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Abstract

Both theoretical and experimental evidence is presented in this work for the existence of an
Energy/Frequency Convexity Rule, which relates energy consumption and microprocessor
frequency for nanometer-scale microprocessors. Typical nanometer-scale application pro-
cessors were monitored running specific compute-intensive kernels using high-resolution
power gauges. Data gathered during several week-long acquisition campaigns suggest that
energy consumed is strongly correlated with the microprocessor’s frequency, and, more
interestingly, the curve exhibits a clear minimum over the processor’s frequency range. An
analytical model for this behavior is provide and motivated, which fits well with the data.
The circumstances are discussed under which this convexity rule can be exploited, and
when other methods are more effective, with the aim of improving the microprocessor’s
energy efficiency. The Energy/Frequency Convexity Rule is potentially more exploitable
by low-power systems, such as battery-powered and embedded systems, and less likely
by high-performance computer systems. The Energy/Frequency Convexity Rule is also
applied to multi-buddy systems, Amdahl’s law and heterogeneous computing.

Given that the microprocessor’s energy consumption is temperature-dependent, a
macro-level temperature/power relationship for application processors is introduced and
experimentally validated. By adopting a holistic view, this model is able to take into ac-
count many of the physical effects that occur within such systems. Via measurements on
two pertinent platforms sporting nanometer-scale application processors, it is shown that
the power/temperature relationship is indeed very likely exponential over a 20◦C to 85◦C
temperature range. The data suggest that, for a temperature range between 20◦C and
55◦C, a quadratic model is still accurate and a linear approximation is acceptable. Power
transformation models are also presented that aim at canceling the temperature biases in
power traces. These transformation models are developed to increase the accuracy and
meaningfulness of power measurement traces.

Besides static power measurements, the transient power and thermal behavior are also
analyzed by means of the cooling laws and the temperature/power relationship models.
Exponential cooling models are justified for actively-cooled microprocessors. For passively
cooled processors however, as frequently found in embedded systems, an exponential law
may not be theoretically justified. Here, the tractability of the exact cooling law for
a passively-cooled body is analyzed, subject to radiative cooling and a modest level of
heat loss via convection. Focusing then on embedded microprocessors, the performance
difference between the new passive cooling law and the conventionally-used exponential
one is compared. It is shown that, for large surface sizes, the radiative cooling component
can be comparable to the convective cooling one. However, for large cooling surface
areas of the order of 10 cm2 or more, it is shown that the differences between the passive
cooling law and the exponential cooling law are significant. The results thus suggest that,
in the absence of accurate temperature measurements, an exponential cooling law is only
accurate enough for small-sized SoC systems that require low processing overhead.
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Résumé

Cette these s’intéresse à la consommation énergétique d’un système embarqué durant
l’execution d’un programme. Une preuve théorique est présentée dans cette thèse et
expérimentale de l’existence d’une loi de convexité énergie-fréquence de la consomma-
tion des programmes, qui concerne la consommation d’énergie et la fréquence des micro-
processeurs à l’échelle nanométrique. Des noyaux de calcul intensif spécifiques ont été
exécutés sur des processeurs d’applications typiques, à l’échelle nanométrique, et leurs
caractéristiques mesurées en utilisant des capteurs de puissance à haute résolution. Les
données recueillies lors de nombreuses campagnes d’acquisition de données longues de
plusieurs semaines chacune suggèrent que la consommation est fortement corrélée avec
la fréquence du microprocesseur et, ce qui est extrêmement intéressant, que la courbe
présente un minimum clair sur la gamme de fréquences utilisables sur les processeurs.
Un modèle analytique de ce comportement est fourni et motivé; il cadre particulièrement
bien avec les données. Les circonstances dans lesquelles cette règle de convexité peut
être exploitée sont discutées, en particulier dans le but d’améliorer l’efficacité énergétique
du microprocesseur. La loi de convexité énergie-fréquence de la consommation des pro-
grammes est potentiellement plus exploitable par les systèmes de faible puissance, tels
que les systèmes embarqués et alimentés par piles ou batteries, et moins susceptible de
l’être par les systèmes informatiques de haute performance. La loi de convexité énergie-
fréquence de la consommation des programmes est également appliquée aux systèmes
multi-coeurs, à la loi d’Amdahl et aux systèmes informatiques hétérogènes.

Étant donné que la consommation d’énergie du microprocesseur dépend de sa température,
une relation température/puissance au niveau macro pour les processeurs d’application
est également introduite et validée expérimentalement dans cette thèse. En adoptant
une vision holistique, ce modèle est capable de prendre en compte de nombreux effets
physiques qui se produisent dans de tels systèmes. Via des mesures sur deux plates-
formes pertinentes comportant des processeurs d’applications à l’échelle nanométrique, il
est montré que la relation puissance/température se comporte de manière exponentielle
entre 20◦C et 85◦C. Les données suggèrent de plus que, pour une plage de températures
comprise entre 20◦C et 55◦C, un modèle quadratique est toujours suffisamment précis
et qu’une approximation linéaire est même acceptable. Des modèles de transformation
d’énergie visant à annuler les biais liés à la température dans les mesures de puissance sont
également présentés. Ces modèles de transformation ont été mis au point afin d’augmenter
la précision et la pertinence des traces de mesure de puissance.

Outre les mesures statiques de puissance, les comportements transitoires en puissance
et température sont également analysés à l’aide des lois de refroidissement et des modèles
température/puissance. Il s’avère que des modèles de refroidissement exponentiels sont
justifiés pour des microprocesseurs refroidis de manière active. Cependant, pour les pro-
cesseurs refroidis passivement que l’on trouve fréquemment dans les systèmes embarqués,
une loi exponentielle ne peut pas être justifiée théoriquement. En conséquence, la loi ex-
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acte de refroidissement pour un corps à refroidissement passif est analysée, sous condition
de refroidissement radiatif et d’un niveau modeste de perte de chaleur par convection.
Si l’on se concentre sur les microprocesseurs embarqués, il y a une différence de perfor-
mance entre la nouvelle loi de refroidissement passif et celle, exponentielle, classiquement
utilisée. On montre que, pour les grandes surfaces, le refroidissement par rayonnement
peut être comparable à celui lié à la convection. Toutefois, pour les grandes surfaces de
refroidissement de l’ordre de 1 dm2 ou plus, les différences entre la loi de refroidissement
passif et la loi exponentielle de refroidissement sont importantes. Ces résultats suggèrent
donc que, en l’absence de mesures précises de la température, une loi exponentielle de
refroidissement n’est suffisamment précise que pour les petits systèmes SoC ne nécessitant
qu’une faible charge de traitement.
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Résumé en Français

Introduction
Même une petite quantité d’énergie économisée grâce à un meilleure contrôle sur la plan-
ification de la fréquence et des effets thermiques sur le comportement énergétique des
microprocesseurs peut avoir des impacts sociaux, monétaires et écologiques importants.
Comprendre et modéliser ces relations avec précision peut avoir un impact au-delà de
la seule gestion optimisée de fonctionnement des systèmes informatiques. Cela souligne
l’aspect crucial de l’optimisation de l’énergie dans les microprocesseurs, en particulier
pour les systèmes embarqués et de calcul haute performance (HPC). Ce point est par-
ticulièrement important pour les systèmes utilisant une batterie électrique, tels que les
smartphones, capteurs, etc. Quelle que soit leur origine, tous les appareils portatifs parta-
gent en effet le même talon d’Achille: la batterie [123]. A l’autre bout du spectre, les
systèmes HPC sont eux, entre autres, contraints par l’alimentation électrique disponible.

La disponibilité du service offert par des dispositifs alimentés par batteries est une
question critique pour quasiment tout utilisateur ou exploitant. L’autonomie de la bat-
terie est devenue un facteur important pour l’expérience utilisateur, comme cela a été
démontré par des études académiques [37] ainsi que par des enquêtes menées par les
canaux d’information de détail 1 depuis la création des appareils portables. Même si la
capacité des batteries et leurs performances augmentent au fil du temps, l’amélioration de
l’efficacité énergétique des systèmes à base de batterie est et reste essentielle, parce que
entre autres, la demande de puissance devance les développements dans les capacités des
batteries [94, 117]. Les super-ordinateurs, d’autre part, sont eux limités par la puissance
disponible fournie par le réseau alimentant le centre de données. Ces ordinateurs doivent
donc fonctionner avec une puissance et un budget contraints. En outre, l’expérience
utilisateur, les produits et la conception de circuits sont limités par la dissipation en
puissance de crête des composants électriques. Comprendre les différents aspects de
la consommation de l’énergie des systèmes (embarqués) est donc une question clé. La
fréquence du processeur, ainsi que la durée et la température de l’exécution, sont, en-
tre autres, des facteurs importants qui influencent la consommation d’énergie et le profil
de puissance de l’exécution des programmes lié à l’architecture hardware sur laquelle il
s’exécute. Fournir des modèles de consommation d’énergie peut ainsi ouvrir la voie à
l’optimisation de l’énergie à l’interface entre logiciel et matériel.

Historiquement, les performances en termes de temps d’exécution ou de consomation
mémoire ont été la principale mesure de la performance au niveau des couches logicielles et
matérielles. Aujourd’hui, l’efficacité énergétique et la dissipation d’énergie deviennent des
indicateurs de performance tout autant importants, surtout pour les appareils alimentés

1Autonomie : préoccupations des utilisateurs mobiles: http://www.cnn.com/2005/TECH/ptech/09/
22/telephone
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par des batteries. Le temps d’exécution demeure bien sûr une mesure de performance
pour les systèmes qui nécessitent une performance soutenue, comme les super-ordinateurs.
Mais pour les systèmes qui sont conçus pour offrir une interface homme-machine riche,
la puissance de calcul soutenue n’est pas nécessairement un objectif primordial ; en
revanche, les temps de réponse de l’application doivent suffire à satisfaire l’expérience
de l’utilisateur. Ces approches différenciées de l’informatique peuvent nécessiter des
méthodes d’optimisation de l’énergie différentes. Par exemple, des bouffées sporadiques de
dissipation de puissance dépassant l’enveloppe thermique (TDP) (Thermal Design Power)
peuvent être inoffensives pour le matériel et offrir un soutien temporaire pour un système
devant être prêt â répondre rapidement [90].

Optimiser de manière efficace le profil de puissance du microprocesseur et le flux de
chaleur qu’il génère est une question cruciale pour les technologies futures. Les tech-
nologies actuelles et futures ne peuvent permettre, dans les cas les plus extrêmes, qu’à un
sous-ensemble de la logique du microprocesseur d’être actif à un moment donné pour rester
compatible avec les niveaux acceptables de dissipation de puissance maximale du micro-
processeur. La fraction de logique ainsi désactivée est appelée silicium noir. En outre, les
limites de puissance et de temps de transmission physique ont conduit à maintenir con-
stante la fréquence d’horloge des technologies actuelles et futures [33]. En conséquence,
pour améliorer la performance, le parallélisme est aujourd’hui de plus en plus employé
dans les microprocesseurs. Le multi-threading simultané (SMT) sur multi-coeurs a fourni
des économies d’énergie substantielles avec le matériel récent [34].

Outre l’optimisation de l’efficacité énergétique au niveau matériel, le logiciel peut
également être conçu de façon à minimiser les exigences de consommation d’énergie.
Pour les systèmes embarqués, six aspects d’optimisation de l’énergie peuvent se trou-
ver au niveau logiciel: les systèmes d’exploitation orientés-énergie, la gestion efficace des
ressources, l’impact de la configuration de l’interaction des utilisateurs avec les appareils
mobiles et les applications, les interfaces sans fil, la gestion des capteurs et la prise en
compte des services informatiques de Cloud [117]. Toutes ces facettes pourraient être op-
timisées individuellement, mais elles doivent plutôt être optimisées de concert pour attein-
dre le plus grand gain d’énergie. Il s’agit là d’une tâche ambitieuse et complexe. Au niveau
logiciel, les techniques d’optimisation d’énergie et de puissance peuvent être grossièrement
divisées en méthodes statique et dynamique. Les méthodes statiques comprennent, entre
autres, la conception efficace de logiciels et l’optimisation du compilateur. Pour que ces
approches permettent d’optimiser énergie et puissance, un profil énergétique du matériel
sur lequel l’exécution du logiciel est prévue est nécessaire. Cela comporte l’inconvénient
que le logiciel ne sera optimal, pour une valeur d’énergie ou de puissance donnée, que
pour un type de configuration matérielle spécifique. Avec ce type d’optimisation statis-
tique, cependant, la spécification du matériel peut ne pas être connue complètement et
des informations de contexte peuvent ne pas toujours être disponibles, par exemple, lors
de l’étape de développement. En outre, la conception de l’architecture économe en énergie
est très sensible à la charge, nécessairement variable, de travail [34] du processeur. Cela
impose une incertitude sur l’efficacité finale des techniques d’optimisation statiques.

L’optimisation dynamique, d’autre part, présente l’avantage que des informations de
contexte sont disponibles et les spécifications du matériel sont connues. Avec ces informa-
tions supplémentaires, si elle sont accessibles, le système et le logiciel peuvent dynamique-
ment s’adapter pour améliorer l’efficacité énergétique et de puissance. Parmi les méthodes
en ligne, on trouve : l’optimisation dynamique de compilation, l’optimisation du byte-
code, et les techniques d’optimisation au niveau du système. Comme pour l’optimisation
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statique, la connaissance des profils énergétiques du matériel et des logiciels contribue à
améliorer les décisions prises par les techniques dynamiques d’optimisation d’énergie et
de puissance.

L’objectif de cette thèse est de se concentrer sur les profils énergétiques et, plus
précisément, sur la façon dont deux paramètres fondamantaux : la température et la
fréquence d’horloge du microprocesseur affectent la consommation d’énergie et les condi-
tions de fonctionnement optimales d’un système informatique.

La loi de convexité énergie – fréquence
Les courants circulant dans un microprocesseur, ou circuit intégré (IC), respectent les lois
fondamentales d’électricité (Ohm, Kirchhoff, ...). Ainsi ils produisent une dissipation de
chaleur proportionnelle à I2R, où R est la résistance et I le courant électrique global du
système étudié. La première loi de la thermodynamique indique que, en fonctionnement
régulier, l’apport d’énergie d’un système est égal à la consommation d’énergie du système.
Ainsi, en l’absence d’autres interactions de l’énergie, et en négligeant l’information liée à
l’énergie elle-même, la seule forme d’énergie émanant d’un microprocesseur est la chaleur
engendrée par les courants circulant à travers des éléments résistifs [17]. Par conséquent,
la dissipation de chaleur du microprocesseur est très proche de sa consommation d’énergie.
Le processus de génération de chaleur interne du microprocesseur est parfois aussi ap-
pelé conversion de chaleur interne. Un microprocesseur présente un comportement ther-
mique transitoire où les délais de refroidissement et de chauffage dépendent de sa capacité
calorique. Le comportement thermique transitoire dure plus longtemps pour les systèmes
ayant des capacités caloriques plus grandes que pour ceux ayant des capacités plus pe-
tites. Ces systèmes sont traditionnellement modélisés par des circuits RC, en se fondant
sur l’équivalence courant/chaleur (voir la section 2.3.3), à savoir un filtre passe-bas, où la
température du système est proportionnelle à la tension aux bornes des condensateurs [27].

En réalité, le comportement (transitoire) thermique est plus compliqué, parce que la
résistance R et les courants I dépendent de la température du microprocesseur. D’une
manière générale, il est démontré expérimentalement que le besoin de puissance crôıt
super-linéairement avec la température du système. Dans le chapitre 3, cette relation
entre température et puissance est analysée en détail. En particulier, les comportements
thermiques de trois processeurs d’applications pour systèmes embarqués sont discutés.
Il sera montré que la relation température / puissance est correctement modelisée par
une loi exponentielle. Pour de petites variations de température, que l’on rencontre
fréquemment dans les systèmes embarqués, des approximations linéaires et quadratiques
sont adéquates. En outre, des modèles de transformation de puissance sont conçus afin
de servir à éliminer les biais de température à partir de traces de mesure, et de réduire
ainsi les effets de distance et de dispersion d’un capteur de température lointain. De tels
modèles d’alimentation et de transformation sont intéressants pour les raisons suivantes.

• Les mesures sont essentielles pour la compréhension puis l’optimisation des systèmes
énergie critique [34, 117]. Un manque de mesures de puissance détaillées portera
atteinte aux efforts visant à réduire la consommation d’énergie sur un logiciel mod-
erne [34].

• Des travaux de recherche ont essayé de décrire la relation température / puissance
en se concentrant sur un sous-ensemble des courants de fuite décrits par BSIM [36,
68, 69, 108, 114]. De tels modèles font l’hypothèse que les courants de fuite sont
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uniquement dépendants de la température. Les courants, cependant, sont également
fonction du temps, car les tensions appliquées aux bornes des transistors changent
avec le temps, ce qui introduit une complexité supplémentaire de modélisation. Les
courants de fuite dépendent d’une multitude de facteurs spécifiques à chaque micro-
processeur, qui ne sont pas tous encore connus précisément. Par conséquent, il peut
être intéressant de proposer une modélisation agrégée de la relation température /
puissance, comme approche alternative aux modèles dérivés de BSIM.

• En outre, il est essentiel de bien comprendre l’importance des erreurs dues aux
mesures de puissance en fonction des différents régimes de température du système
à l’étude. Par exemple, certaines de nos mesures de puissance exhibent jusqu’à 10%
d’écart en raison d’effets transitoires de température [28]. Ainsi, si les mesures de
puissance doivent être comparées, il est interessant que les effets de la température
puissent être controlés de manière à obtenir une base équitable d’analyse.

• Du point de vue de la mesure, il est également important de comprendre l’impact
de la génération de chaleur interne sur la température et de l’effet de capteurs
distants. Des protocoles de mesures de puissance précis et reproductibles sont dif-
ficiles à établir, en raison du comportement thermique transitoire des composants
électriques. Plus précisément, pour un programme de test donné, la mesure de
l’alimentation du microprocesseur peut conduire à des valeurs différentes pour différentes
températures du microprocesseur. Par souci de précision et de comparaison équitable
entre différentes mesures de puissance, il est donc d’une importance vitale de pouvoir
contrôler ou annuler les effets du comportement thermique transitoire.

La dépendance en température fait partie des spécifications relatives à un micro-
processeur; des températures élevées ont un effet négatif sur sa durée de vie. La fia-
bilité des produits électroniques est influencée par les gradients spatiaux ou temporels de
température, ainsi que par leurs valeurs, dans l’absolu [63]. Les gradients thermiques,
qui se produisent à la fois dans l’espace et dans le temps, induits par la variabilité de la
charge de microprocesseur et des opérations, engendrant des cycles thermiques qui ont un
effet négatif sur le taux de panne des systèmes [60]. L’International Technology Roadmap
for Semiconductors (ITRS) affirme même que les coûts de traitement et les spécifications
de performance peuvent être limités par la durée de vie, la fiabilité étant la principale
préoccupation dans la phase de conception d’un microprocesseur [51]. Le temps moyen
avant fin de bon fonctionnement (MTTF) des équipements électroniques diminue de façon
exponentielle avec la température ; les causes possibles de panne sont l’électromigration,
les réactions chimiques, la rupture diélectrique, ou le fluage dans les matériaux de col-
lage [17]. Une augmentation de la température de 10◦ C à 15◦C peut réduire de moitié la
vie d’un microprocesseur [125]. Par conséquent, la température d’un système est souvent
limitée pour contrôler la dissipation de la chaleur au maximum de puissance, augmenter
le MTTF, minimiser la consommation d’énergie, éviter l’autodestruction, ainsi que pour
des raisons de sécurité. Les smartphones sont souvent plafonnés thermiquement autour
de 50◦C, de sorte que les utilisateurs ne se brûlent pas, mais aussi afin d’utiliser efficace-
ment la capacité électrique de la batterie. Soulignons que la température de la surface
au contact des systèmes électroniques devrait être limitée à 41◦C ou 45◦C, en fonction du
matériau, afin d’assurer le confort tactile de l’utilisateur [9].

