligence, 01(03n04):351–375, 1987.

Peer Neubert and Peter Protzel. Compact watershed and preemptive slic: On improving trade-
offs of superpixel segmentation algorithms. In 2014 IEEE International Conference on Pattern
Recognition (ICPR), pages 996–1001, August 2014.

Travis E. Oliphant. Guide to NumPy. Provo, UT, March 2006.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011a.

135

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011b.

Loïc Peter, Olivier Pauly, Pierre Chatelain, Diana Mateus, and Nassir Navab. Scale-adaptive forest
training via an efficient feature sampling scheme. In Nassir Navab, Joachim Hornegger, William
M. Wells III, and Alejandro F. Frangi, editors, MICCAI (1), volume 9349 of Lecture Notes in
Computer Science, pages 637–644. Springer, 2015.

X. Ren and J. Malik. Learning a classification model for segmentation. In International Confer-
ence on Computer Vision, 2003, pages 10–17 vol.1, 2003.

Alexander Schick, Mika Fischer, and Rainer Stiefelhagen. An evaluation of the compactness of
superpixels. Pattern Recognition Letters, 43(0):71 – 80, 2014. {ICPR2012} Awarded Papers.

Andrés Serna, Beatriz Marcotegui, Etienne Decencière, Thérèse Baldeweck, Ana-Maria Pena, and
Sébastien Brizion. Segmentation of elongated objects using attribute profiles and area stability:
Application to melanocyte segmentation in engineered skin. Pattern Recognition Letters, 47:
172–182, 2014.

Jianbing Shen, Yunfan Du, Wenguan Wang, and Xuelong Li. Lazy random walks for superpixel
segmentation. IEEE Trans. Image Processing, 23(4):1451–1462, 2014.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 22(8):888–905, August 2000.

Pierre Soille. Morphological image analysis: principles and applications. Springer-Verlag New
York, Inc., 2003.

C. Sommer, C. Strähle, U. Köthe, and F. A. Hamprecht. ilastik: Interactive learning and seg-
mentation toolkit. Eighth IEEE International Symposium on Biomedical Imaging (ISBI), pages
230–233, 2011.

J. Stawiaski and E. Decencière. Interactive liver tumor segmentation using watershed and graph
cuts. In Segmentation in the clinic : A grand Challenge II (MICCAI 2008 workshop), New
York, USA, 2008.

N.J.C. Strachan, P. Nesvadba, and A.R. Allen. Fish species recognition by shape analysis of
images. Pattern Recognition, 23(5):539 – 544, 1990.

Ngan Meng Tan, Yanwu Xu, Wooi-Boon Goh, and Jiang Liu. Robust multi-scale superpixel
classification for optic cup localization. Comp. Med. Imag. and Graph., 40:182–193, 2015.

V. Morard, E. Decencière, and P. Dokladal. Region growing structuring elements and new opera-
tors based on their shape. In Signal and Image Processing (SIP 2011), Etats-Unis, 2011. ACTA
Press.

C. Vachier and Fernand Meyer. Extinction values: A new measurement of persistence. IEEE
Workshop on Non Linear Signal/Image Processing, page 254–257, 1995.

Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D.
Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image contributors. scikit-
image: image processing in Python. PeerJ, 2:e453, 6 2014. ISSN 2167-8359.

136

BIBLIOGRAPHY

O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and supervoxels in an energy optimization
framework. In Eur. Conf. on Computer Vision, pages 211–224, 2010.

Jie Wang and Xiaoqiang Wang. VCells : Simple and Efficient Superpixels Using Edge-Weighted
Centroidal Voronoi Tessellations. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 34(6):1241–1247, 2012.

W. Wu, A. Y. C. Chen, L. Zhao, and J. J. Corso. Brain tumor detection and segmentation in
a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level
features. International Journal of Computer Aided Radiology and Surgery, 9(2):241–253, 2014.

Yanwu Xu, Jiang Liu, Jun Cheng, Fengshou Yin, Ngan Meng Tan, Damon Wing Kee Wong,
Ching Yu Cheng, Yih Chung Tham, and Tien Yin Wong. Efficient optic cup localization based
on superpixel classification for glaucoma diagnosis in digital fundus images. In Proceedings of
the 21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, Novem-
ber 11-15, 2012, pages 49–52, 2012.

G. Zeng, P. Wang, J. Wang, R. Gan, and H. Zha. Structure-sensitive superpixels via geodesic
distance. Int. Conf. on Computer Vision, 1(c):447–454, 2011.

Gang Zhou, Yuehu Liu, and Zhiqiang Tian. Scene text detection with superpixels and hierarchical
model. In Image Processing (ICIP), 2012 19th IEEE International Conference on, Sept 2012.