Les équipements électroniques avancés emploient des techniques de gestion de la
température (Thermal Management Units (TMUs) ou Dynamic Thermal Management
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(DTM)) qui sont capables de ralentir ou adapter les systèmes de façon à ce que leurs con-
traintes thermiques, parfois strictes, soient remplies. Ces techniques de gestion thermique
peuvent être mises en place dès la phase de conception du système ou être dynamiquement
déployées au moment de l’exécution. Une pléthore de méthodes de contrôle thermique
pour microprocesseurs et systèmes sur une puce (SoC) [8, 60] existent ; elles agissent
sur les compromis entre profil de température, paramètres de fréquence, consommation
d’énergie et complexité de mise en œuvre [138]. Certains microprocesseurs complexes
peuvent employer des TMUs implantées sur le matériel, comme, par exemple, certains
microprocesseurs d’Intel [31, 77], tandis que les TMUs logicielles sont fréquemment mises
en œuvre dans les systèmes embarqués. Pour utiliser efficacement les TMUs, il est impor-
tant de comprendre le comportement thermique transitoire du système. Le comportement
thermique transitoire d’un système refroidi de manière active peut être fidèlement décrit
par une relation exponentielle. Mais, pour les systèmes refroidis passivement, tels que les
smartphones, les capteurs sans fil ou encore de nombreux objets participant à l’Internet des
objets (IoT), l’hypothèse exponentielle ne tient pas. Les systèmes à refroidissement passif
comptent sur le refroidissement par conduction, convection naturelle, et rayonnement et
sur la gestion thermique de la TMU ou DTM, qui présentent des propriétés non-linéaires.
Dans le chapitre 5, le comportement thermique d’un microprocesseur refroidi passivement
est étudié par l’intermédiaire du développement d’une loi de refroidissement passif util-
isant la conversion de chaleur interne et les mécanismes de refroidissement convectif et
radiatif. Des solutions approchées sont également présentées, car la solution exacte est as-
sez complexe et donne le temps t en fonction de la température T alors qu’il serait naturel
d’avoir l’inverse, c’est à dire la temperature en fonction du temps. La performance des so-
lutions approchées est aussi évaluée. L’approximation des coefficients se révèle une bonne
solution heuristique dans la majorité des cas, avec un minimum d’erreurs en présence de
variations de température d’applications embarquées typiques. Pour un objet comme un
microprocesseur, il est montré que, pour les grandes surfaces de refroidissement, la loi
de refroidissement passive diffère sensiblement d’une loi exponentielle de refroidissement.
Pour les surfaces de refroidissement plus petites qu’environ 1 dm2, la loi de refroidissement
passive reste proche d’une loi exponentielle. Pour de tels systèmes, une loi exponentielle
de refroidissement, même moins précise, reste avantageuse en termes de mise en œuvre et
de complexité de calcul.

En plus de la température, d’autres paramètres influencent le profil de la consom-
mation d’énergie d’un microprocesseur. Les caractéristiques de temps d’exécution et les
exigences de puissance du logiciel et du système sont les principaux facteurs qui définissent
la consommation finale d’énergie. Ceci est une conséquence directe de la définition de la
consommation d’énergie électrique : l’intégrale de la puissance électrique au fil du temps.
Le temps d’exécution est influencé par le type et le coût des opérations effectuées par le
logiciel en question, y compris les instructions accédant à la mémoire externe et aux reg-
istres. Chaque unité fonctionnelle au sein d’un microprocesseur et composant du système
a son propre profil de puissance et de temps d’exécution. En conséquence, chaque logi-
ciel a des exigences différentes de puissance. Par exemple, Carroll et Heiser [16] ont
montré que, pour leur système embarqué, en exécutant eQuake, vpr, et gzip de SPEC
CPU2000, la consommation d’énergie du microprocesseur dépasse la consommation due à
la seule mémoire RAM, tandis que c’est l’inverse pour crafty et mcf, issus de la même
suite logicielle. Minimiser le nombre d’opérations d’accès à la mémoire est une technique
d’optimisation énergétique courante. Par exemple, Intel a introduit, avec la puce E5
Xeon Data Direct I/O (DDIO), le carte réseau (NIC) Ethernet peut charger des données
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Figure 1: Données expérimentales et théoriques de consommation d’énergie d’un programme
s’executant sur les microprocesseurs ARM Cortex A9. La consommation d’énergie pour divers
points caractéristiques avec différentes tailles des entrées est représentée pour l’algorithme Rader,
ainsi que les repères BEEBS. Les traits pleins représentent les données mesurées, tandis que les
lignes en pointillé représentent la courbe d’énergie et de temps d’exécution calculée.

directement dans le cache du microprocesseur [57], minimisant ainsi l’accès a la mémoire
mémoire vive (RAM). En évitant les opérations d’entrées-sorties (I/O) , la performance,
mais aussi la consommation d’énergie du système, est améliorée. Une caractéristique
intéressante de la consommation d’énergie d’une séquence de code, c’est que le produit de
son temps d’exécution et de la consommation d’énergie du microprocesseur possède, sous
certaines hypothèses, des propriétés convexes, ce qui est discuté dans le chapitre 4; cette
loi est appelée loi de convexité énergie-fréquence de la consommation des programmes:
elle est illustrée dans la figure 1. Cette règle stipule qu’il existe une fréquence d’horloge
pour l’exécution de chaque séquence de code qui minimise la consommation d’énergie
de ladite séquence de code. Dans certaines conditions, cette fréquence d’horloge op-
timale, qui réduit la consommation d’énergie, se trouve entre les fréquences d’horloge
minimale et maximale de fonctionne du microprocesseur. Comme on le verra, le choix de
la fréquence d’horloge optimale conduit à un compromis entre performance en termes de
temps d’exécution et économies d’énergie. Pour les applications nécessitant de nombreuses
interactions humaines, il a été montré que la fréquence d’horloge peut être réduite sans
affecter considérablement l’expérience de l’utilisateur [101]. Une preuve expérimentale de
l’existence de la loi de convexité énergie-fréquence de la consommation des programmes,
qui concerne la consommation d’énergie et la fréquence d’horloge des microprocesseurs sur
les appareils mobiles, est présentée. La propriété de convexité semble garantir l’existence
d’une fréquence optimale où la consommation d’énergie est minimale. Cette affirmation
de l’existence d’une telle propriété est fondée sur des preuves à la fois théoriques et pra-
tiques. Les données recueillies par l’intermédiaire de campagnes d’acquisition de donnée
sur plusieurs plates-formes suggèrent que l’énergie consommée par élément d’entrée est
fortement corrélée avec la fréquence d’horloge du microprocesseur et, ce qui est encore plus
intéressant, que la courbe correspondante présente un minimum clair sur une fenêtre de
fréquences spécifique au système informatique et au programme. Un modèle analytique de
ce comportement est aussi motivé, qui cadre bien avec les données présentées. Une analyse
de sensibilité des paramètres est réalisée afin d’évaluer l’influence des paramètres sur la
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fréquence optimale. Il est également montré que la fréquence optimale augmente lorsque
les besoins en puissance du système, à l’exclusion des microprocesseurs, augmentent. La
présence de cycles d’horloge perdus pour la gestion propre du système accrôıt également
la fréquence optimale. La fréquence optimale telle que dérivée du cadre théorique présenté
ici est cependant indépendante du nombre d’instructions à exécuter.

Dans le chapitre 6, la loi de convexité énergie-fréquence de la consommation des pro-
grammes, comme le montre bien la Figure 1, est utilisée dans des applications pratiques.
On montre comment on peut calculer les fréquences optimales minimisant la consomma-
tion d’énergie du système pour des systèmes intégrant plusieurs entités ayant chacune
leur propre fréquence d’horloge, ce qui correspond, en substance, à une superposition de
plusieurs systèmes unitaires. La loi de convexité énergie-fréquence de la consommation des
programmes est également appliquée à un système informatique soumis à des contraintes
temporelles répétitives et à l’adaptation de la fréquence d’un système multithread. Il est
ainsi montré que des économies d’énergie de l’ordre de 30 % sont réalisables dans ces cas.
Dans le prolongement de la loi d’Amdahl, on analyse le rendement d’énergie d’un système
informatique hétérogène. Cette mesure de performance met en lumière les avantages des
systèmes à haute performance ne nécessitant qu’une faible puissance.

Contributions
Ce travail fournit une meilleure compréhension à la fois théorique et pratique de la con-
sommation d’énergie d’un microprocesseur. L’analyse du comportement thermique tran-
sitoire et les gains d’énergie via l’adaptation de la fréquence d’horloge sont d’un intérêt
tout particulier. Les principales contributions sont :

• un cadre théorique pour la loi de convexité énergie-fréquence de la consommation
des programmes et des mesures expérimentales – une analyse de sensibilité de la
loi de convexité énergie-fréquence de la consommation des programmes est effectuée
pour estimer l’impact des multiples paramètres;

• une loi de refroidissement exacte pour un objet isotherme soumis au rayonnement,
à la convection, et à la génération de chaleur interne – la loi exacte est appliquée à
un objet de type microprocesseur en vue d’évaluer son comportement transitoire;

• des modèles température / puissance appliqués à l’Exynos 5410 – ces modèles
sont utiles pour annuler le biais de température dans les mesures de puissance et
d’augmenter la précision de celles-ci;

• des modèles de puissance explicites pour l’Exynos 5410 système sur une puce (SoC)
intégrant la fréquence d’horloge, la température, et le nombre de cœurs actifs –
ces modèles peuvent être directement réutilisés dans toute simulation pour d’autres
processeurs d’architecture similaire;

• plusieurs approximations à la loi de refroidissement exacte – ces approximations
sont plus simples et plus convenablement formulées pour une utilisation pratique;

• des méthodes et lignes directrices concrètes pour améliorer la précision et la perti-
nence des mesures d’énergie et de puissance;

• des règles générales pour évaluer quand le refroidissement passif devient non négligeable
par rapport à un refroidissement actif dans les systèmes embarqués;
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• et la mise en œuvre sous forme de prototypes de tous ces modèles de refroidissement –
les lois exactes et approximatives pour les objets refroidis passivement sont fournies
avec une évaluation de la precision perdues pour les approximations qui d’autres
part, permetent un calcul rapide (utilisable dans des applications temps réel).

Résumé des chapitres

Généralités sur la consommation d’énergie électrique et le trans-
fert de chaleur
Les concepts fondamentaux sur la consommation d’énergie électrique et le transfert de
chaleur sont rappelés dans ce chapitre. Pour comprendre et modeliser la consommation
d’énergie électrique, les différentes sources de consommation d’énergie lors de l’exécution
d’un programme sont prises en compte. Les modèles de temps d’exécution sont également
nécessaires. Au total, ces modèles permettront d’étudier la consommation d’énergie des
différents types d’applications dans les chapitres suivants. La température joue un rôle
majeur dans la consommation d’énergie lors de l’exécution d’un programme. De ce fait,
des modèles de transfert de chaleur sont étudiés ; ils seront utilisés pour comprendre le
comportement thermique transitoire d’un microprocesseur.

La section 2.1 présente les notions de consommation d’énergie électrique et de profil
de puissance dans le cadre des systèmes informatiques. Les différentes sources de consom-
mation d’énergie dans un microprocesseur sont mises en évidence. Dans la section 2.2,
des modèles de temps d’exécution d’un programme sont utilisés conjointent au modèles
énergétiques . Des modèles thermiques seront utilisés pour comprendre l’interaction en-
tre l’énergie et la température ; donc la section 2.3 présente un résumé des principes
thermiques, y compris les modes de transfert de chaleur et les propriétés thermiques des
matériaux.

La relation de température / puissance dans les microprocesseurs
Lorsqu’on étudie la consommation d’énergie sur la base de mesures de puissance, il est
impératif d’obtenir des échantillons de puissance précis et des traces de mesures repro-
ductibles. En effet, la température a un impact clair sur les mesures de puissance des
microprocesseurs. L’exemple de la figure 2 montre une augmentation de la consommation
d’énergie de 5% pour une augmentation de température de 10◦C. Auparavant, il avait
été également souligné que les courants de fuite sont dépendants de la température, et
une équation avait été introduite pour en fournir une approximation. Par conséquent, la
puissance d’un microprocesseur est également dépendante de la température et la con-
sommation d’énergie du microprocesseur en est affectée.

La relation entre la consommation d’énergie et la température est ici démystifiée.
Les modèles décrits dans la littérature sont remis en question et des traces de mesures
expérimentales sont utilisées pour valider certains de ces modèles. L’utilisation pratique
des modèles de température / puissance est illustrée avec le but d’améliorer la précision
des mesures. L’importance de l’emplacement de la sonde de température par rapport aux
sources de chaleur est mise en évidence quantitativement. Un autre modèle de transfor-
mation est avancé, qui prend en compte l’emplacement et le comportement des capteurs
de température. Quand un capteur de température est placé à distance à partir d’une
source de chaleur, le capteur mesure la température avec un retard et avec une amplitude
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Figure 2: Température (a) et puissance (b) d’un Exynos 4210 en vertue de la charge de
travail constante, opérationnel à différentes fréquences d’horloge microprocesseur. On observe
que la consommation d’énergie augmente rapidement due à l’augmentation de la température
croissante du microprocesseur, étant donné que tous les autres paramètres ont été maintenus
constants [28].

diminuée. Ce chapitre traite ainsi de la transformation des traces de puissance, en met-
tant l’accent sur la température du système, pour arriver à des échantillons de puissance
significatifs et reproductibles.

La loi de convexité énergie-fréquence de la consommation des
programmes
Dans le chapitre 2, des modèles de puissance et de temps d’exécution ont été présentés,
lesquels, quand ils sont combinés, produisent un modèle de consommation d’énergie du
microprocesseur, selon équation 2.2. Dans ce chapitre, le comportement de ce modèle de
consommation d’énergie est étudié via une analyse de sensibilité en fonction d’une selection
de parametres et sa validité est montrée en pratique grâce à des mesures expérimentales
de temps d’exécution et de puissance.

Le chapitre commence par un large état de l’art présentant des courbes d’énergie /
fréquence trouvées dans la littérature. La loi de convexité énergie-fréquence de la con-
sommation des programmes pour un microprocesseur à cœur unique est développée dans
la section 4.2. Ensuite, dans la section 4,3, des mesures expérimentales de la puissance
et du temps d’exécution de deux processeurs sont présentées ; elles montrent l’existence
de la convexité énergie / fréquence. Ces modèles fondés sur des campagnes de mesures
seront également utilisés dans les chapitres suivants. La section 4.4 analyse, quant à elle,
la sensibilité des paramètres de la loi de convexité énergie-fréquence de la consommation
des programmes.

Le refroidissement passif des microprocesseurs
Une solution analytique exacte du transfert de chaleur au sein d’un microprocesseur re-
froidi passivement est développée dans ce chapitre, sous les hypothèses de présence de
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convection, rayonnement et génération de chaleur interne. Ces modèles seront utiles
aux Thermal Management Units (TMUs) et Dynamic Thermal Management (DTM) pour
évaluer et prédire le comportement thermique d’un microprocesseur. Alors qu’on a au-
paravant étudié la dépendance de la température sur la puissance du microprocesseur,
on se penche ici sur le comportement thermique transitoire. Analyser le comportement
thermique exact d’un microprocesseur est intractable en raison de la nature complexe
de la physique impliquée dans un circuit intégré y compris la dynamique des fluides,
tous les modes de transfert de chaleur, les configurations des composants électroniques
complexes, la turbulence, etc. Pour maitriser cette complexité, des hypothèses de sim-
plification sont formulées, par example, ou représente un microprocesseur, par une pièce
isotherme d’oxyde de silice qui est placée dans un espace ouvert infini soumis à la con-
vection (naturelle) et au rayonnement. Ces hypothèses sont formulées supposées lorsqu’il
s’agit de prendre en compte la loi de refroidissement de Newton.

Tout d’abord, dans la section 5.2, le comportement temporel de la température d’un
microprocesseur est considéré, en partant de la loi générale de refroidissement de Newton
et la génération de chaleur interne. Ensuite, dans la section 5.3, l’impact de la radiation
enrichit notre modèle, pour développer une équation de chaleur modélisant le refroidisse-
ment passif d’un microprocesseur avec une génération de chaleur interne. La différence
de performance entre les lois de refroidissement passif et actif est également évaluée dans
la section 5.4. Par ailleurs, des approximations de la solution exacte de la loi de re-
froidissement passif sont proposées dans la section 5.3.6, cette dernière se révélant être
une équation assez complexe. L’emballement thermique de l’équation de la chaleur passive
appliquée à un modèle de microprocesseur réaliste est également étudié.

Applications aux domaines multi-horloge de la consommation op-
timale d’énergie
La loi de convexité énergie-fréquence de la consommation des programmes du chapitre 4
est appliquée à des cas d’usage spécifiques dans ce chapitre. Les systèmes d’agents
coopérants sont étudiés dans la section 6.1, et une solution analytique est développée
pour trouver la fréquence d’horloge optimale pour tous les participants, dans le but de
minimiser la consommation énergétique globale de l’ensemble du système. Il est démontré
que, pour trouver la fréquence optimale pour chaque participant, la règle de convexité doit
être appliquée de nouveau chaque fois que le système change son état d’énergie. Dans la
section 6.2, la règle de convexité est appliquée à un système soumis à des contraintes tem-
porelles. Les résultats montrent que l’on peut économiser jusqu’à 55% de l’énergie, dans
le meilleur des cas. Mais ces économies peuvent devenir marginales lorsque beaucoup de
travail doit être effectué avant la date limite. La section 6.3 examine si l’application de la
règle de convexité peut conduire à économiser de l’énergie par ajustement de la fréquence
d’horloge de threads parallèles individuels. Il sera montré que, pour une consomma-
tion d’énergie de fond comparable à la consommation d’énergie du microprocesseur, des
économies d’énergie entre 3% et 10% par rapport à la consommation énergétique induite
par le gestionnaire de fréquence d’horloge typiquement mis en œuvre par Linux sont pos-
sibles. La section 6.4 intègre la notion d’énergie dans la loi d’Amdahl pour analyser la
performance par Joule d’un microprocesseur. On montre comment la fréquence d’horloge
qui minimise la consommation d’énergie se comporte sous la loi d’Amdahl. Dans la sec-
tion 6.5, on s’attache à démystifier les relations qu’on suppose traditionnellement entre
calcul hétérogène et énergie. Le contraste entre le comportement d’un microprocesseur
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basse-puissance et un autre à haute performance est mis en évidence en utilisant la loi de
convexité énergie-fréquence de la consommation des programmes et la loi de Amdahl. Une
taxonomie spécifique est introduite pour distinguer les différentes facettes de la notion de
puissance.

Conclusions

Résumé des résultats
Dans ce travail, la loi de convexité énergie-fréquence de la consommation des programmes
est établie analytiquement et validée par une vast bibliographie ainsi que des mesures
expérimentales. La thermosensibilité de la loi de convexité énergie-fréquence de la con-
sommation des programmes et le profil de puissance des microprocesseurs ont également
été discutés. En outre, des procédés pour améliorer la précision des mesures de l’énergie
et de la puissance ont été présentés.

La loi de convexité énergie-fréquence de la consommation des programmes s’applique
à un système informatique dont la consommation d’énergie Esys peut être décrite par:

Esys =
(
(1 + γV ) ξfV 2 + Pback

)
· ccb

(
1

f − fk
+ β

)
, (4.2)

où : γ est un paramètre associé aux courants de fuite ; V est la tension du processeur ;
ξ est la demande de puissance du processeur ; f est la fréquence d’horloge du processeur
; Pback est la demande de puissance du système, excepté celle du processeur ; fk sont les
voleurs de temps (temps d’attente typiquement sur des entrées/sorties); et β est le slack
time du processeur (du au fonctionnement du système).

En = EA
n + EB

n

∂EA
n

∂f
= (4af 3 + 3bf 2 + 2cf + d) · β (11.a)

∂EB
n

∂f
= 3af 4 + (2b− 4a fk)f 3 + (c− 3b fk)f 2 + 2c fkf + (Pback − d fk)

(f − fk)2 (11.b)

∂2EA
n

∂f 2 = (12af 2 + 6bf + 2c) · β (11.c)

∂2EB
n

∂f 2 = −6af 4 + (16a fk − 2bc f 2
k )f 3 + (6b fk − 12a f 2

k )f 2

(f − fk)3

− 6b f 2
kf + 2(d fk + Pback)

(f − fk)3 (11.d)

Si la dérivée première de l’énergie En a une seule racine sur R+ et la dérivée seconde est
une fonction croissante monotone, alors la consommation d’énergie du système présente un
minimum global avec à une valeur optimale de la fréquence d’horloge fopt. Par définition,
cette fréquence d’horloge optimale donne la plus petite consommation d’énergie pour
l’exécution d’une séquence d’instructions. Si la fréquence d’horloge optimale se situe dans
la plage des fréquences d’horloge admissibles du microprocesseur, elle peut être exploitée.
Dans le cas contraire, le microprocesseur est le plus économe en énergie pour une fréquence
d’horloge se trouvant en limite de plage : la fréquence maximale ou minimale de l’horloge.
La consommation d’énergie est une fonction de plusieurs paramètres: les demandes en
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puissance du microprocesseur (ξ), les capacités d’adaptation tension / fréquence (f/V ),
la consommation de base (Pback), le slack time (β), les voleurs de cycles d’horloge (fk), la
température T , et quelques autres.

Dans le chapitre 4, une analyse de sensibilité des paramètres a été effectuée. La con-
sommation d’arrière-plan Pback s’avère être le paramètre ayant la plus grande influence sur
la fréquence optimale d’horloge, celle qui réduit au maximum la consommation d’énergie
du système. En règle générale, fopt est exploitable, c’est-à-dire fmin < fopt < fmax, si les
besoins en puissance du microprocesseur sont plus petits que Pback. Pour certains types
d’applications, cependant, fopt est indépendante de Pback, par exemple pour le traite-
ment de tâches répétitives au sein des systèmes informatiques, comme expliqué dans la
section 6.2. Le nombre de voleurs de cycle d’horloge affecte également fopt de manière sig-
nificative, dans le sens que fopt augmente quand moins de cycles d’horloge sont disponibles
pour le calcul proprement dit. On a également montré que le profil de puissance du micro-
processeur ou encore le nombre d’instructions exécutées n’ont pas d’influence significative
sur la fréquence d’horloge optimale, ce qui est une conséquence directe de la formula-
tion de la consommation d’énergie donnée par l’équation 4.2, formule qui a également
expliqué que la technique d’optimisation de l’énergie race-to-halt est seulement efficace
quand fopt > fmax.

Le chapitre 6 applique la loi de convexité énergie-fréquence de la consommation des
programmes à des applications pratiques. Il y est montré comment la loi de convexité
énergie-fréquence de la consommation des programmes pouvait être appliquée à un système
informatique composé d’entités multiples, qu’on appelle parfois “amis”, disposant de
fréquences d’horloge indépendantes. L’énergie peut être optimisée à un niveau global
en divisant le traitement effectué par le système en étapes temporelles dans lesquelles les
états d’énergie des amis ne changent pas dans une étape donnée. Ensuite, la fréquence
optimale pour chaque ami dans chaque étape peut être calculée. Il a été montré que,
dans le cas d’exécution dans le désordre (OOE), la détermination de fopt peut devenir
compliquée, parce que les fréquences d’horloge des amis ne peuvent pas être modifiées
indépendamment les unes des autres pendant l’exécution. Une exemple d’un système à
quatre amis a été présentée dans la section 6.3, où les fréquences d’horloge des quatre
threads ont été modifiées de façon indépendante et en collaboration pour atteindre un
système caractérisé par une consommation d’énergie minimale. Par rapport au controleur
par défaut de la fréquence d’horloge implementé par Linux, un algorithme coopératif des
fréquences d’horloge entre amis a montré qu’un gain en énergie allant jusqu’à 40 % pouvait
être obtenu dans les conditions les plus favorables. Cependant, le gain d’énergie tombe à
10 % lorsque les autres composants du système ont besoin approximativement de la même
puissance que le microprocesseur. En fait, ce gain d’énergie représente cependant un
compromis avec le temps d’exécution, qui est environ deux fois plus important quand on
gagne 40 % en énergie. La loi d’Amdahl a également été étendue pour intégrer le réglage
de la fréquence d’horloge, loi à partir de laquelle la métrique de performance par Joule a
été déduite. Cette métrique a été appliquée à l’Exynos 5410 SoC, qui abrite un micropro-
cesseur à faible consommation (A7) et un micro processeur à haute performance (A15).
La performance par Joule la plus convenable a été montrée être dix fois plus élevée pour
l’A7 que pour l’A15, alors que le temps d’exécution n’augmente seulement qu’environ 5
fois pour l’A7 par rapport à l’A15.

Ces observations de la loi de convexité énergie-fréquence de la consommation des pro-
grammes et ses applications ont à la fois été fondées sur un cadre théorique novateur
et étayées par des données expérimentales. Pour obtenir ces données expérimentales,
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des profils de temps d’exécution ont été tirés de Bristol Energy Efficiency Benchmark
Suite (BEEBS) et de l’algorithme bit-reverse de Golden-Rader, ces programmes ayant
été exécutés sur deux plates-formes constituées de SoCs multimédia. Les profils de puis-
sance utilisés ont été enregistrés sur les mêmes SoCs, dont un est composé d’un Cortex
A9 et l’autre d’un double microprocesseur Cortex A7 et A15. Des modèles de puissance
pour processeurs A7 et A15 ont été fournis dans la section 3.6 ; ces modèles logiciels
peuvent être utilisés directement dans des simulations. Ce qui se révèle comme partic-
ulièrement intéressant à propos de ces modèles de puissance P , c’est que la température
T du microprocesseur est un paramètre d’entrée. Dans le chapitre 3, la dépendance de
la température sur les caractéristiques de puissance d’un microprocesseur a été discutée.
Outre d’autres propriétés physiques, les courants de fuite sont les plus grands contribu-
teurs à cette dépendance de la puissance du microprocesseur de la température, ce qui est
largement discuté dans la section 3.2.1. Il est montré par des données empiriques tirées
du processeur A15 que, dans le cas le plus extrême, les besoins en énergie à 85 ◦C sont
20 % plus élevés qu’à 25◦C. Un modèle fondé sur une loi exponentielle

P = a1e
T/a2 + a0,

s’avère modéliser fidèlement la relation température / puissance dans l’intervalle allant
de 20◦C à 85◦C. Pour une plage de variations de température plus pertinente, entre 20
◦C et 50◦C, des approximations linéaire et du second degré sont acceptables. Cette rela-
tion température / puissance est utilisée pour montrer comment supprimer le biais de la
température à une trace de mesure de puissance. Il est également indiqué et illustré que la
distance d’un capteur de température à partir d’une source de chaleur peut introduire des
erreurs sur les mesures de puissance, comme un décalage dans le temps et une amplitude
réduite. Une fonction de transformation, pratique mais un peu ad-hoc, a été proposée
pour annuler un tel comportement.

Le comportement thermique transitoire d’un microprocesseur est influencé par la re-
lation température / puissance, en ce que la génération de chaleur interne dépend de la
température. Le comportement thermique transitoire est également dicté par la façon
dont le microprocesseur dissipe sa chaleur dans l’environnement. Les systèmes refroidis
activement libèrent leur chaleur dans l’environnement par convection forcée, par exemple
de l’air ou d’autres types de fluide, ce qui domine les autres modes de transfert de chaleur.
Le comportement transitoire de ces systèmes est bien décrit par une loi de refroidissement
exponentielle. Les dispositifs refroidis passivement, cependant, comptent sur la dissipa-
tion naturelle de la chaleur, y compris par rayonnement. Le chapitre 5 explore les effets
de la présence de refroidissement radiatif sur le comportement thermique transitoire par
l’intermédiaire d’un cadre analytique exact. La loi de refroidissement en présence de
radiation s’exprime de la façon suivante :

t = − 1
κ4

(
A ln |T − ω1|+B ln |T − ω2|+

C

2 ln |(T − α)2 + β2|

+ αC +D

β
arctan

(
T − α
β

)
+ co

)
. (5.17)

Un cas d’utilisation appliqué à un objet ressemblant un microprocesseur montre que la
composante liée au rayonnement ne peut être négligée pour les objets offrant une surface de
refroidissement plus grande que 1 dm2, ce qui pourrait être une surface de refroidissement
typique d’un smartphone. Pour les surfaces de refroidissement plus petites, la loi de
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refroidissement passive exacte s’approche d’une loi de refroidissement exponentielle. Dans
ces conditions, une loi exponentielle de refroidissement doit être favorisée, car elle est
beaucoup moins complexe que la loi de refroidissement passif exacte. Des approximations
à la loi de refroidissement exacte ont également été fournies dans la section 5.3.6 ; elles
sont destinées à être utilisées dans des applications pratiques. On a montré que la loi dit
de rapprochement des coefficients

T =

√
κ2

1 − 4κ2κ0(1− coe−
κ2
A
t)

2κ2(1 + coe
−κ2
A
t)

− κ1

2κ2
, (5.28)

fonctionne le mieux dans la plupart des circonstances. Pour les petits écarts à la température
ambiante, la méthode dite de rapprochement de second ordre d’O’Sullivan

T = w

2m tanh
(
w

2C t+ co

)
− n

2m + Ta, (5.36)

peut aussi être utilisée de manière satisfaisante. Les taux d’erreur sont à chaque fois
calculés.

Travaux Futurs
Même si aucune question ouverte n’est formulée explicitement au long la recherche présentée,
il semble très intéressant de poursuivre plusieurs pistes de réflexion possibles découlant
de ce travail.

La précision du protocole de mesure de la relation température / puissance peut
être améliorée, principalement en utilisant plusieurs capteurs de température plus précis.
C’est une tâche difficile, car les capteurs de température présents sur les circuits ont
une résolution faible et peuvent conduire à des taux d’erreur importans. Les disposi-
tifs extérieurs de mesure de la température, tels que les capteurs à base d’infrarouge,
peuvent fournir une précision améliorée, mais ils doivent être utilisés dans un environ-
nement contrôlé et de préférence avec le circuit exposé. La température ambiante et
la température du circuit doivent également être contrôlées de façon à éviter les effets
d’hystérésis de température pouvant interférer avec la corrélation température / puis-
sance. En particulier, l’hypothèse d’isothermie doit être valider.

D’un point de vue théorique, il pourrait être intéressant d’évaluer le facteur d’impact
exact des processus qui dépendent de la température, en supplément du courant de fuite, et
qui affectent le profil de puissance des microprocesseurs. En utilisant ces connaissances,
un modèle plus complet de la relation température / puissance pour microprocesseur
pourrait être construit, fondé sur des principes physiques, en complément du modèle
température / puissance heuristique présenté auparavant. En outre, le modèle de trans-
formation permettant de prendre en compte le syndrome de capteur distant pourrait être
déduit d’une analyse théorique plus solide, en remplacement d’un polynôme approximatif,
bien que, comme on l’a montré, un tel effort conduirait probablement à une formulation
mathématique très complexe qui pourrait être insurmontable pour des applications pra-
tiques.

Du point de vue de la mesure expérimentale de la puissance, des données plus précises
seraient également avantageuses pour affiner le modèle de température / puissance. Un
taux d’échantillonnage plus élevé permettrait d’observer plus en détail des parties spécifiques
des séquences d’instructions. Cela mènerait à une estimation de ξ avec un grain plus fin,
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ce qui pourrait être bénéfique pour obtenir des informations ξ pour les unités fonction-
nelles du microprocesseur, meilleures que l’estimation du niveau d’application qui a été
supposé dans cette thèse. Cependant, des taux d’échantillonnage plus élevés induisent
des exigences de traitement post-mesure de données plus grandes et plus coûteuses. Dans
cette thèse, il a déjà été parfois fastidieux de traiter des traces de mesures de puissance
à 4 kHz. Des outils d’acquisition de données haut de gamme peuvent avoir des taux
d’échantillonnage de 100 kHz à 1 GHz; plus d’espace disque et de patience seront donc
nécessaires pour analyser des traces de puissance plus riches.

Des profils de ξ plus précis peuvent alors également conduire à une optimisation de la
gestion dynamique de la tension et de la fréquence (DVFS) plus agressive, ce qui donnerait
des gains énergétiques bien supérieurs à ceux fournis par les gouverneurs interactifs de
fréquence présents dans les distributions Linux. Les profils de ξ et de temps d’exécution
pourraient également être intégrés dans le code comme directives pour une optimisa-
tion dynamique de l’énergie. Il pourrait être difficile, pour les architectures matérielles
actuelles, d’étendre leur traduction de code binaire afin de prendre en charge les profils
d’énergie et de temps d’exécution. Toutefois, si ce type d’acquisition de données était
incorporé dans le code binaire, un processus de machines virtuelles pourrait décoder ces
informations et rediriger les données vers une unité de gestion de l’énergie. Même les
informations de profil énergétique issues du code binaire, récoltées via une interface na-
tive de Machine virtuelle (VM), pourraient être transmises, de manière utile, aux unités
de gestion de l’énergie. Comme indiqué dans cette thèse, les économies d’énergie max-
imales sont atteintes par la coopération de toutes les applications, pas nécessairement
via l’optimisation de chaque application individuelle. Une unité de gestion de l’énergie
possédant tous les paramètres ξ des VMs actives pourrait ainsi optimiser le système de
manière coopérative, par exemple grâce à la méthode amis et le DVFS présentés dans ces
travaux. Une coopération basique au niveau application existe déjà dans Android via ce
qui est appelé wakelocks, une technique qui gère les dépenses d’énergie des ressources du
système, comme par exemple l’écran et les capteurs.

La loi de convexité énergie-fréquence de la consommation des programmes a été étudiée
en adoptant un point de vue théorique, sans prendre en compte la notion de ressenti
humain. Pour des systèmes HPC qui doivent produire des résultats aussi rapidement
que possible, les ressentis humains ne sont d’aucune valeur. Par contre, les dispositifs
conçus avec une interactions homme-machine (HCI) riche, tels que les smartphones, ou
tablettes se doivent absolument de prendre en compte les aspects émotionnels humains
dans l’utilisation de la loi de convexité énergie-fréquence de la consommation des pro-
grammes. Comme il a été présenté dans ce travail, la loi de convexité énergie-fréquence
de la consommation des programmes est un compromis entre la consommation d’énergie,
d’un côté, et le temps d’exécution, de l’autre. Si une HCI est impliquée, l’expérience util-
isateur sera potentiellement affectée par un changement trop grand de temps d’exécution.
Lorsque le temps d’exécution augmente, le système informatique devient moins réactif et
l’expérience de l’utilisateur va se détériorer, de façon non-linéaire. Comprendre l’impact
émotionnel de la loi de convexité énergie-fréquence de la consommation des programmes
devrait donc être un facteur clé lors de la conception d’un système optimisé pour en fonc-
tion de la qualité de l’expérience humaine. L’expérience de l’utilisateur peut alors être
utilisée comme une contrainte supplémentaire pour définir la fréquence d’horloge optimale.
Cette contrainte induirait une limite inférieure de la fréquence d’horloge qui indiquerait le
moment à partir duquel l’utilisateur ne tolérerait plus aucun ralentissement du système.
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Chapter 1

Introduction

Even a tiny amount of energy gained via a better understanding of frequency
scheduling and thermal effects on energy behavior of microprocessors may have
significant monetary and ecological impacts. Understanding and accurately
modeling these relationships may bear impact beyond optimized system oper-

ation management. This stresses the crucial aspect of energy optimization in micropro-
cessors, especially for embedded and High Performance Computing (HPC) systems. This
point is particularly acute for system running on an electrical battery, such as smart-
phones, sensors etc. Whatever their origin, all hand-held devices share the same Achilles’
heel: the battery [123]. HPC systems on the other hand are, amongst others, constrained
by the available power supply.

The service uptime of battery-powered devices is a sensitive issue for nearly any end-
user or operator. Battery life became an important user experience factor, as has been
shown by academic studies [37] as well as by surveys conducted by retail information
channels1 since the dawn of portable devices. Even though battery capacity and per-
formance are hoped to increase steadily over time, improving the energy efficiency of
current battery-powered systems is essential because power demands are outpacing the
developments in battery capacities [94, 117]. Supercomputers, on the other hand, are
limited by the available power supplied from the grid feeding the data center. Hence their
computers must operate within an available power and financial budget. Moreover, user
experience, product and circuit design are constrained by the peak-power heat dissipation
of electrical components. Understanding the energy consumption of the different aspects
of (battery-powered) computer systems is thus a key issue. The processor’s frequency, ex-
ecution time and temperature are, amongst others, important factors influencing energy
and power consumption of microprocessors while executing programs. Providing models
for energy consumption can pave the way for energy optimization at the hardware and
software layer.

Historically, performance in terms of execution time has been the main performance
metric at the software and hardware layers. Nowadays, energy efficiency and power dis-
sipation become important performance metrics as well, especially for battery-powered
devices. Execution time remains a performance metric for systems that require sustained
performance, such as super computers. But for systems that are build for human-computer
interaction (HCI), sustained power is not necessarily an objective; instead, responsive-
ness is of key importance. Such different approaches to computing may require different
methodologies in energy optimization. For example, sporadic bursts of power dissipation

1Battery life concerns mobile users: http://www.cnn.com/2005/TECH/ptech/09/22/phone

http://www.cnn.com/ 2005/TECH/ptech/09/22/phone
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exceeding the thermal design power (TDP) can be harmless for hardware and furnish
support for a responsive system [90].

Improved Integrated Circuit (IC) technologies have been expected to provide a dou-
bling of the number of transistors on chip about every 18 months, presumably following
Moore’s Law. Dennard’s law, stating that the power density of scaled technology roughly
stays the same, however, stalled a decade ago. The confluence of Moore’s law and the
stall of Dennard scaling implies that improved technology comes along with increased
power densities. Hence, bounding the microprocessor’s power dissipation and draining its
heat flow efficiently are critical issues for future technologies. Contemporary and future
technologies, in extreme cases, can only enable a subset of the microprocessor’s logic at a
given moment to meet the maximum power dissipation levels and the power budget of the
microprocessor. This fraction of disabled logic is referred to as dark silicon. Moreover,
physical power and wire-delays limits have let to a stagnating clock frequency for current
and future technologies [33]. As a result, to boost performance, parallelism is nowadays
encouraged in microprocessors. Simultaneous multithreading (SMT) on multicores has
delivered substantial energy savings for recent hardware and for in-order processors [34].

Besides optimizing hardware for energy efficiency, the software layer can also be en-
hanced to minimize the energy consumption and power requirements of the hardware.
For embedded systems six different facets of energy optimization can be identified at the
software layer: energy-aware operating systems, efficient resource management, impact
of the users’ interaction pattern with mobile devices and applications, wireless interfaces
and sensor management, and benefiting from cloud computing services [117]. All facets
could be optimized individually, but rather should be optimized cooperatively to attain
the largest energy gain system-wide. This is a grand and not straightforward task. At
the software level, energy and power optimization techniques can grossly be divided in
off-line and on-line methods. Off-line methods include, amongst others, efficient software
design and coding, and compiler optimization. For these practices to optimize for energy
and power, an energy profile of the hardware, on which the software is expected to run, is
needed. This comes with the drawback that the software will be energy or power optimal
for a specific hardware configuration. Off-line, however, the hardware specification may
not be known completely and context information may not always be available, e.g., at
the development stage. Moreover, energy-efficient architecture design is very sensitive to
the workload [34]. This imposes some uncertainty on the final effectiveness of off-line
optimization techniques.

On-line methods, on the other hand, have the advantage that context information is
available and hardware specifications are well defined. With this additional information,
if accessible, the system and software can dynamically adapt to its context to improve its
energy and power efficiency dynamically. On-line methods include, but are not limited to:
dynamic compiler optimization, byte-code optimization, and system-level optimization
techniques. As for off-line optimization, knowledge of energy profiles of hardware and
software helps to improve the decision making of dynamic energy and power optimization
techniques. The focus of this thesis is on energy profiles, more specifically, on how the
microprocessor’s clock frequency and temperature affects the energy consumption and
optimal operation conditions of a computer system.
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1.1 Summary
Since the dawn of microprocessors it is known that the currents flowing through a micro-
processor, or IC, produce a heat dissipation proportional to I2R, where R is the resistance
and I the electric current. The first law of thermodynamics states that in steady opera-
tion the energy input of a system is equal to the energy output of the system. Thus in the
absence of other energy interactions, and neglecting the energy related information itself,
the only form of energy leaving a microprocessor is heat generated by currents flowing
through resistive elements [17]. Therefore the microprocessor’s heat dissipation is very
close to its power consumption. The microprocessor’s internal heat generation process is
sometimes also referred to as internal heat conversion. A microprocessor exhibits tran-
sient thermal behavior, where the time frame of cooling and heating depends on its heat
capacity. The transient thermal behavior is more elongated for systems with larger heat
capacities than systems with smaller heat capacities. Such systems can be thought of
as RC-circuits based on the current/thermal equivalence (see Section 2.3.3), i.e., a low-
pass filter, where the temperature of the system is proportional to the voltage over the
capacitors [27].