137

Résumé

L’objectif de ces travaux est de fournir
une méthode de segmentation séman-
tique qui soit générale et automatique,
c’est-à-dire une méthode qui puisse
s’adapter par elle-même à tout type
de base d’images, afin d’être utilisée
directement par les non-experts en
traitement d’image, comme les biolo-
gistes.

Pour cela, nous proposons d’utiliser la
classification de pixel, une approche
classique d’apprentissage supervisé, où
l’objectif est d’attribuer à chaque pixel
l’étiquette de l’objet auquel il appartient.
Les descripteurs des pixels à classer
sont souvent calculés sur des supports
fixes, par exemple une fenêtre centrée
sur chaque pixel, ce qui conduit à des
erreurs de classification, notamment au
niveau des contours d’objets. Nous nous
intéressons donc à un autre support,
plus large que le pixel et s’adaptant au
contenu de l’image : le superpixel.

Les superpixels sont des régions ho-
mogènes et régulières, issues d’une
segmentation de bas niveau. Nous
proposons une nouvelle façon de les
générer grâce à la ligne de partage des
eaux, les waterpixels, méthode rapide,
performante et facile à prendre en main
par l’utilisateur. Ces superpixels sont
ensuite utilisés dans la chaîne de clas-
sification, soit à la place des pixels
à classer, soit comme support perti-
nent pour calculer les descripteurs, ap-
pelés SAF (Superpixel-Adaptive Fea-
tures). Cette seconde approche con-
stitue une méthode générale de seg-
mentation dont la pertinence est éval-
uée qualitativement et quantitativement
sur trois bases d’images provenant du
milieu biomédical.

Mots Clés

segmentation, morphologie mathéma-
tique, apprentissage statistique, super-
pixels, ligne de partage des eaux

Abstract

In this work, we would like to provide a
general method for automatic semantic
segmentation, which could adapt itself
to any image database in order to be
directly used by non-experts in image
analysis (such as biologists).

To address this problem, we first pro-
pose to use pixel classification, a classic
approach based on supervised learning,
where the aim is to assign to each pixel
the label of the object it belongs to. Fea-
tures describing each pixel properties,
and which are used to determine the
class label, are often computed on a
fixed-shape support (such as a centered
window), which leads, in particular, to
misclassifications on object contours.
Therefore, we consider another support
which is wider than the pixel itself and
adapts to the image content: the super-
pixel.

Superpixels are homogeneous and
rather regular regions resulting from a
low-level segmentation. We propose
a new superpixel generation method
based on the watershed, the waterpix-
els, which are efficient, fast to compute
and easy to handle by the user. They
are then inserted in the classification
pipeline, either in replacement of pixels
to be classified, or as relevant sup-
ports to compute the features, called
Superpixel-Adaptive Features (SAF).
This second approach constitutes a
general segmentation method whose
pertinence is qualitatively and quantita-
tively evaluated on three databases from
the biological field.

Keywords

segmentation, mathematical morphol-
ogy, machine learning, superpixels, wa-
tershed

	1 Introduction
	1.1 Context and motivation
	1.2 Thesis outline

	Part I — Segmentation and Classification
	2 Segmentation as a classification task
	2.1 General scheme for pixel classification
	2.2 Features
	2.3 A powerful machine learning method: Random Forests
	2.4 Conclusion

	3 Tools for segmentation evaluation: Application to the pixel classification workflow
	3.1 Evaluation procedure
	3.2 Assessment of the pixel classification workflow on the three databases
	3.3 Conclusion

	Part II — Waterpixels
	4 Superpixels: A special case of low-level segmentation
	4.1 Definition and properties
	4.2 Related work
	4.3 Evaluation procedure to assess superpixel performance

	5 Waterpixels: A new superpixel generation method based on the watershed transformation
	5.1 Construction of Waterpixels
	5.2 Recap of the proposed method
	5.3 Comparison with other watershed superpixels methods
	5.4 Benchmark
	5.5 Conclusion, discussion and prospects

	Part III — Learning Segmentation with Waterpixels
	6 How superpixels are used in the literature
	6.1 Examples of use in the literature
	6.2 Superpixel classification
	6.3 Discussion and conclusion

	7 SAF: Superpixel-Adaptive Features
	7.1 Principle
	7.2 Comparison with other state-of-the-art methods
	7.3 Preliminary study on D1
	7.4 Final results on the three databases
	7.5 Conclusion and prospects on SAF

	
	8 Conclusion and Prospects
	8.1 Conclusion
	8.2 Prospects

	Part A — Appendices
	A.1 Optimization of Random Forest parameters
	A.2 Mean mismatch factor definition

	Part B — Bibliography