In reality the (transient) thermal behavior is more complicated, because the resistance
R and the current I are known to depend on the microprocessor’s temperature. Gener-
ally speaking, it is shown experimentally that the power dissipation grows super-linearly
with the temperature of the system. In Chapter 3 this temperature/power relationship
is discussed in detail. In particular, the thermal behavior of three application proces-
sors for embedded systems are discussed. It will be shown that the temperature/power
relationship is well described by an exponential law. Within small temperature ranges,
as frequently occurring in embedded systems, linear and quadratic approximations are
adequate, as shown in Section 3.6. Also, power transformation models are presented that
can remove temperature biases from measurement traces, and reduce the effects of time-
lag and magnification of a distant temperature sensor. Such power and transformation
models are interesting for the following reasons:

• Measurements are essential for the understanding and optimization of energy-aware
systems [34, 117]. A lack of detailed power measurements is impairing efforts to
reduce energy consumption on modern software [34].

• Previous research tried to describe the temperature/power relationship by focusing
on a subset of leakage currents described by BSIM2 [36, 68, 69, 108, 114]. Such
models assumed the leakage current models to be only temperature-dependent.
The currents, however, are also time-dependent as the terminal voltages applied
to the transistors change over time, which introduces another complexity to the
calculations. The leakage currents depend on a plethora of factors specific to every
microprocessor, which may not be known exactly. Therefore it may be interesting
to understand the aggregated behavior of the temperature/power relationship as an
alternative approach to the BSIM derived models.

• Moreover, it is vital to understand the impact of the error in power measurements
due to different temperature regimes of the system under study. For instance, ex-
emplary power traces show up to 10% deviation because of transient temperature

2BSIM contains MOSFET transistor models for integrated circuit design [70].
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effects [28]. Thus, if power measurements are to be compared, temperature effects
need to be canceled out to obtain a fair basis for analysis.

• From a measurement perspective it is also important to understand the implications
of the internal heat generation’s temperature dependency, and the effect of remote
sensors. The reproducibility of accurate power measurements are challenging by
virtue of the electrical components’ transient thermal behavior. More specifically,
for a fixed benchmark a microprocessor power measurement yields different values at
various microprocessor temperatures. For the sake of accuracy and fair comparison
between different power measurements it is thus of vital importance to control or
cancel the effects of transient thermal behavior.

The temperature dependency of the microprocessor’s power requirements inducing ele-
vated temperatures has an adverse affect on its lifespan. The reliability of electronic
products is influenced in terms of spatial or temporal gradients, and absolute tempera-
tures [63]. Thermal gradients that occur both in space and time, induced by the variability
in microprocessor load and operations, generate thermal cycles that have a negative affect
on the failure rate of systems [60]. The International Technology Roadmap for Semicon-
ductors (ITRS) even states that processor costs and performance specifications may be
limited by lifetime reliability and is of primary concern in the microprocessor’s design
phase [51]. The failure rate increases exponentially for electronic equipment with in-
creasing temperatures: possible causes of failure are electromigration, chemical reactions,
dielectric breakdown, or creep in the bonding materials [17]. A 10◦C to 15◦C temperature
increase may halve a microprocessor’s lifetime [125]. Therefore the system’s temperature
is often limited to control the peak-power heat dissipation, increase the Mean Time To
Failure (MTTF), minimize power consumption, avoid self-destruction, as well as for safety
reasons. Smartphones are often thermally capped around 50◦C such that its users don’t
burn any body parts, but also to efficiently use the battery’s electrical capacity. More-
over, the maximum skin temperature of electronic systems should be limited to 41◦C
to 45◦C, depending on the material, to assure the user’s touch comfort [9]. Advanced
electronic equipments employ Thermal Management Units (TMUs) or Dynamic Thermal
Managements (DTMs) techniques, which are able to throttle or scale the system such that
stringent thermal constraints are met. Such thermal management techniques may be used
at the system design phase or can be deployed dynamically at run time. A plethora of
thermal control methods for microprocessors, and Systems-on-Chips (SoCs) [8, 60], exist
that show trade-offs between temperature profile, frequency settings, power consumption
and implementation complexity [138]. Complex microprocessors may employ hard-wired
TMUs, e.g, some Intel chip sets [31, 77], whereas software implementations of TMUs are
frequently seen in embedded devices. For TMUs it is important to understand the tran-
sient thermal behavior of the system. The transient thermal behavior of actively cooled
system can be well described via an exponential relationship. But for passively cooled
systems, such as smartphones, wireless sensors or possibly many objects participating in
the Internet of Things (IoT), the exponential assumption does not hold. Passively-cooled
systems rely on cooling via conduction, natural convection, radiation and on the thermal
management of the TMU or DTM, which exhibit non-linear properties. In Chapter 5 the
thermal behavior of a passively cooled microprocessor is studied by the development of a
passive cooling law incorporating internal heat conversion, and convective and radiative
coolings. Approximate solutions are also presented, as the exact solution is fairly complex
and of the form f(T ) = t, whereas for convenience a f(t) = T expression is desired. The
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performance of the approximate solutions are assessed. The coefficient approximation is
put forward as a good all-round approximation with minimal error within the tempera-
ture range of typical embedded applications. For a microprocessor-like object it is shown
that for large cooling surface areas the passive cooling law differs substantially from an
exponential cooling law. For cooling surface areas smaller than about 1 dm2, the passive
cooling law approximates an exponential law. For such system’s the trade-off between
a less accurate exponential cooling law is advantageous in terms of implementation and
computational complexity.

Besides the temperature, other parameters affect the energy consumption profile of a
microprocessor. The execution time characteristics and power requirements of the soft-
ware and the system are the main drivers that define the final energy consumption. This is
a direct result of the definition of electrical energy consumption: the integral of electrical
power over time. The execution time is influenced by the type and the amount of opera-
tions contained by the software of concern, including register-based and external memory-
based instructions. Each functional unit within a microprocessor and each component of
the computer system have their own respective power and execution time profiles. As
a result, every software has different power and execution time demands. For example,
Carroll and Heiser [16] showed that, for an embedded system running equake, vpr, and
gzip from the SPEC CPU2000 benchmark suite, the microprocessor energy consumption
exceeds the RAM memory consumption, whereas crafty and mcf from the same suite
showed to be straining more energy from the device RAM memory. Minimizing memory
operations is a common energy optimization technique. For example, Intel’s Data Di-
rect I/O (DDIO) feature, introduced with the E5 Xeon chip, allows the Ethernet Network
Interface Cards (NICs) to load data directly into the microprocessor’s cache [57], minimiz-
ing Random Access Memory (RAM) memory accesses. By avoiding input/output (I/O)
operations, the performance is improved but also the energy consumption of the system.
An interesting feature of a code sequence’s energy consumption, i.e., the product of its
execution time and the microprocessor’s power consumption, under certain assumptions,
is that it has convex properties, which is elaborated in Chapter 4 and referred to as the
Energy/Frequency Convexity Rule. The rule states that there exists a clock frequency
for the execution of each sequence of code that minimizes the energy consumption of
that code sequence. Under certain conditions this optimal clock frequency, minimizing
energy consumption, lies between the minimum and maximum clock frequency. As will
be shown, running at the optimal clock frequency is a trade-off between performance, in
terms of execution time, and energy savings. For applications requiring human interac-
tion, it has been shown that the clock frequency can be scaled down considerably without
affecting the user’s experience [101]. Experimental evidence for the existence of an En-
ergy/Frequency Convexity Rule that relates energy consumption and microprocessor clock
frequency on mobile devices is presented. The convexity property seems to ensure the
existence of an optimal frequency where energy consumption is minimal. This existence
claim is based on both theoretical and practical evidence. Data gathered via acquisition
campaigns on multiple platforms suggest that the energy consumed per input element
is strongly correlated with microprocessor clock frequency and, more interestingly, that
the corresponding curve exhibits a clear minimum over a frequency window specific to
the computer system. An analytical model of this behavior is also motivated, which fits
well with the presented data. A parameter sensitivity analysis is carried out to assess the
influence of the parameters on the optimal frequency. The optimal frequency is shown to
increase when the power requirements of the computer system excluding the micropro-
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cessor increases. Clock cycles lost for routine maintenance of the system also force the
optimal frequency up. The optimal frequency as derived from the theoretical framework
is, however, independent of the number of instructions to be executed.

In the final Chapter 6 the Energy/Frequency Convexity Rule is applied to practical ap-
plications. It is shown how to compute optimal frequencies minimizing system-wise energy
consumption for systems incorporating multiple entities with independent clock frequen-
cies, which is in essence a superposition of single entity systems. The Energy/Frequency
Convexity Rule is also applied to a computer system subject to repetitive deadlines and
the frequency scaling of a multithreaded system. It is shown that energy savings up to
30 % are achievable. The performance per Joule, as an extension of Amdahl’s law, is
analyzed of a heterogeneous computer system. This performance metric highlights the
advantages of low-power and high-performance computing.

1.2 Contributions

This thesis provides a deeper theoretical and practical understanding of a microprocessor’s
energy consumption. Transient thermal behavior and energy gains via clock frequency
scaling are of particular interest. The main contributions of this thesis are:

• A theoretical framework for the Energy/Frequency Convexity Rule and supportive
experimental data: a sensitivity analysis of the Energy/Frequency Convexity Rule
is carried out to estimate the impact of the multiple input parameters;

• An exact cooling law for an isothermal body subject to radiation, convection, and
internal heat generation: the exact law is applied to a microprocessor-like object to
assess its transient and steady-state behavior;

• Temperature/power relationship models applied to the Exynos 5410; these models
are useful to cancel temperature biases in power measurement traces and to increase
the accuracy thereof;

• Explicit power models for the Exynos 5410 SoC incorporating the microprocessor’s
clock frequency, temperature, and number of active cores; these models can be
copy-pasted directly into any simulation;

• Multiple approximations to the exact cooling law are developed: these approxima-
tions are simpler and formulated more suitably for practical use;

• Methods and practical guidelines to increase the accuracy and meaningfulness of
energy and power measurements;

• Actionable rules-of-thumb to assess when passive cooling becomes non-negligible
compared to active cooling in embedded systems;

• Prototype implementations of all models; the exact and approximate cooling laws
for passively cooled objects are provided for the convenience of the reader;
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1.3 Outline
The remainder of this thesis is organized as follows. Chapter 2 introduces prerequisite
knowledge that may help to understand the content of this thesis. Fundamental con-
cepts of electrical energy consumption, execution time modeling, and heat transfer are
presented. Then, Chapter 3 develops on the notion that electrical power is temperature
dependent. Based on experimental evidence, a temperature-dependent power macro-level
model is developed and analyzed for three different processors on two testbeds. Also,
power/temperature transformation functions are presented to improve the accuracy and
meaningfulness of power/temperature measurements. In Chapter 4 the Energy/Frequency
Convexity Rule is introduced. Its theoretical foundation is laid out and experimental data
is presented to support the analytical framework. A parameter sensitivity analysis ex-
plores the behavior, including the thermosensitivity, of the Energy/Frequency Convexity
Rule. Following, the transient thermal behavior of a passively cooled microprocessor-like
object is studied in Chapter 5. An exact cooling law is derived and is compared with the
active cooling law. Approximations to the exact cooling law are also presented. Chapter 6
applies the Energy/Frequency Rule to practical applications, including deadline-based
code execution, parallelism and Amdahl’s law. The thesis is concluded in Chapter 7 with
final remarks and possible directions of future research.
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Chapter 2

Background on Electrical Energy
Consumption and Heat Transfer

Fundamental concepts on electrical energy consumption and heat transfer are
recalled in this chapter. These fundamentals are prerequisites for understanding
the sequel of this work. To understand electrical energy consumption, the
different sources of power consumption in a microprocessor are highlighted and

appropriate models are developed. Execution time models are also necessary to model the
energy consumption of computer systems. Altogether, these models will be used to study
the energy consumption of different kinds of applications in the next chapters. It will also
be shown that temperature plays a major role in the magnitude of energy consumption
during the execution of a program. Additionally, heat transfer models are presented,
which will be used to understand the transient thermal behavior of a microprocessor.

Section 2.1 presents the notion of electrical energy consumption and power profiles
in the context of computer systems. The different sources of energy consumption in a
microprocessor are highlighted. In Section 2.2 models for the execution time of a pro-
gram are presented. Thermal models will be used to understand the interaction between
energy and temperature; therefore Section 2.3 presents a summary of thermal principles,
including heat transfer modes and thermal properties of materials.

2.1 Power Consumption of Computer Systems
Computer systems, including a microprocessor, consume a specific amount of energy E, in
Joules (J), to perform a given task. During this task the system uses power P (W=J/s)
at a specific rate. The relationship between the power and the energy consumed by a
computer system over a time period ∆t follows the classic formula

E =
∫ ∆t

0
P (t) dt =

∫ ∆t

0
I(t) · V (t) dt, (2.1)

where I(t) is the current supplied to the system, and V (t) the voltage drop over the system.
In a microprocessor V (t) is quasi constant over time; hence

∫
P (t) dt only depends on

I(t). If both current and voltage are constant over time, the energy integral becomes the
product of voltage, current and time, or alternatively power and time:

E = P ·∆t. (2.2)
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In practical applications the power consumption P (t) of a microprocessor is anything
but constant. Even more, the power fluctuations, while executing a piece of software, can
be significant. Variations of 25 % are not uncommon in experimental traces [41]. This
highly depends, however, on the type of hardware and the software being executed. The
software dictates the microprocessor what parts of the microprocessor itself and what
other hardware components should be enabled. All the sources of power demands in the
computer system, besides the microprocessor, are referred to as the background power . For
example, system power may include a Global Positioning System (GPS) sensor, needing
power when it is sensing for signals, or an AMOLED LCD display requiring power not
only proportional to the brightness level but also relative to the kind of color that is
displayed [23], and other sources of power usages, e.g., memory sub-system maintenance of
I/O devices (including memory), power supplies etc. Further on, however, the background
power usage is deemed constant over time.

Now, the total power Psys used by a computer system, including a microprocessor and
background power, is then the sum of the said aspects:

Psys = Pcpu + Pback, (2.3)

where Pcpu is the power for the microprocessor and Pback is the power of the rest of
the system. Pback can further be divided in components whose energy expenditure can
be controlled by the microprocessor (Pctrl), and the components that consume energy
completely independent of the microprocessors (Pfix). For example, a hard disk goes into
a low power mode when there haven’t been data request from the microprocessor for
a certain amount of time. In some sense the microprocessor thus controls the energy
consumption of the hard disk. On the other hand, the inefficiencies of the power supply
can drain some energy. This is an example of a fixed background power.

2.1.1 Microprocessors
A microprocessor is build up from logic gates, which are constructed from a network of
transistors and capacitors. As the microprocessor is toggling gates at each clock cycle,
a certain amount of energy is needed to drive the logic gates state changes, and some
energy is leaking through the microprocessor by default. The energy required to drive a
microprocessor’s clock cycle can thus be attributed to three different physical processes,
i.e., the electrical charge required to maintain the new logic gate state, the energy flushed
during the logic gate state change, and the energy leaking through the microprocessor.
A specific nomenclature is associated with these physical process: the switching power
Pswitch, the short-circuit power Pshort, and the leakage power Pleak, respectively. The sum
of the charge and short-circuit power is also referred to as the dynamic power Pdynamic,
whereas the leakage power is sometimes also referred to as a static power component
Pstatic. The switching power is the power usefully spend to drive the microprocessor’s
logic whereas the short-circuit and leakage powers can be considered as parasitic effects
which are in some sense a waste of power. The microprocessor’s power consumption may
thus be represented as the sum of the referenced sources of power:

Pcpu = Pdynamic + Pstatic

= (Pswitch + Pshort) + Pleak (2.4)
= (Iswitch + Ishort + Ileak) · V.
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Figure 2.1: Power breakdown of a computer system as per Equation 2.4. In the literature
Pleak is sometimes referred to as Pstatic, and Pback is sometimes used to reference Psys.
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Figure 2.2: Inverter exemplifying the switching power. Electrical charge is stored in the
capacitor C by the current i′ via Vcc, or discharged into the ground via the current i, to represent
the logical state of the inverter. Figure source: Bonamy [12].

Figure 2.1 provides a graphical representation of the power breakdown considered in the
this work. The following sections go deeper into each of the microprocessor’s power
components.

2.1.2 Switching Power
Logic gates, which constitute the microprocessor, are built up from transistors that are
configured such as to form logic gates, e.g., XOR, AND, flip-flops etc. Contemporary
transistors are based on complementary metal-oxide-semiconductor (CMOS) technology,
which have a typical temperature operation range for commercial electronics between 0◦C
and 85◦C, and for military applications between -55◦C and 125◦C. The digital states of the
logic gates, being 1 or 0, are physically represented as a charge in a capacitor. When gates
are toggled, these capacitors are charged or discharged. The energy required to toggle all
the logic gates in the microprocessor contributes to the switching power Pswitch. Figure 2.2
shows the internals of an exemplary inverter, or NOT-logic gate. For the inverter to invert
its output, an electrical charge is placed in the capacitor to represent the logical state 1
or 0. The charge is placed there by controlling the transistors that drive the logic gate.

In the literature Pswitch is usually [128] modeled as

Pswitch = αCfVccVswing ≈ αCfV 2, (2.5)

where α is the activity factor , C the capacitance of the whole clock frequency domain,
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Figure 2.3: Inverter exemplifying the short-circuit power. While the gate is transitioning
between states, the transistors in the gate are conducting simultaneously for a very brief moment
and a short-circuit current (icc) is able to flow from the supply into the ground. Figure source:
Bonamy [12].

f the frequency at which the domain is switching, Vcc or V the microprocessor’s supply
voltage, and Vswing the voltage swing across C. Usually Vswing ≈ Vcc, and so the commonly
known quadratic dependency of the switching power on the microprocessor supply voltage
is obtained.

During each clock cycle, all the logic gates in the microprocessor are not toggling
exactly at the same time. Thus, not the whole capacitance C of the microprocessor is
charged or flushed each time. Therefore, the capacitance of the microprocessor is scaled
with the activity factor α ∈ [0, 1] to represent only that part of the microprocessors’
capacitance that is actually active. The activity factor is different for each clock cycle. But
given the large number of clock cycles per time unit, e.g., 1 GHz, the activity factor may
be approximated with an average value over time for a specific application, or a subpart
thereof. For simple logic it can be assumed that the activity factor is lower than 0.25 [128].
For more elaborate circuits of logic gates, for example a complete microprocessor, the
switching activity may even be lower, as not all the functional units are used at once. For
example, a shift operation doesn’t require the Floating Point Unit (FPU).

If the voltage is linearly dependent on the frequency, then Equation 2.5 becomes a
third-order polynomial. In the literature [112] this is also referred to as the cube root rule:
Pswitch ≈ KvV

3 ≈ Kff
3, where Kv and Kf are constants.

2.1.3 Short-circuit Power
The short-circuit power consumption Pshort originates during the transition of logic gates
between two states. During this transition, or switching, the transistors inside the logic
gate may conduct simultaneously for a very brief moment in time, creating a direct path
between Vcc and the ground. Even though this peak current happens over a very small
time interval, given the high microprocessor clock frequencies and large amount of logic
gates, the short-circuit current may be non-negligible. Figure 2.3 shows an example of the
short-circuit current flow with the help of an inverter. When the inverter is inverting, the
upper transistor will close and the bottom transistor will open, or vice versa. The time for
these transistors to open and close is, however, finite. Therefore, the two transistors will
be conducting simultaneously for a very brief moment and drawing some current directly
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from the source into the ground. This current is not contributing to the representation or
maintenance of digital data and can therefore be considered undesirable. Yet, by virtue
of the non-ideal behavior of transistors short-circuit currents are not avoidable.

The short-circuit currents are technology- and logical gate-dependent. For example,
for a CMOS inverter [119] without load Pshort is shown to adhere to the equation

Pshort = H

12(Vcc − 2Vthn)3τf, (2.6)

where H is a technology-dependent scaling factor, τ is the input signal rise time, Vcc is the
supply voltage, Vthn is the threshold voltage, and f is the switching frequency. For other
types of gates with different transistor configurations Pshort will differ. Accurate formula-
tions for Pshort for all types of gates are not always available. Moreover, a detailed value of
Pshort is tedious to compute for fast clock frequencies and complex microprocessors. This
would require the knowledge of the physical properties and dimensions of transistors, logic
gate configurations and detailed gate activity. This information is, indeed, not publicly
available for commercial microprocessors. Efforts have been devoted to establish a Pshort
model applicable to arbitrary logic gates. For example Vemuru and Scheinberg [120] es-
timated the average short-circuit power dissipation in arbitrary CMOS logic gates based
on an α-power law model that includes the velocity saturation effects of short channel
metal-oxide semiconductor field-effect transistors (MOSFETs). Though, their resulting
model is complex. Sylvester and Keutzer [115] approximated the short-circuit power with
a heuristic model based on the timespan tbase and magnitude of the short-circuit current
Ipeak:

Pshort = N
αsc

2 tbaseIpeakVccf, (2.7)

where N is the number of logic gates, and αsc is a model parameter describing the satu-
ration current of the transistors. A typical value for αsc is 1.3.

In Equations 2.6 and 2.7 it is seen that the short-circuit power is proportional to
the switching rate of the gate. Thus it can be stated that Pshort ∝ αf , where α is the
switching activity and f is the frequency in Equation 2.5. As a result, the proportionality
constant υ can be considered as the ratio of the short-circuit power Pshort over the switching
power Pswitch. Sylvester and Keutzer [115], who developed the Berkeley Advanced Chip
Performance Calculator (BACPAC) for sub-micron technology, estimated that the short-
circuit power is approximately 15 % of the dynamic power. The dynamic power of a
microprocessor, the sum of the switching and short-circuit power, can then be developed:

Pdynamic = Pswitch + Pshort

= Pswitch + υPswitch

= (1 + υ)Pswitch = ξfV 2, (2.8)

where ξ = (1 + υ)αC. Pdynamic represents the microprocessor’s average power while the
microprocessor is switching. Next, power dissipation is expounded, which is independent
of the switching activities of the microprocessor.

2.1.4 Leakage Currents
The power Pleak emanates from leakage currents which flow between the differently doped
parts of MOSFETs, the basic building block of microprocessors. The energy carried by
these currents are lost and don’t contribute to the information that is processed or held
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Figure 2.4: Temperature (a) and power (b) traces of an Exynos 4210 application microprocessor
under constant workload, run at different microprocessor clock frequencies. It is observed that
the power consumption is inflated due to the microprocessor’s increasing temperature, given
that all other parameters were kept constant [28].

by the logic gates. On a micro-level they also directly affect the transistor’s amplifica-
tion characteristics, the main task of the transistor. Six distinct sources of leakage are
identified [70]: reverse-bias pn-junction leakage, sub-threshold leakage, oxide tunneling cur-
rent, gate current due to hot-carrier injection, gate-induced drain leakage (or band-to-band
tunneling), and channel punch-through current.

Some types of leakage currents are induced during the on or off -state of the transistor,
or both. Despite the presence of multiple sources of leakage in MOSFET transistors, the
sub-threshold leakage current, gate leakage, and band-to-band tunneling (BTBT) domi-
nate the others for sub-100 nm technologies [3]. Leakage current models, e.g., as incorpo-
rated in the Berkeley Short-channel IGFET Model (BSIM) [70], are accurate, nevertheless
complex since they depend on multiple variables. The BSIM leakage currents contain
variables that, inter alia, are technology-specific, e.g., transistor dimensions, gate oxide
capacitance. Moreover, the leakage power fluctuates as it also depends on the temperature
T of the microprocessor. The temperature itself appears several times in BSIM for the
sub-threshold and BTBT leakage models; the gate leakage however is not temperature-
dependent. Mukhopadhyay et al. [80] showed via simulation that for 25 nm technology
the sub-threshold leakage current is dominant over the BTBT leakage current, but the
latter cannot be neglected. You et al. [134] shows, for a 0.1µm microprocessor, that a
temperature increase from 30◦C to 40◦C leads to a 3 % leakage power increase. Liao et
al. [69] noted that due to temperature-dependent leakage current the power increases by
38 % between 65◦C and 110◦C. Figure 2.4 shows excerpts of temperature/power traces
of a microprocessor under constant workload. It is observable that the temperature and
power profile are not constant over time. Consequently the leakage power should not be
considered a static part of the microprocessor’s power time-wise. This is the reason why
in this work the name Pleak is considered instead of Pstatic, as often used contradictorily
in other literature, as Pleak is not constant. Now, the leakage power Pleak is conveniently
represented as

Pleak(T ) = Ileak(T ) · Vcc, (2.9)
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where Ileak(T ) is the temperature-dependent leakage current flowing through the entire
microprocessor. Theoretical research based on simulation provides a plethora of models to
address the temperature dependency of a microprocessor power profile [36, 69, 108, 114].
Skadron et al. [109] in particular deducted a relationship between the leakage power Pleak
and dynamic power Pdynamic based on International Technology Roadmap for Semicon-
ductors (ITRS) measurement traces (variables indexed with 0 are reference values):

RT = Pleak

Pdynamic
= R0

V0T 2
0
e
B
T0 V T 2e

−B
T = γV. (2.10)

If the temperature T is stable across different operating voltages, then the value of RT

is a function of V multiplied by a parameter, lets say γ, that includes the temperature-
dependent variables and other constants. Using Equation 2.8, the system power Psys in
Equation 2.4 then becomes:

Pcpu = Pdynamic + Pleak

= Pdynamic + γV Pdynamic

= (1 + γV ) · ξfV 2. (2.11)

Or alternatively the leakage current can be kept separated from the dynamic power com-
ponent by maintaining a proper leakage current component Ileak:

Pcpu = Pdynamic + Pleak = ξfV 2 + IleakV. (2.12)

Equations 2.11 are 2.12 are equivalent and represent the microprocessor’s power. They
can, and will, be used interchangeably.

Hardware designers strive to minimize leakage and short-circuit power by, e.g., ad-
vanced computer-aided design (CAD) tools, by superior Very-Large-Scale Integration
(VLSI) technology, or by the voltage gating of functional units, memory, and cache [98,
112]. For example, You et al. [134] extended an Instruction Set Architecture (ISA) with in-
structions to support the control of power-gating at the component level. Via simulations
the authors claim to reduce the power consumption of their benchmarks on the average
by 23.05 %. Besides putting a system to sleep via power-gating, waking up the system
at the right moment is necessary for minimizing the possible time lost while waiting for
the system to wake up. Abramovici et al. [2] invented an autonomous power management
system that predicts the optimal sleeping and wake up time with the aim of saving energy
and reducing waiting times due to the power-gating process.

A more detailed discussion on leakage currents will be presented in Chapter 3.

2.1.5 Voltage and Frequency Scaling
The power models in the previous section depend on the clock frequency of the micro-
processor. Nowadays microprocessors are able to scale their clock frequency dynamically.
The act of dynamically scaling the clock frequency is referred to as Dynamic Frequency
Scaling (DFS), nonsupply-voltage-scaling (NSVS) or CPU throttling. When the supply
voltage of the microprocessor is scaled accordingly, one talks about Dynamic Voltage and
Frequency Scaling (DVFS). The motivation behind scaling the supply voltage along with
the clock frequency is that the electronic circuits need to react faster when the clock fre-
quency is scaled up. This is achieved by applying a higher supply voltage. Accordingly,
if the frequency is scaled down, to save energy, the supply voltage may be scaled down
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as well. There exists a minimum voltage level for each clock frequency setting for the
microprocessor to operate without errors. If logic gates state changes cannot keep up
with the pace of the clock frequency, errors will be introduced in the digital circuits. In
Dynamic Voltage Scaling (DVS) systems the voltage is controlled to scale the energy con-
sumption of the system irrespective of the clock frequency. For systems that can tolerate
computational errors [18, 61], the supply voltage may be dropped below the minimum
supply voltage level, i.e., undervolting.

Due to physical constraints of electronic regulators, the clock frequency and supply
voltage cannot be scaled continuously. The scaling of the frequency and supply voltage
happens in fixed discrete steps dictated by the analogue electronic drivers. Dedicated
power supply and clock frequency regulators exist for the modern microprocessors and
SoCs. Moreover, the voltage/frequency ratio should not be assumed constant. Minor
variations occur for all clock frequency settings. Exemplary voltage/frequency graphs are
shown in Section 4.2.

2.1.6 Power Measurement Instruments
The power of a computer system can be measured following several different protocols.
Each of them has its advantages and disadvantages. First, the current mirror-based
measurement approach is addressed and then the shunt resistors. Software measurement
approaches and multimeters are also discussed.

The more accurate power measurement devices are based on current mirrors-like fea-
tures. A current mirror duplicates an arbitrary current. This current copy can then be
stored in a capacitor and its magnitude can be read out over fixed time intervals. The
energy stored is then proportional to the power drawn by the original current. Also, such
power measurement method is able to handle all kinds of irregular wave-forms, even at
arbitrary high frequencies. However the current mirror has the disadvantage that, given
the presence of a current copy, twice the amount of energy is consumed. For battery
powered devices this is clearly not desirable. A simpler, smaller, yet less accurate method
is often used for embedded applications and microprocessors. On the power supply rail,
to the system under study, a small shunt resistor, in the order of milliohms, is installed
in series. The voltage drop over the resistor is then proportional to the power supplied to
the system. The disadvantage of such system is that a little power is lost over the resistor
and the system under study is perturbed. Moreover, the sampled voltage over the resistor
is a snapshot of reality. Events occurring in between two samples will not be seen by such
power measurements. The current mirror, on the other hand, has no problem with such
blind spots as it integrates the current in between two samples.

Shunt resistor-based systems can be implemented on-chip together with other logic,
but dedicated chips also exist. For example, the INA231 chip implements the power
measurement logic for the ODROID testbed used hereafter. An Inter-Integrated Circuit
(I2C) interface provides a standardized communication channel between the chip and any
other system for power measurement read-out retrieval. External power measurement
tools, e.g, the Monsoon Power Monitor1 can also be used. This power monitor based on
the current mirror principle is popular with large research institutions and organizations.
The Monsoon Power Monitor is a device, the size of a 500 pages book, which is intended
to be used to replace the power source, e.g., for the battery of a smartphone or wireless
sensor. This implies that the total power of the system is measured. It is thus difficult,

1Monsoon power monitor: http://www.msoon.com/LabEquipment/PowerMonitor/

http://www.msoon.com/LabEquipment/PowerMonitor/
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but not impossible, to measure selectively the power consumption of components on a
circuit-board. A shunt resistor is therefore a better solution if a more targeted power
usage is to be measured.

When the SoC’s temperature is measured alongside the power it is useful that both
aspects are recorded by the same processor. Synchronizing both traces is then more
straightforward as a common timestamp clock exists. In the case of the Monsoon power
monitor temperature and power traces are to be synchronized manually as the power
monitor’s graphical user interface (GUI) doesn’t support temperature measurements, nor
some sort of time stamp synchronization facilities. Manual synchronization may introduce
errors in the measurements and have to be minimized.

A third category of power measurement devices are based on “multimeter” measure-
ment techniques. A multimeter can be placed in series and/or in parallel with a power
supply. Often the voltage supply is assumed constant and then only the current is mea-
sured. The wattsup2 power meter is a commonly used multimeter-oriented measurement
device in the energy consumption devices research domain. The wattsup meter is placed
between an electricity socket and an electronic device. The meter is thus only usable with
the larger electronic appliances requiring electricity from the grid. The sampling rate of
cheap multimeters are often too low and automated read-outs are not always possible.
Cheap multimeter setups should be avoided by all means if one aims for accuracy in
power measurements. Professional accurate multimeter systems, on the other hand, such
as provided by LabVIEW, also exist, which provide more elaborate features and are priced
accordingly. It is noted that the alternate current (AC) mode of multimeters are designed
to measure sine-waves and report Root Mean Square (RMS) values. When talking about
power one should thus refer there to volt-ampere (VA) and not Watt.

A multitude of software applications for all kinds of platforms exist that “measure”
the power of the underlying hardware [81]. These applications can be divided in two
groups. The first group presents power estimates from hardware power sensors. Modern
microprocessors and SoC may have on-chip or off-chip power sensors, such as the Intel’s
Sandy Bridge micro-architecture [97] and the ODROID XU+E platform. These hardware-
backed applications provide a power estimate with descent accuracy. The second group
of power measurement applications consist of power models that are fed by some kind of
software and hardware statistics to produce a power estimate. These models are derived
from real power measurements and tuned for specific platforms. Linear multidimensional
regression models, or, fancy put perceptrons, are commonly used. The input of these power
models can be, e.g., historical context information or hardware performance counters
(HPCs). The accuracy of these application power models are often limited around 5 %.

2.2 Execution Time Modeling
Estimating the energy consumption of software, or a sequence of instructions, executing
on a microprocessor via Equation 2.1 requires the knowledge of the power P (t) and the
execution time ∆t. The previous section elaborated on the power. This section focuses
on modeling the execution time of an instruction sequence, sometimes also referred to as
the makespan or timespan.

A piece of binary software consists of a sequence of instructions which are executed
one-by-one by a scalar microprocessor. Each instruction requires a certain amount of

2Watts up? power meters: https://www.wattsupmeters.com

https://www.wattsupmeters.com
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clock cycles to complete. The number of clock cycles required depends on the micropro-
cessor’s architecture, the type and number of executed instructions, and the context. For
example, ARMv7, a low-power 32-bit Reduced Instruction Set Computing (RISC) micro-
processor architecture, requires one clock cycle for a data operation, three clock cycles
to load a single register, and two additional cycles if the program counter is the destina-
tion.3 Microprocessors where instructions act on a single datum at a time are called scalar
microprocessors, or also referred to as Single Instruction Single Data (SISD) microproces-
sors. Vector microprocessors, on the other hand, have instructions that can operate on a
data vector with a single instruction, which is also generally known as Single Instruction
Multiple Data (SIMD). Instructions requiring memory access need additional clock cycles
for the data to be fetched or stored. This time penalty may vary whether data is available
in a cache, or the main memory needs to be accessed. While instructions are waiting for
memory accesses to complete, out-of-order execution (OOE) microprocessors are able to
execute data-independent instructions. Processors may also employ pipelines which allow
the overlap of instruction executions. A pipelined microprocessor will have a clock-cycles
per instruction (CPI) value close to 1. Features such as advanced pipelines, SIMD, and
OOE reduce the execution time effectively, but increase the complexity of microprocessor
design and may not necessarily be in favor of energy consumption. More information
about microprocessor architecture can be found in the work of Stallings [113].

2.2.1 Sequential Execution Model
Let’s assume that a code sequence requires ccb clock cycles to complete execution on a
basic scalar microprocessor. Then the total execution time ∆t of the code sequence is
proportional to the inverse of the number of microprocessor clock cycles fcpu available to
the code sequence:

∆t = ccb

fcpu
. (2.13)

It can be observed that the execution time ∆t approaches asymptotically infinity when
the frequency fcpu approaches zero: limfcpu→0 ∆t =∞.

On advanced microprocessors, e.g., with pipelines and OOE, or in multi-task environ-
ments, such as frequently found in multi-purpose/advanced embedded systems, a code se-
quence may be stalled for the microprocessor to perform other tasks. Indeed, an Operating
System (OS) needs periodically some clock cycles to perform recurrent or occasional tasks,
e.g., interrupt handling, I/O device requests, process scheduling, system calls, or process-
ing kernel events. Also, if other programs are scheduled on the same microprocessor then
the microprocessor clock cycles are likely divided fairly among the contestants. More-
over, the hardware may halt the execution of software sometimes momentarily to handle
exceptions, e.g., during pipeline stalls due to branch miss-prediction, misaligned memory
access, page faults, operation intervention etc. From a heuristic point of view, it can be
assumed that the OS kernel and microprocessor need on the average a fixed number of
clock cycles fk per time unit to complete their tasks. Thus, the execution time of a code
sequence becomes

∆t = ccb

fcpu − fk
, where fk ≤ fcpu, (2.14)

and where fcpu is the microprocessor’s clock frequency, and fk are the number of micro-
processor clock cycles not available to the code sequence ccb. ∆t values for fcpu < fk are

3ARM Architecture Reference Manual: http://infocenter.arm.com

http://infocenter.arm.com
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not defined. Note that now ∆t tends to infinity at the vertical asymptote defined by fk.
Such a formulation for the execution time as Equation 2.14 is also found in the work

of Snowdon et al. [110] (Equation 1), though presented differently. Snowdon presents the
ratio between the lengthening of the execution time by OS interrupts:

Ttot

Twork
= 1

1− Ctickftick/fcpu
.

Equation 2.14 refers to fk and ccb
f

whereas Snowdon refers to Ctickftick and Twork, respec-
tively, which eventually leads to the same result. Snowdon indicates that for their tested
platforms, laptop computers from mid 2000, fcpu � fk. From experimental experience
with application microprocessors, it may be observed that fk can not always be neglected,
especially for the low microprocessor frequency settings. Also, fk seems to be varying for
different benchmarks and architectures.

2.2.2 Execution Model with Slack Time
The sequential execution time model of a code sequence, as given by Equation 2.14, is
based on a simple scalar microprocessor. Let’s extend the model by the stalling time
caused by I/O access, e.g., memory accesses, and add OOE support.

The execution of a code sequence can be slowed down if data needs to be fetched
outside the microprocessor registers. The required data may be present in a cache or must
be fetched in the main memory of the computer system. Either way, accessing the cache
and the main memory incurs a time penalty, compared to accessing the local registers in
the microprocessor. Access times for caches are much shorter than the main memory; yet,
caches are much smaller and monetary more expensive. The external memory may have
its own clock frequency, and can be working synchronously with the bus frequency, or
independently, i.e., asynchronously. Asynchronous memory is generally faster and more
energy-efficient than synchronous memory, but is more complex to implement [25]. Let
us focus on synchronous memories as they are more frequently found in the embedded
applications of our interest.

Basic microprocessors with synchronous memory will stall upon external memory ac-
cesses and resume the code execution when the requested data is available. Accessing the
external memory will only happen when the requested data is not available in the cache.
The number of external memory accesses Ma is proportional to the cache miss-rate ε of
the highest cache level. The number of external memory accesses is proportional to

Ma = εn$ccb, (2.15)

where n$ is the proportion of code sequence that requires cache transactions. When the
external memory is accessed, usually data is retrieved to replace a whole cache line at
once, in so-called burst-mode access. The total execution time of a code sequence then
includes the time while waiting for data being retrieved from the external memory:

∆t = ccb

fcpu − fk
+Ma

ccm

fmem
= ccb

(
1

fcpu − fk
+ β

)
, (2.16)

where ccm is the number of memory clock cycles required for a burst-mode transaction,
fmem is the memory clock frequency, and β = Ma

ccb
ccm
fmem

. The β parameter represents the
average amount of time per clock cycle the microprocessor is waiting for the external
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memory. β is similar to Hsu and Kremer’s [54] βcpu parameter, which measures, what
they refer to as, the CPU-boundedness. More general, the β parameter may also be
representative for all events that forces the microprocessor to wait for external inputs,
e.g., sensor or radio interface data.

Assuming that the microprocessor stalls during external memory accesses is realistic
for in-order execution microprocessors. OOE-enabled microprocessors, on the other hand,
can continue to execute data-independent code during external memory accesses, while
the data-dependent code is waiting for the memory access to return. The number of
instructions being able to execute in an out-of-order fashion is code specific, i.e., data-
independent code must be available for execution. However, the average time gained
via OOE can be defined by introducing a variable σx in Equation 2.16; σx is a ratio
representing the portion of time spend on external memory accesses that is not able to
be covered by OOE. Then the OOE-enabled execution time of Equation 2.16 becomes

∆t = ccb

fcpu − fk
+ σxMa

ccm

fmem
= ccb

(
1

fcpu − fk
+ σxβ

)
. (2.17)

The presence of the external memory accesses implies that the execution time is depen-
dent on the highest cache-level miss rate. In particular the cache miss rate may be less
predictable when multiple processes are communicating with a shared cache, e.g., the
kernel, parallel threads or applications. As a result the execution time estimates of re-
peated measurements may fluctuate considerably when the microprocessor is required to
communicate frequently with the external memory in a multi-task environment.

2.2.3 Multi-Core Execution Model
The execution model with slack time of Equation 2.17, applies to the execution of a code
sequence on a single core microprocessor with separate clock frequencies for the memory
and the microprocessor. To support single-frequency domain multi-core microprocessors,
fcpu needs to be multiplied with the number of available cores c, assuming that the code
sequence is parallelizable. In this context fk will also incorporate the clock cycles not
utilized during the serial portion of parallel applications4. The execution time model for
a single-frequency domain multi-core microprocessors then becomes:

∆t = ccb

cfcpu − fk
+ σx

Maccm

fmem
. (2.18)

Specific parts of a code sequence can be executed, deterministically or non-determin-
istically, with multiple microprocessor and memory clock frequencies. In such cases the
execution time must be considered during the different clock frequency regimes separately.
As such, a generalized execution time model is obtained for a multi-frequency domain,
multi-core microprocessor:

∆t =
∑

fx∈fcpu

ccb,fx
cfx − fk,fx

+
∑

fy∈fmem

σx,fy
Ma,fyccm,fy

fy
, (2.19)

where fcpu and fmem are the set of frequencies the microprocessor cores and memory run
at, respectively. Dimensioning the values for ccb, fk and Ma, on-line or off-line, for the

4Code that is written for parallel processing often contains a portion that must be executed serially
nonetheless. This notion is captured by Amdahl’s law, which Section 6.4 dwells upon.
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multiple frequencies may pose great challenges. Detailed knowledge is required of the
microprocessor operations, memory accesses and context to know the exact execution of
a code sequence.

2.3 Principles of Heat Transfer
Before, it was indicated that the electrical energy consumption of a microprocessor is
a contribution of multiple physical processes, amongst others, the leakage currents. In
Section 2.1.4 it was mentioned that these currents are temperature-dependent. Chapters 3
and 5 talk in detail about leakage currents in microprocessors and the thermal behavior
of embedded systems. To comprehend this discussion, fundamentals of heat transfer and
thermal behavior are presented here. To know more about the subject, the reader is
referred to the work of Cengel and Ghajar [17].

In the following analyses the microprocessor is assumed to be a lumped system. A
lumped system is a system in which the temperature can be described as a function of
time only: T (t), i.e., whose interior temperature is assumed to be quasi uniform [17].
The heat transfer rate Q [J/s], or heat flux , is the amount of heat transferred per unit of
time. The heat flux of the system Qsys is defined as the sum of the heat flux Qout released
to the environment, the heat absorbed from the environment Qin, and the internal heat
generation of the system Qihg:

Qsys = Qin +Qihg −Qout. (2.20)

Here Qout is a negative flux as heat is moving from the system to the environment. For
a system in equilibrium, or steady state, i.e., at a constant system temperature Te, the
outgoing heat flux Qout is equal to the sum of the heat flux into the system Qin and the
internal heat generation Qihg; hence Qsys = 0. If the temperature of the system is in a
transient state the sum of Qin, Qout and Qihg will differ from zero: Qsys 6= 0; if Qsys > 0
the system is heating up; for Qsys < 0 the system is cooling down.

Steady state is attained when the temperature within the body and its surfaces is
independent of time. When the temperature is in a transient state, either energy is being
stored or removed from the body. The rate at which energy is stored is denoted by:

Qsys = mcp
∂T

∂t
, (2.21)

where m [kg] is the body’s mass, and cp is the body’s specific heat capacity [J/(kg·K)]
at constant pressure. Heat can be added to, or extracted from, the system via the three
fundamental modes of heat transfer, which are conduction, convection and radiation,
which will be introduced in Section 2.3.2. But first, let us recall some thermal properties
of materials that are required to develop the modes of heat transfer.

2.3.1 Thermal Properties of Materials
Thermal properties of materials are quantified by several parameters addressing different
physical aspects. The thermal conductivity k [W/(m·K)] quantifies the ability of a material
to conduct heat. The larger k, the better the material is conducting heat. The thermal
conductivity varies for each material and phase. For solids the thermal conductivity
is primarily only temperature-dependent. For gases, k is also temperature-dependent
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Table 2.1: Typical values for the thermal conductivity (k) of applicable materials for computer
systems at room temperature. Data compiled from multiple sources [1, 66, 79, 87, 124].

Material k Additional Information
air 0.025 at atmospheric pressure
Al 200 for heat sink purposes
Au 318 electronic interconnects
Cu 386 for heat spreader purposes
Ge 0.6 pure crystal structure
IC package 0.40 HL832 integrated-circuit plastic package
PCB 0.35 FR4 printed circuits
Si 1.5 pure crystal structure
SiO2 1.4 pure crystal structure
thermal grease 0.79 Si-Free 1020 metal-oxide synthetic grease

Table 2.2: Typical values for the thermal diffusivity (α) of applicable materials for computer
systems at room temperature. Data compiled from multiple sources [66, 79, 86, 87, 124].

Material α (10−6) Additional Information
air 25 at atmospheric pressure
Al 84.18 for example as heat sink
Cu 112.34 for example as heat spreader
Ge 36 pure crystal structure
IC package 0.019 HL832 integrated-circuit plastic package
PCB 0.032 FR4 printed circuits
Si 92 pure crystal structure
SiO2 0.087 pure crystal structure
thermal grease 1.3 T670 high bulk thermal conductivity

and quasi independent to pressure close to atmospheric pressure. Table 2.1 shows some
examples of k-data for applicable materials in the context of computer systems.

The thermal diffusivity α [m2/s] is the thermal conductivity divided by density and
specific heat capacity at constant pressure:

α ≡ k

ρcp
, (2.22)

where ρ is the density of the material and cp the specific heat capacity at constant pressure.
The larger the thermal diffusivity, the faster heat is diffused in a material. For gases the
thermal diffusivity is highly dependent on temperature and pressure. Typical values for
α for applicable materials in the context of computer systems are reported in Table 2.2.

2.3.2 Heat Transfer Modes
Heat transfer happens via the three fundamental modes, namely conduction, convection
and radiation. Each heat transfer mode is elaborated in this section. These modes may
be part of Qout of Equation 2.20.

All modes of heat transfer are present in thermal processes, though some are more
prominent, and others may be insignificant. For example, for actively-cooled systems
the convective component may dominate the radiation component by several orders of
magnitude. Then the radiative component may be ignored without loss of accuracy. For
passively-cooled systems on the other hand, the convective component may be comparable
in magnitude and hence should be considered.
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Conduction

A temperature gradient in a homogeneous body induces a heat flux Qd through a surface
A described by Fourier’s law:

Qd = −kA∂T
∂n

, (2.23)

where n is the normal in the direction of the area A, and k is the thermal conductivity as
seen in Table 2.1. When a homogeneous body is in steady state and k is fixed then the
solution to Fourier’s law reduces to a linear system.

The general conduction equation is a result of the first law of thermodynamics applied
to a three-dimensional volume:

∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 + q = 1
α

∂T

∂t
, (2.24)

where q is the rate of internal heat generation per unit volume, and x, y, z are the three
dimensions of the volume. Internal heat generation is the process that generates heats
inside the volume. Equation 2.24 is generally know, as Fourier’s law of heat conduction.

Convection

A solid body exposed to a moving fluid is subject to energy exchange if their temperatures
differ. Energy is convected from the body if the moving fluid has a lower temperature
than the body. The energy transfer rate Qv between the moving fluid and the surface of
the body is also formally known as Newton’s law of cooling:

Qv = hvA(Ts − Ta), (2.25)

where Ta is the temperature of the moving fluid, Ts the temperature of the surface of the
body, and hv the convective heat transfer coefficient. It must be noted, however, that
the actual energy exchange at a solid-fluid boundary is by conduction. It is the fluid
that convects the energy away from the body. The formulation of Equation 2.25 can be
attained by applying Fourier’s law in Equation 2.23.

The well-known solution to Newton’s law of cooling is easily obtained:

T (t) = Ta + (T0 − Ta)e−dt, (2.26)

where T0 is the temperature at t = 0, and d = hvA.

Radiation

Radiative heat transfer happens trough exchange of electromagnetic wave propagation,
possibly through both vacuum or a medium. Stefan-Boltzmann’s law states that the
power radiated from a black body is proportional to its temperature. A black body is a
body that absorbs all incident radiation and, at thermal equilibrium, emits its energy over
a well defined frequency spectrum. In particular, Stefan-Boltzmann’s law states that the
radiant heat transfer Qr is proportional to the black body’s temperature to the fourth
power:

Qr = εσAT 4, (2.27)
where σ is the Boltzmann constant 5.6697·10−8 [W/(m2·K4)], A is the surface area subject
to radiation, and ε ∈ [0, 1] is the emissivity of a gray body’s surface (dimensionless). A
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Table 2.3: Analogies between heat flow and electrical current transport [6].

Parameter Electrical Current Heat
current I [A] P [W]
current density j [A/m2] q [W/m2]
potential or temperature V [V] T [K or ◦C]
conductance or conductivity σ [f] k [W/(m· K)]
resistance R [Ω] R [K/W]
capacitance C [F] C [J/K]

gray body is a body that doesn’t absorbs all incident radiation; it partly reflects incident
radiation.

The total heat flux of a body via radiation is equal to the incident energy minus the
radiated energy:

Qr = ε1σAT
4
a − ε2σAT 4 = εσA(T 4

a − T 4), (2.28)
when assuming that ε = ε1 = ε2; ε1 is the emissivity of the background deemed a black
body at temperature Ta, also referred to as the ambient radiation, and ε2 is the emissivity
of the body itself. Equation 2.28 can be rewritten as:

Qr = hrA(Ta − T ), where hr = εσ
T 4
a − T 4

Ta − T
. (2.29)

The radiative heat transfer coefficient hr is clearly a non-linear function of T , which will
be challenging to deal with in Chapter 5.

2.3.3 Current-Thermal Equivalence
The thermal analysis of complex systems is frequently modeled via equivalent electrical
circuits laws [6, 55, 131]. Well-established tools are available to solve electrical circuits,
e.g, Kirchhoff’s current and voltage laws, which can then be applied to transient and
steady-state heat transfer problems. For example Equation 2.25 can be thought of as the
current flowing through a resistor, where Ts − Ta is equivalent to the voltage drop over a
resistor and 1

hvA
is equivalent to the electrical resistance. Then the heat transfer rate Q

follows the same law as a current flowing through a resistor. Indeed, the definition of the
heat transfer rate, Fourier’s law (Equation 2.23), is equivalent to the electrical current I,
Ohm’s Law:

I = Aσ
∂V

∂n
,

where σ [Ω/m] is the electrical conductivity. Table 2.3 shows the complete list of analogies
between heat flow and electrical current transport.



Chapter 3

Temperature/Power Relationship
in Microprocessors

When studying the energy consumption based on power measurements it is
necessary to obtain accurate power samples and reproducible traces. In-

deed, the temperature has a measurable impact on power measurements of
microprocessors. In the example of Figure 2.4 a 5% power consumption in-

crease was demonstrated for a 10◦C temperature increase. Previously, it was also pointed
out that the leakage currents are temperature-dependent, Equation 2.10 was put forward
as an adequate approximation. Consequently, the power consumption of a microprocessor
is also temperature-dependent and hence, the energy consumption of the microprocessor
is affected accordingly.

The relationship between the temperature and power consumption is demystified here.
Literature models are surveyed and experimental measurement traces are used to validate
some of the models. Practical usage of the temperature/power models are demonstrated
with the aim of improving accuracy. Also, the importance of the temperature sensor’s
location relative to heat sources is highlighted. Another transformation model is advanced
that captures, and cancels, the behavior of remote temperature sensors. When a tem-
perature sensor is placed at a distance from a heat source, the sensor will measure the
temperature with a time delay and diminished magnitude. The presented temperature
transformation model attempts at canceling such effects. This chapter deals with trans-
forming power traces, with a focus on the system’s temperature, to arrive at meaningful
and reproducible power samples.

3.1 Introduction

Under normal operation conditions, the temperature of the microprocessor’s internals
varies continuously depending on the present and past load of the microprocessor, and
the ambient temperature. When the temperature increases, the failure rate of the sys-
tem increases accordingly due to several side-effects [60], e.g., electromigration, chemi-
cal reactions, dielectric breakdown, and creep in the bonding materials. The transient
temperature will also induce variable power characteristics, and hence also affect the
energy consumption. As a consequence, because of the temperature-dependent energy
consumption, to have a fair comparison of energy consumption between the execution
of different code pieces, one should compare the measurements at a reference tempera-
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ture. For example, basic experimental smartphone power measurement traces may show
that a temperature difference of only 10◦C can increase the power consumption by about
7% in the worst-case scenario [30]. Also, TMUs and DTMs may benefit from accurate
temperature/power models.

Ideally, to model the temperature dependency of the power, a formulation for the cur-
rent Icpu is needed where the temperature T can be isolated from possible other parameters
g(·): Icpu(T, ·) = f(T )g(·). In such a formulation f(T ) is a scaling factor of g(·), and hence
of Icpu, that is independent of the system’s technicalities, e.g., logic gate states or physical
dimensions. Finding a temperature scaling factor for the power and energy consumptions
is however not a straightforward task. Nevertheless, approximative scaling factors for
the leakage currents, which contribute to the power consumption, have been analytically
obtained or experimentally defined via simulations (mainly SPICE1) [36, 68, 69, 108, 114].
Most of the theoretical approximations are derived from the leakage current definitions
defined by the BSIM [70]. From our practical experience with experimental temperature
and power measurement traces, none of the models cited above were able to satisfacto-
rily describe collected power data from our testbeds. This is because the rationale on
which these approximations are based, assume conditions that are not entirely realistic,
to simplify the leakage current micro models. Most previous research works focus solely
on the sub-threshold leakage effect, neglecting other leakage effects. This may not be
appropriate for deep sub-micron technologies [3, 132]. Moreover, existing models require
the knowledge of multiple (transistor) parameters and the leakage current at a reference
temperature, which is not always available at hand or at run time.

3.2 Contributors to Temperature Fluctuations

Let us recall that the microprocessor’s power consumption Pcpu is the result of all currents
that flow within the microprocessor accounted for by different physical processes [29].
Firstly, the dynamic power Pdynamic is the power used to charge and discharge the ca-
pacities that drive the logic gates within the microprocessor. Also, leakage currents flow
through the transistors as a result of their non-ideal behavior, resulting in a leakage power
Pleak. The total microprocessor power consumption can then be thought of as the sum of
the mentioned processes, whence

Pcpu = Pdynamic + Pleak. (2.11)

Pleak is known to be temperature-dependent and well defined for an isolated transistor.
Pdynamic is prone to temperature fluctuations resulting from changing physical properties.
The voltage supply level may be temperature-dependent as well. Pcpu is dissipated as
heat and contributes to the internal heat generation. The total internal heat generation
is a result of the combined effect of the mentioned processes whose relations are not
totally clear, and moreover could lag in time. Therefore, further on, the modeling of
the temperature/power relationship is approached from a macro-level perspective such
that the aggregated behavior of the mentioned, and possibly other, physical processes
are captured. Some sources of temperature dependency are highlighted in the following
sections.

1SPICE (Simulation Program with Integrated Circuit Emphasis) is an open-source widely used analog
electronic circuit simulator for general purposes.
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Figure 3.1: Schematic overview of the NMOS, or N-channel, transistor’s internals and the
different sources of leakage current are shown: (1) reverse-bias pn-junction, (2) sub-threshold,
(3) gate-oxide tunneling, (4) hot-carrier injection, (5) GIDL, (6) DIBL, and (7) channel punch-
through. Gate-oxide tunneling occurs during the on-state of the transistor; the other currents
manifest during the off -state; hot-carrier injection may also occur during transistor bias state
in transition.

3.2.1 Leakage Currents

Leakage current effects are inherent to the silicon-based metal-oxide semiconductor field-
effect transistors (MOSFETs) that build up the microprocessor nowadays. These leakage
effects originate from currents that flow between the differently doped areas, terminals
and insulators, or through its junctions. The leakage currents are dependent on the state
of the transistor, i.e., the terminal voltage levels. Figure 3.1 shows a schematic overview
of a NMOS, or N-channel, transistor’s internals and seven distinct sources of leakage are
identified [22, 59, 70, 102, 129]:2

1. reverse-bias pn-junction leakage: this is a small leakage current flowing in the reverse
voltage bias direction of the pn-junction, due to electron-hole pair generation in the
depletion layer and minority carriers, which diffuse to the junction. The reverse-bias
pn-junction leakage is a function of doping concentration and junction area;

2. sub-threshold leakage or weak inversion leakage: it occurs when an N-channel tran-
sistor is in off -mode, i.e., the voltage bias between the ground and the source is
smaller than the threshold level. Then a leakage current flows between the drain
and the source due to a minimal electrical field in the channel, which allows for
carriers to diffuse across. The sub-threshold leakage current is claimed to be the
largest leakage component and increases considerably when the technology is scaled
down;

3. gate-oxide tunneling current: nano-scale oxide layers, or insulating layers, reduce the
width of the energy barrier that separates the transistor’s gate from the channel. Via
quantum mechanical effects (QME) electron-hole pairs are therefore able to tunnel
easier through the insulator layer, e.g., via Fowler-Nordheim tunneling. Gate oxide
tunneling leakage current becomes important if the gate-oxide thickness is scaled
down below 3 nm. High-k dielectrics are developed to replace gate-oxide in order to
reduce the tunnel current;

2Analytical formulations for the leakage currents can be found in the BSIM manual [70].
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4. hot-carrier injection: electrons-hole pairs, with larger than average energies, are
attracted to the gate node due to very high electric fields in the drain region. The
hot-carriers may be injected into the gate-oxide, degrading the oxide layer and the
Si-SiO2 interface, while producing gate and substrate leakage currents and compro-
mising operation. Hot-carrier injection can be managed by larger channel lengths,
which is contradictory to technology scaling;

5. gate-induced drain leakage (GIDL): due to thin oxides, band-to-band tunneling
(BTBT) currents arise between the drain and the substrate in the high electric-field
deep-depleted drain region of the gate-drain overlap. GIDL is a complex mechanism
that may cause other defects such as Fowler-Nordheim tunneling of electrons from
the drain to gate;

6. drain-induced barrier lowering (DIBL): when the drain voltage is enhanced, e.g., for
faster inversion, the potential barrier near the channel surface decreases when the
depletion region of the drain interacts with the source. Electrons are able to flow
between source and drain because of the reduced potential barrier, even when the
the gate-to-source voltage is lower than the threshold voltage. DIBL leakage can be
reduced by shallower source/drain junction depths and higher surface and channel
doping;

7. channel punch-through current: if the depletion regions surrounding the source and
drain merge in the channel, punch-through occurs and a current is able to flow
between the source and drain. At this point the gate loses control of the sub-gate
channel region. Punch-through can be minimized with larger substrate doping,
thinner oxides, shallower junctions, and longer channels. Channel punch-through is
also regarded as a subsurface version of DIBL.

Gate-oxide tunneling occurs during the on-state of the transistor; the other currents
manifest during the off -state; hot-carrier injection may also occur during transistor bias
state in transition. Although there are multiple sources of leakage in MOSFET transis-
tors, the sub-threshold leakage current, gate leakage, and GIDL dominate the others for
sub-100 nm technologies [3, 132]. Leakage current models, e.g., as incorporated in the
BSIM [70], are accurate, nevertheless complex since they depend on multiple parameters.
Detailed knowledge of the transistors and states are necessary to assess the precise mag-
nitude of the leakage currents, e.g., dimensions, materials, and terminal voltages. Even
more, when transistors are stacked, e.g., in logic gates, leakage currents may be amplified
throughout the stack [44, 132]. Moreover, as a microprocessor changes state each clock
cycle, keeping track of the exact leakage current may practically be a daunting task.

The physical dimensions of transistors are scaled with each new technology and fab-
rication materials are improved to enhance their performance and power efficiency. One
should therefore be careful to assess the magnitude of leakage currents based on the re-
search of a decade ago. It has been shown that for example gate-oxide leakage currents
become more prominent for shrinking transistor dimensions [72]. Mostly the sub-threshold
leakage currents are accounted for in previous research, which is not necessarily a wrong
assumption for the larger transistor sizes studied in the past. However, composed leakage
current effects impose us to develop a model that captures aggregated behavior over time
and temperature dependency, on a macro-level, for all transistors in the microprocessor.

Often coarse-grained models are inspired by the intrinsic behavior of a single transis-
tor’s leakage current. Table 3.1 provides an overview of models found in the literature.
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Table 3.1: Literature models capturing the coarse-grained behavior of leakage currents. a∗ are
parameters; T is the microprocessor’s temperature. The last two equations are popular choices
as they are closely related to the BSIM formulation of the sub-threshold leakage current.

Authors Model
Su et al. [114] Pleak ∝ a2T

2 + a1T + a0
Liao et al. [69] Pleak ∝ a2 + a1T

2ea0/T

Liu et al. [71] Pleak ∝ a0T + a1
Ferré and Figueras [36] Pleak ∝ a1e

a0/T

Sinha and Chandrakasan [108]
Liao et al. [68]
Skadron et al. [109] Pleak ∝ a1T

2ea0/T

Chandrakasan et al. [19] Pleak ∝ a2(1− ea1/T )ea0/T

Butts and Sohi [13]
Skadron et al. [141] Pleak ∝ a2T

2(1− ea1/T )ea0/T

Liao et al. [69] stated that for their 65 nm benchmark the sub-threshold and gate leakages
dominate the leakage process. Only the former is temperature dependent, the authors
claim. In another paper by Liao et al. [68] a power consumption model for adders was
presented. The temperature-dependent part of the power model looks slightly different
from their previous work. Skadron et al. [109] deducted a relationship between the leakage
power Pleak and dynamic power Pdynamic based on International Technology Roadmap for
Semiconductors (ITRS) power traces. It can be observed that their equation is inspired by
the sub-threshold leakage current. In another publication, Skadron et al. [141] adopted
the exact formulation of the sub-threshold leakage current for the transistor in off -state.
Liu et al. [71] put forward a linearized leakage current equation based again on the gate
and threshold leakage currents, which was studied via SPICE simulations. Yet, in their
humble attempt to model the thermal behavior of leakage current with finite elements,
they forgot to account for the inflating power consumption due to leakage currents. Su et
al. [114] modeled the leakage currents of so-called standard cells based on SPICE and
custom thermal simulations. The authors identified a satisfactory quadratic correlation
between the temperature and leakage currents. Chandrakasan et al. [19], and Butts and
Sohi [13], adopted the exact formulation of the sub-threshold leakage current from the
BSIM manual. Ferré and Figueras [36], and also Sinha and Chandrakasan [108], based
on an approximation of the sub-threshold leakage current, assumed a pure exponential
relationship between temperature and leakage. This is a justified simplification of the
sub-threshold leakage current expression as the (1−e−Vdd/VT) component, where VT is the
thermal voltage, turns out to be close to one for all Vdd.

Most authors assert that they were able to model the leakage current adequately for
their dedicated testbed. This implies that leakage currents may very well be application-
specific, i.e., for given transistor dimensions and materials etc. A simulation-based ap-
proach is not surprising as physically measuring the leakage current on a real testbed
is not a straightforward task. Though, a glimpse of its behavior can be observed by
controlling the system’s temperature levels.

3.2.2 Voltage Regulators
Each microprocessor has a voltage regulator that supplies the microprocessor with a con-
stant voltage supply. The voltage regulator of a DVFS-enabled microprocessor can alter
the magnitude of the supplied voltage and clock-frequency on demand, though with a



30 Temperature/Power Relationship in Microprocessors

microprocessor frequency

/D
WH
QF
\�
�P
LF
UR
ïV
HF
RQ
GV
�

1.6 1.7 1.8 2 2.1 2.2 2.3 2.4 2.6 2.7 2.8 2.9 3.1 3.2 3.3

20
30

40
50

60
70 1.6 GHz

1.7 GHz
1.8 GHz
2 GHz
2.1 GHz
2.2 GHz
2.3 GHz
2.4 GHz
2.6 GHz

2.7 GHz
2.8 GHz
2.9 GHz
3.1 GHz
3.2 GHz
3.3 GHz

(a) SandyBrigde

1

target frequency (GHz)
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

tr
an

sit
io

n
la

te
nc

y
(µ

s)
75

0
12

50
20

00
27

50
35

00

source frequency (GHz)
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9
1
1.1

1.2
1.3
1.4
1.5
1.6

(b) Exynos 4210

Figure 3.2: Microprocessor clock frequency transition latency. The target frequency (GHz) is
on the abscissa, the initial frequency is color coded. On the left, for the SandyBrigde (4 cores)
as published by Mazouz et al. [75]. On the right, transition latencies are measured as seen from
the application layer on the Exynos 4210 testbed. For the SandyBridge, at the instruction level,
the transition latency is below 80µs, whereas from the application layer, for the Exynos 4210,
the transition latency is below 3.5 ms.

small transition delay. This transition delay is frequency-dependent. For high-end mi-
croprocessors the transition delay remains below 100µs at the instruction-level [75], as
shown in Figure 3.2. Also, frequency transition latencies are shown as measured on the
Exynos 4210 testbed (defined in the sequel) at the application layer. Both graphs show
the transition latency’s frequency-dependency. The transition latency for the Exynos is
considerably larger, with a maximum around 3.5 ms, as the system call has to propa-
gate through the operating system to arrive at the actual instructions that trigger the
frequency transition. Moreover, such system calls may be interrupted and deferred by
other processes inside the kernel, which introduces some noise as can be observed in
Figure 3.2(b).

A voltage regulator is build up from resistors, capacitors, inductors, and transistors.
Therefore the voltage regulator, affected by temperature fluctuations, may also supply a
voltage which is temperature-dependent. The resulting macro-level effect is that, for a
fixed resistance, the current supplied to a resistor will increase and augment the internal
heat generation. For example, if a 1.5 voltage drop over a 1 kΩ resistor increases by 1%,
the resistor’s power dissipation increases approximately 2%.

The temperature sensitivity of the voltage regulator is usually listed in its datasheet
and probably minimized by design. The specifications for the S2MPS11 voltage regulator
of the ODROID testbed (defined in Section 3.5) are unfortunately not available. But its
temperature drift can be estimated via the onboard INA231 voltage sensor. In the most
extreme case3 a voltage rise from 1.25 V to 1.265 V was observed between 30◦C and 90◦C
for the A15 microprocessor, which is a 1.2% voltage increase. The maximum gain error
for the INA231 is listed to be 0.5%. This leaves us with an estimated voltage regulator
temperature drift of around 0.8%. For the more energy-efficient A7 microprocessor in idle
mode a 0.25% rise was noted in the most extreme case. The quantization noise and gain

3All microprocessor’s cores busy at the maximum frequency.
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error, however, render the latter observation unreliable.
In general, the voltage regulator may not always be exposed to the full temperature

swings stemming from switching logic inside the microprocessor. This depends on the
distance of the voltage regulator to the microprocessor. As a result, during peak mi-
croprocessor activity, escalating internal heat generation, resulting from leakage current
swells, will kick-in faster than the increased dissipation from the inflating voltage supply.
This is a result of the finite propagation time of heat between the microprocessor’s logic
and the voltage regulator. As an illustration, in both our testbeds the voltage regulator
(S2MPS11 and MAX8997) is located about 1 cm away from the actual application micropro-
cessor. Practically this implies that the transient thermal behavior of a microprocessor
will look different when the whole system is heated homogeneously, e.g., while being ex-
posed to the sun, than when a temperature rise in the microprocessor emanates from the
execution of a job.

3.2.3 Physical Properties of the Processor
Physical properties of the materials that constitute the microprocessor, and the computer
system, e.g., packaging and printed circuit board (PCB), are temperature-dependent, in-
cluding but not limited to, the electrical resistance and thermal diffusivity. For example
the resistivity of copper and aluminum increases about 12% between 0◦C and 50◦C. A
practical illustration: a thick film resistor’s, e.g., surface mount device (SMD), electrical
resistivity decreases 1% over 50◦C. The electrical resistivity of semiconductors typically
decreases with rising temperatures. Similarly, the thermal conductivities of both copper
and aluminum change about 0.9% between 0◦C and 50◦C. The thermal characteristics
of silicon depend also on the type of dopant, and most likely the concentration [76].
Ramalingam et al. [91] claims that omitting the influences of the thermal conductivity
nonlinearities of silicon could lead to a microprocessor temperature profile that is off by
10◦C,4 and could cause inaccurate results in reliability analysis. However, given the com-
plex mix of chemical elements in microprocessors and computer systems the aggregated
thermal effect of their physical properties is in practice unclear. This question is, however,
outside the scope of this work.

3.3 Temperature/Power Models in the Literature
With the objective of adequate performance within certain temperature constraints, DVFS
controllers may employ temperature/power models. Also for TMUs or DTMs it may be
useful to understand the thermal behavior of the temperature/power relationship. Com-
puter energy consumption decompositions account often for the leakage currents where
the temperature/power dependency is referenced. A summary of temperature/power data
and models found in the literature is listed below. Figure 3.3 shows excerpts of the data
portrayed in the papers.

Weissel and Bellosa [127] developed a TMU for data center computers. Based on a
handful of temperature/power measurements in a limited temperature range (35◦C to
60◦C) they assumed the temperature/power relationship to be quadratic, quasi linear.
The accuracy of the fitting is however questionable, as the linear fit doesn’t seem to
be the least square, and the quadratic fit is dominated by an outlier. Hanumaiah and

4Even though the 10% temperature bias is apparently well motivated by the authors, it appears large.



32 Temperature/Power Relationship in Microprocessors

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 20  30  40  50  60  70  80

Po
w

er
 C

on
su

m
pt

io
n 

[m
W

]

Temperature [$C]

PG
ACT

(a) Ikebuchi et al. [56] (b) Hanumaiah and Vrudhula [52]

0 20 40 60 80 100 120
0.80
0.85
0.90
0.95
1.00
1.05
1.10

N
or

m
al

iz
ed

 to
 S

te
ad

y 
St

at
e

temperature
power

(c) Singh et al. [107]

0 5 10 15 20
20

30

40

50

60

power (W)

C
PU

 te
m

p.
 (C

)

daxpy
mcopy
idle

(d) Hansom et al. [50]

10 20 30 40 50
power consumption [W]

30

35

40

45

50

55

60

st
at

ic
 te

m
pe

ra
tu

re
 [d

eg
re

es
 C

el
si

us
]

test program data
quadratic fitting function
linear fitting function

(e) Weissel and Bellosa [127]

 0
 10
 20
 30
 40
 50
 60
 70
 80

1086420

Po
w

er
 (W

), 
Te

m
pe

ra
tu

re
 (C

)

Time (s)

HT Avg Temp
HT Avg Power
LT Avg Temp

LT Avg Power

(f) Mesa-Martinez et al. [78]

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

40 45 50 55 60 65 70 75 80

P
le

ak
(T

)/
P

le
ak

(2
5

C)

Temperature ( C)

Biswas et. al ISCA, 2011

Martinez et. al ISCA, 2007

22nm, HSpice expt

(g) Sarangi et al. [100]

 27.6

 27.8

 28

 28.2

 28.4

 28.6

 50  52  54  56  58  60  62  64  66  68

In
pu

t P
ow

er
 (W

)

Temperature (degrees C)

High Fan
Medium Fan

Low Fan

(h) Snowdon [110]

ï40 ï20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

Tï298

P l
ea
k(
T)
/P
le
ak
(2
98
K
)

 
y = 0.0001871*x2 + 0.02076*x + 0.9915
y = 3.692eï07*x3 + 0.0001594*x2 + 0.02088*x + 0.9998
y = ï 4.616eï10*x4 + 4.154eï07*x3 + 0.0001586*x2 + 0.02086*x + 1

 

 

Normalized Leakage Power
   cubic
   4th degree
   quadratic

(i) Biswas et al. [11]

Figure 3.3: Excerpts of temperature/power plots as found in the literature. All figures were
originally published in the papers referenced in the respective captions.
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Vrudhula [52] developed a DVFS controller for systems with hard real-time and tempera-
ture constraints. They employ a linearized version of the exponential temperature/power
assumption, which was based on the BSIM leakage current models. The authors also
assume that the power increases linearly with the supply voltage. The temperature in
their experiments ranged between 35◦C and 110◦C. While studying the thermal response
to DVFS of an Intel Pentium M microprocessor, Hansom et al. [50] assumed a linear re-
lationship between power and temperature. The temperature ranged between 20◦C and
55◦C in their experiments. Singh et al. [107] attempted to model an AMD microproces-
sor’s power consumption based on a subset of performance counters. Temperature/power
traces are shown but only with relative figures. Their traces show that during the exe-
cution of some benchmarks the microprocessor’s temperature inflates about 10% (of ◦C),
resulting in a 20% power increase. With a bit of good will a super-linear relationship
can be identified. Ikebuchi et al. [56] shows temperature/power traces for their Geyser-1
MIPS microprocessor. The temperature/power relationship, measured between 20◦C and
80◦C, shows a clear exponential relationship. The authors also show that with the help
of power-gating the effects of leakage currents on power consumption can be diminished.
Mesa-Martinez et al. [78] shows empirical results for what they refer to as an unnamed
modern high-performance microprocessor with high-resolution infrared cameras to obtain
accurate die temperatures. Their traces show temperatures between 20◦C and 70◦C.
Snowdon [110] analyzed the power consumption and microprocessor temperature of his
laptop for the development of an energy-aware operating system. He also assessed the
impact of the fan on the temperature of the system and its power consumption.

In the context of the design of an ultra-fast temperature simulator Sarangi et al. [100]
quantified the temperature dependency of the leakage power empirically based on HSPICE
simulations between 45◦C and 70◦C. The authors deem a linear approximation appropri-
ate. Similarly, using HSPICE, Biswas et al. [11] evaluated the temperature dependency of
the leakage power between -10◦C and 100◦C, for a power management technique aiming to
avoid thermal hot-spots. The authors adopted a third-order polynomial to represent the
temperature dependency. Quang and Zhang [89] studied the feasibility of hard real-time
periodic task set scheduling under the peak temperature constraint. For this purpose the
authors approximated the temperature/power analysis linearly between 40◦C and 110◦C
based on the analytical formulations of a subset of leakage currents.

All the work listed above shows temperature/power traces for at most three bench-
marks and for specific microprocessor settings, or small dedicated circuits, often for il-
lustrative purposes. Usually high-performance MIPS microprocessors are targeted as the
objects of study, as part of large server farms. The authors claim that their data is
representative for their specific platforms.

Based on elaborate measurements further on, an experimental temperature/power
relationship is identified for different microprocessor configurations and loads for our ap-
plication microprocessors. Such application microprocessors are expected to function in
embedded systems, e.g., smartphones or appliances.

3.4 Temperature Transformation Model

To obtain a satisfactory accurate microprocessor’s temperature/power model, one must be
sure that the temperature is measured at the source of the power dissipation. If the power
dissipation is not uniform in space, i.e., thermal hot-spots or thermal gradients are present,
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(a) Mesa-Martinez et al. [78] (b) Reda et al. [93]

Figure 3.4: Examples of thermal images for two high-performance microprocessors. The
temperature varies between 87◦C to 60◦C on the left, respectively 42◦C and 34◦C on the right.
It is observed that the temperature is not uniform.

getting an accurate temperature representation becomes more challenging. Temperature
sensors don’t always yield an accurate representation of the actual temperature where
the majority of the power is dissipated. In these cases, a temperature transformation
model could be used to transform the temperature measurements as they would have
been measured at a particular location. This requires knowledge of the system’s thermal
properties and the events that take place at the source of the heat generation. Such a
transformation model is discussed in the sequel.

3.4.1 Optimal Temperature Sensor Placement
The location of on-die temperature sensors is critical to obtain a realistic thermal view of
what is happening in the microprocessor with the aim of controlling heat dissipation and
preventing thermal runaway situations. Such thermal runaway situations, and mechanical
stress due to thermal gradients, lower the MTTF and may lead to irreversible destruction
in the microprocessor, and eventually causing complete hardware failure [17]. In realistic
environments the microprocessor’s die temperature is not thermally uniform, and com-
monly referred to as non-isothermal. Thermal hot-spots exist, which are located in the
parts of the microprocessor which are most active. For example, the FPU will be a large
source of heat generation when many floating points operations are executed whereas the
address decoder is a possible source of heat when many memory operations are performed.
For a microprocessor that is cooled excessively, e.g., with forced air cooling, hot-spots will
be more prevalent than for systems where the heat has to dissipate passively. Heat prefers
the path of least resistance, which is usually through the heat spreader instead of through
the microprocessor’s silicon itself. A heat spreader usually connects the microprocessor’s
silicon with some sort of heat sink.

Figure 3.4 shows practical examples of thermal hot-spots in microprocessors. Mesa-
Martinez et al. [78] measured the temperature of an unnamed modern high-performance
microprocessor with a 10×10µm spatial resolution infrared (IR) camera running crafty
from the SpecINT2000 benchmark. The thermal hot-spot’s center is around 87◦C whereas
the borders of the chip are around 60◦C. Reda et al. [93] shows thermal images of a dual-
core AMD Athlon II 240 microprocessor while running various CPU SPEC06 workloads at
2.1 GHz. As can be observed, the hottest areas are around 42◦C and the cooler parts are
around 34◦C. The figures exemplify well how the placement of the temperature sensors
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Figure 3.5: Temperature/power hysteresis loops induced by the distant-sensor-syndrome. Heat
needs a finite time to propagate from a heat source to a temperature sensor. If this propagation
time-lag is sufficiently long, temperature/power loops may be observed as shown for the Sam-
sung Galaxy S2 testbed (a). Temperature/power hysteresis loops may also emanate from data
smoothing and large heat capacities such as visible in Skadron et al.’s measurement traces (b).

is essential to grasp a realistic view of the microprocessor’s static and transient thermal
behavior. Also the effectiveness of TMUs and DTMs will depend on the availability of
accurate and representative thermal data. Work has been devoted to optimal temper-
ature sensor placement. The aim is to minimize the number of thermal sensors, while
guaranteeing full detection of all hot-spots and worst-case temperature gradient [92]. An
overview of optimal temperature sensor placement strategies can be found in the work of
Li et al. [67] and Kong et al. [60].

What happens exactly when a sensor is placed at a finite distance from a thermal
hot-spot? Heat needs a finite time to propagate through a solid or fluid from the hot-spot
to the thermal sensor. Consequently, a time delay will occur between the actual heat
generation and the measurement at the heat sensor. Moreover, the magnitude of the
temperature at the temperature sensor will also be smaller, as the heat density decreases
when it spreads out over a space. This hysteresis effect is addressed as the distant-sensor-
syndrome. The temperature time-lag of the distant-sensor-syndrome can be observed
when loops appear in power/temperature graphs, which always rotate clock-wise when
the temperature is on the abscissa. This is because it is the temperature that lags behind
on the power dissipation. Figure 3.5 shows temperature/power loops as measured on
the Galaxy S2 platform (defined in Section 3.5), and measured by Skadron et al. [109].
Skadron et al. pointed out that said behavior emanates from thermal capacities acting
as low-pass filters. Temperature/power loops may also be observed when the data is
averaged, or smoothed, over a large time window. The exponential moving average (EMA)
is more affected by such side-effects than a symmetric simple moving average (SMA) as
EMA is in essence a low-pass filter. Temperature/power loops are more pronounced for
data recorded over a non-fixed load of the microprocessor. In Skadron et al.’s work,
a mixture of a non-fixed microprocessor load and thermal capacities is likely the cause
of their temperature/power loop. Temperature/power loops are frequently present in
measurement data, even for on-die temperature sensors, however, more subtle than shown
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in Figure 3.5.
To prevent the consequences of the distant-sensor-syndrome, a transformation model,

as a function of space and time, is necessary to translate the sensor’s temperature data as if
it were measured at the heart of the power dissipation. In the next section a heat diffusion
model is developed to arrive at a temperature transformation model. As the temperature
sensor is located in the vicinity of the hot-spot, in the order of a few centimeters, only the
conductive heat transfer mode is considered. Also, one should distinguish between off-chip
and on-chip temperature sensors. For off-chip temperature sensors the transformation
model will probably be more complex as the heat traverses a more elaborate path from
the heat source to the temperature sensor.

3.4.2 Heat Diffusion Models
The heat diffusion in solids is a well-studied subject based on Fourier’s equation of heat
diffusion (Equation 2.23). A microprocessor is mostly a slice of heterogeneous material
based on Silicon (Si) but doped or combined with other chemical elements such as oxygen,
boron, arsenic, or phosphorus. For simplicity the microprocessor is deemed henceforth an
isotropic material.

The simplest application of Fourier’s law is a semi-infinite one-dimensional slab of
homogeneous material; that is, an infinite slab of material with a heat source applied
at its origin. Heat then propagates from the origin into infinity. When a heat source
with constant temperature is applied to the origin, a time-dependent heat flux will flow
into the semi-infinite material. The solution of Fourier’s law T (x, t), with the initial and
boundary conditions: T (x, 0) = Ti and T (0, t) = Ts, is then given by

T (x, t) = (Ti − Ts) erfc
(

x√
4αt

)
+ Ti, (3.1)

where α is the heat diffusivity of the material, and erfc is the complementary error
function [17]. When a constant heat flux q is applied at the origin, x = 0, of the semi-
infinite slab of homogeneous material the solution becomes much more complex

T (x, t) = 2q
′′
0
k

√
αt

π
e

−x2
4αt − q

k
x

[
erfc

(
x

2
√
αt

)]
. (3.2)

For an annulus extruded in the third dimension, with outer radius b, inner radius a
and height z, cooled on the bottom with a convective heat transfer coefficient h, and
a constant heat flux applied to its inner surface at r = a, the steady-state solution to
Fourier’s law is given by:

T (r) = λK0

(
r

L

)
, and − kdT (r, λ)

dr

∣∣∣∣∣
r=a

= P

2πbz , (3.3)

where K0(·) is the modified Bessel function of the second kind of order zero, k is the
heat conductivity of the material, P is the dissipated power, L is the characteristic length√
kz/l, and z is the height of the cylinder [121]. The annulus model could serve as a

first approximation for an on-chip temperature sensor transfer function. However, if the
temperature sensor is mounted on a plate, e.g., PCB, next to the actual heat generator
then a more elaborated model must be deployed. Let us think about the PCB as a finite
disk, in cylindrical coordinates, with radius b, height z, and a heat source is located at
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the origin with radius a injecting a constant heat flux Q into the disk. The analytical
solution to such problems becomes increasingly difficult to derive. In the literature the
steady-state solution of said problem is given if the bottom surface of the disk is cooled
with a convective heat transfer coefficient h and the other surfaces are adiabatic [65]:

T (γ, ζ) = qa

k

[
ε
( 1

Bi + ζ
)

+ 2
∞∑
n=1

J1(λnε)J0(λnγ)
λ2
nJ

2
0 (λn)

cosh(λnζ)
cosh(λnτ)

tanh(λnζ) + λn
Bi

1 + λn
Bi tanh(λnτ)

]
, (3.4)

where the disk’s axisymmetric coordinates for height j and radius r are normalized as
ζ = j/z and γ = r/b, respectively, ε = a/b, τ = t/b, Bi = hb/k, and J0(·) and J1(·) are
Bessel functions of the first kind of the order zero and one, respectively. The eigenvalue
λn is nth root that satisfies J1(λn) = 0.

Additionally, Yovanovich [135] provides a similar solution when the sides of the cylin-
der/disk are also cooled, with a convective heat transfer coefficient hs, and the cooled
surfaces are not necessarily isothermal. Then the temperature difference θ of the cylinder
with the ambient temperature is given by

θ(r, z) =
∞∑
n=1

[En cosh(λnz) + Fn sinh(λnz)]J0(λnr), (3.5)

where Fn = −Enφn, En = Q

πbk

2J1(δnε)
φnδ2

n[J2
0 (δn) + J2

1 (δn)] , φn = Bie + δn tanh(δnτ)
δn + Bie tanh(δnτ) ,

and δn = λnb, Bi = hsb/k, Bie = hb/k. The eigenvalues λn satisfy δnJ1(δn) = BiJ0(δn).
Equivalent equations are given by Ellison [32] for Cartesian coordinates and non-unity
rectangular aspect ratios. Lee et al. [65] showed that the heat diffusion of a circular heat
source applied to the surface of a cylinder is representative for the heat diffusion process of
other geometries as well. Transformation functions are given to swap between geometries.
Equations 3.1 and 3.2 are transient solutions whereas Equations 3.3, 3.4 and 3.5 are
steady-state solutions. In fact, the last three equations were initially developed to assess
the spreading resistance of cylinders. It is clear that for the steady-state solution the
analytical definition is already rather complex. Adding transient behavior, and also non-
linear components such as a temperature-dependent heat source (and later on radiation),
will complicate the analytical modeling. Therefore numerical simulations, and a fair deal
of fitting, will be used to arrive at the envisioned temperature transformation function.

3.4.3 Temperature Transformation Function
The goal is to seek a temperature transformation H(·) function that translates a temper-
ature trace Tsensor, measured at a finite distance from a heat source, as if it were measured
at the heat source Tsource:

Tsource = H(r, t, . . .) · Tsensor. (3.6)

The transformation function H(·) may be a function of time t, distance to sensor r,
temperature, T and others. To arrive at a first approximation for an off-chip temperature
sensor let’s assume some simplifications. As the sensor is assumed to be in the proximity
of the heat source, it is presumed that heat conduction is the primary heat transfer mode.
Also, the system is assumed to be a three-dimensional axisymmetric (r,z,ϕ) disk with
radius b and height u. As such it is sufficient to model the system only in two-dimensions,
i.e., r and z. A circular heat source with radius a is centered at (r = 0, z = 0). The heat
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Figure 3.6: Axisymmetric model of a temperature sensor on a PCB at a finite distance from
a heat source, representing a microprocessor. The PCB, essentially a thin disk, has a height z
and radius b; the sensor is placed at a distance; the heat source has a radius a. The thermal
resistance θJB between the heat source and the PCB is indicated in red.
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Figure 3.7: Normalized transient thermal behavior of a heat generator (hg) injecting a
temperature-dependent heat flux into a thin disk. The normalized temperature is shown for
the heat generator and for different points on the thin disk at z = 0. A propagation delay is
visible that becomes larger the further the measurement point from the origin.

source shares the thermal properties of a heat generator injecting a constant heat flux
into the disk. The resistance θJB between the disk and the heat generator is also referred
to as junction-to-board resistance. Figure 3.6 shows the axisymmetric model as described.

A numerical simulation was set up in COMSOL to mimic the thermal behavior of a
microprocessor and a distant temperature sensor mounted on a PCB. The properties of
the materials used are estimated for an isothermal microprocessor, centered at r = 0, with
internal heat generation resembling the Exynos 4210 SoC. The microprocessor is mounted
on a glass-reinforced polymer FP4 PCB with a temperature sensor at r =16.5 mm and
z = 0.

Figure 3.7 shows the step response of a constant microprocessor load, and the gener-
ated temperature-dependent heat flux. The normalized transient temperature is shown at
specific points on the PCB for z = 0. Because of the thermal resistance θJB between the
heat source and the PCB a significant temperature drop exists between the two. Further-
more, it can be observed indeed that heat needs time to propagate a given distance from
the heat source to the temperature sensor. This propagation delay is larger the further
away from the heat source, most visible at 0 < t < 5. If a sensor is placed 1 cm away from
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the center of the heat source it takes about 9 s to reach 10% of the normalized equilibrium
temperature. The farther away from the heat source the slower the temperature rises at
that point.

The temperature transfer function H(r, t) for each measurement point from Fig-
ure 3.7(a) is shown in Figure 3.7(b). The temperature transfer function was computed as
the ratio of the temperature at the heat source over the temperature at the sensor:

H(r, t) = Tsource(t)
Tsensor(r, t)

, (3.7)

where the temperature is expressed in degrees Celsius. The transfer functions shown in
Figure 3.7(b) starting from t = 0 increase, have a maximum around 10 to 15 seconds and
slightly decreases afterwards. Given that the analytical expression for the transfer function
is complex, as shown in the previous section, the transfer function can be approximated
via polynomial fitting. To get a fitting with acceptable error, it was observed that a
polynomial approximation of an order higher than seven is required. For example, for a
sensor at r = 16.5 mm from the origin, the temperature transfer function becomes

H(0.00165, t) = 1.003 + 0.464t− 4.743× 10−2t2 + 2.827× 10−3t3

+ 1.024× 10−4t4 + 2.195× 10−6t5 − 2.553× 10−8t6 + 1.235× 10−10t7. (3.8)

The transfer function H(0.00165, t) has a maximum and average relative error of 0.362%
and 0.092%, respectively. This transformation function only makes sense if the total heat
flux generated by the internal heat source, without its temperature dependency, is indeed
a step-function, i.e., if the temperature-independent heat flux Qihg equals

Qihg =
{
Q1 if t < 0
Q2 if t ≥ 0 , where Q1 6= Q2. (3.9)

This corresponds to the power dissipation of a microprocessor whose load and type of
computations change from one fixed state to another at t = 0.

As a practical example, Figure 3.8 shows temperature traces from an off-chip sensor
at 16.5 mm from the center of a heat source. The traces were collected on a Samsung
Galaxy S2, defined in the next section. Figure 3.8(a) shows the originally recorded traces
whereas, on the right, in Figure 3.8(b), the transformed power traces are shown using
Equation 3.8. The original traces show a more or less linear relationship, even slightly
bending downwards, and reside around 35◦C to 50◦C. The transformed traces have an
upward bending shape. This is what would be expected if the temperature sensor were
close to a microprocessor’s hot-spot. The temperature is also about 25◦C larger for the
transformed temperature cases. This is evident as the temperature at the heat source is
always greater than at a finite distance of the heat source. In Section 3.6 the temperature
transformation function H(0.00165, t) of Equation 3.8 will be used to transform more
extensive measurement traces.

3.5 Testbed Description
Whereas before the subject was tackled from an experimental point of view. Now, the
temperature/power relationship is approached from a practical stand point. First, the
hardware used is described. After, after the measurements are presented and discussed.
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Figure 3.8: Original power/temperature traces (a) and their transformed counterparts (b)
using Equation 3.8, a seventh-order polynomial. The original traces, measured at a 16.5 mm
distance from the microprocessor, were transformed as they would appear at the center of the
microprocessor’s heat generation process.

3.5.1 Hardware

The following two platforms were used to collect temperature/power traces with the aim of
assessing the temperature/power relationship; they will also be used in the next chapters
to study the energy consumption of the platforms. Part of these platforms were chosen as
they provide an adequate accuracy at a descent cost. Besides, they operate on open-source
software, which is very useful for experimentation, and a descent amount of information,
e.g., data sheets and PCB designs, is also available about the hardware.

A Samsung Galaxy S2 was used, sporting a Samsung Exynos 4210 SoC 45 nm dual-
core, and a Hardkernel ODROID XU+E, featuring the Samsung Exynos 5410 SoC 28 nm
quad-core. The Galaxy implements an A9 Cortex ARM microprocessor, whereas the
ODROID has both an A7 and an A15 Cortex ARM microprocessor. The two platforms
were running a custom compiled Linux kernel, version 3.0.31 and 3.4.67, respectively.
Some kernel functions and modules were amended and added to the kernel, to enable swift
temperature and power sample recording and retrieval, and minimize testbed perturbation
during experimentation. The kernel frequency scaling governor was set to operate in
userspace mode to prevent automated frequency and voltage scaling on-the-fly.

Figure 3.9 shows the Monsoon power monitor and the ODROID INA231s. The Monsoon
power monitor replaced the battery of the smartphone which can be seen decomposed on
top of the monitor in Figure 3.9(a). Also a fan, originally from a Pentium 4 processor’s
heat sink, is shown, which was used to provide a rudimentary temperature control of the
smartphone. The temperature on both platforms were measured via on-board tempera-
ture sensors with a resolution of 1◦C. Power and temperature samples were collected at
a rate of 5 Hz. Forced cooling and forced heating were applied to the SoCs packaging
(including the microprocessor) to force its temperature up and down. The left-most black
chip on the PCB above the black and red clip probes is the Exynos 4210 SoC of the smart-
phone. The Monsoon power monitor has a Microsoft Windows-based GUI and produces
power samples at 4 kHz with 1 mW accuracy. Unfortunately, the GUI made it impossible
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(a) Monsoon Power Monitor and equipment

Exynos INA231

(b) ODROID PCB

Figure 3.9: Power measurement devices as used hereafter. The Monsoon power monitor
operates based on the current mirror principle, whereas the INA231 is a shunt resistor-based
power consumption recorder: (a) the Monsoon power monitor replaces the battery, in this case,
of a smartphone. (b) four INA231s are mounted on a PCB next to the power supply of a SoC.

to fully automatize the data acquisition. The Exynos 5410 SoC is the largest black chip
in figure 3.9(b) and on its right, surrounded by other components, is the SoC’s voltage
regulator. Four INA231s with shunt resistors are located around the voltage regulator,
measuring each a different aspect of the SoC. The INA231s are about 4 mm2 large, are
interconnected with a I2C bus and can be read out via the Linux kernel at a maximum
rate of 4 Hz and 1.25 mW accuracy. The read-out speed is limited by the I2C protocol.
Full automation with low overhead of power and temperature sampling is possible as the
read-out of the temperature and power samples happen on a low level in the Linux OS.
As the Monsoon power monitor replaces the battery in the Samsung Galaxy S2, and the
ODROID is powered by an adapter, long-term nor short-term battery aging was addressed
in this study.

3.5.2 Software
During the recording of the temperature and power traces a contentious quasi-constant
load was applied to one or more cores of the microprocessors.

The Galaxy was loaded with 4096 kB bit-reverse calculations, part of the ubiquitous
Cooley-Tukey Fast Fourier Transformation (FFT) algorithm, which rearranges determinis-
tically elements in an array. The Gold-Rader implementation of the bit-reverse algorithm
was used [42], as shown in Figure 3.10. The ODROID spun over the native square root
function from the math.h library invoked by the stress program.

The root calculations were forked up to four times to assess the temperature/power
impact of the four cores in the A7 and A15 microprocessor; inactive cores were not hot-
plugged. On the A9 platform only one core was enabled; the other core was unplugged.
It must be noted that the benchmarks ran on top of an OS, so there must be some power
accounted for the system’s overhead.
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void bitreverse_gold_rader (int N, complex *data) {
int n = N;
int nm1 = n-1;
int i = 0, j = 0;

for (; i < nm1; i++) {
int k = n >> 1;
if (i < j) {

complex temp = data[i];
data[i] = data[j];
data[j] = temp;

}
while (k <= j) {

j -= k;
k >>= 1;

}
j += k;

}
}

Figure 3.10: The bit-reverse algorithm as per the Gold-Rader implementation [42]. The
algorithm rearranges deterministically an array of elements of size N , in this case complex
numbers implemented as a pair of integers. The bit-reverse algorithm is part of the Cooley-
Tukey Fast Fourier Transformation (FFT) algorithm.

3.6 Temperature/Power Modeling

Now this chapter proceeds to model the power consumption and temperature/power rela-
tionship, using the temperature transformation models elaborated before to enhance the
accuracy of the power measurements traces.

3.6.1 Measurements & Fitting Discussion
Because of the temperature dependency of some currents flowing through the micropro-
cessor, the microprocessor’s power consumption inflates for an increasing temperature.
Figure 2.4 on page 14 showed a basic practical example of the temperature/power rela-
tionship. A measurement campaign was set up to assess the magnitude of this inflation
on the A7, A9 and A15 Cortex microprocessors. The temperature of the A7 and A15 mi-
croprocessors was swept between 25◦C and 85◦C; for the A9 the temperature was swept
between 25◦C and 55◦C. Unfortunately the A9 broke down, most likely due to excessive
thermal stress; as a result the temperature ranges and benchmarks for the different mi-
croprocessors may differ. The power consumption and temperature were measured for the
A7 between 250 MHz and 600 MHz, the A9, between 200 MHz and 1.6 GHz, and the A15,
between 0.8 GHz and 1.6 GHz. The traces for the A7 and A15 are shown in Figure 3.11
and Figure 3.12, respectively.

The temperature/power traces were fitted with four models to assess their suitability.
Preferably, the aggregated model’s complexity should remain tractable for system-level
design analysis and mathematical derivations. In such applications accuracy is often
a trade-off with complexity. The curves considered are listed in Table 3.2, which were
derived from the models of Table 3.1. The models P = a1e

a2/T +a0 and P = a1T
2ea2/T +a0

were also considered, but eventually left out, because they were unable to model the shape
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Figure 3.11: Temperature/power trace for the Cortex A7 microprocessor with #pr cores active
between 250 MHz and 600 MHz. A super-linear temperature dependency on the power is clearly
visible. The power increases when more cores are active.
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Figure 3.12: Temperature/power traces of the Cortex A15 microprocessor with #pr cores
active between 800 MHz and 1.6 GHz. A super-linear temperature dependency on the power is
clearly visible. The power increases when more cores are active.
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Table 3.2: Power models P (T ) considered as candidates for an adequate temperature/power
relationship model. a∗ are parameters to be defined via fitting. Three basic curves are consid-
ered, which frequently appear in theoretical research on leakage currents: linear, quadratic and
exponential. Figure 3.13 shows practical examples of these curves.

Model Expression Base
1 P = a1T + a0 linear
2 P = a2T

2 + a1T + a0 quadratic
3 P = a1e

T/a2 + a0 exponential
4 P = a1T

2eT/a2 + a0 quadratic-exponential
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Figure 3.13: Temperature/Power relationship as measured on the A7 and A15 microprocessors
for three and four active cores, respectively. The traces for the other microprocessors and config-
urations show similar behavior. Note the quantization noise in the case of the A7 microprocessor,
most prevalent at low temperatures. Models are listed in Tale 3.2

of the data adequately.
Figure 3.13(a) and 3.13(b) shows single temperature/power traces for the A7 and A15

microprocessors, respectively, with the models from Table 3.2 fitted on the data. All traces
look similar to these two examples; therefore not all curves are shown and only aggregated
fitting errors are presented. The aggregated fitting errors are given in Table 3.3 for fitting
over the 25◦C to 85◦C temperature range. The mean squared error (MSE)5 is aggregated
over all the traces measured with the same active core count.

The sum of squared errors for the quadratic case is observed to be 1.25 to 2.5 times
larger than the exponential fit errors, and the linear fit errors are about 3 to 6 times larger
than the quadratic. The two exponential-based models perform nearly equally good, but
model 3 seems to have the upper hand. The p-values of the sign test between the four
models on the A7 and A15 stay well below the 0.01 significance level, confirming that the
exponential-based models are a significantly better fit than the quadratic model, while
the latter is significantly better than the linear fit. The sign test also indicates that the
exponential model is better than the quadratic-exponential model 95 % of the time. It
may thus be assumed that the exponential-based models are the most representative of

5The mean squared error is defined in Appendix A.3.
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Table 3.3: Aggregated temperature/power fitting errors (MSE) for the models: (1) linear, (2)
quadratic, (3) exponential, and (4) quadratic-exponential over the temperature range 25◦C to
85◦C for the A7 and A15 microprocessors (pr) and a given active core count (#co).

Model
pr #co 1 2 3 4
A7 1 0.016175 0.004070 0.003274 0.003316
A7 2 0.019185 0.004308 0.003333 0.003364
A7 3 0.022967 0.005080 0.003313 0.003604
A7 4 0.026978 0.005851 0.003444 0.003906
A15 1 0.112919 0.020049 0.007726 0.010625
A15 2 0.146620 0.026332 0.011888 0.015327
A15 3 0.180399 0.031024 0.012865 0.016726
A15 4 0.229522 0.040283 0.016049 0.020562

Table 3.4: Aggregated temperature/power fitting errors (MSE) for the models: (1) linear, (2)
quadratic, (3) exponential, and (4) quadratic-exponential over the temperature range 25◦C to
55◦C for the A9 and A15 microprocessors (pr) and a given active core count (#co).

Model
pr #co 1 2 3 4
A9 1 0.000491 0.000277 0.001460 0.000285
A15 1 0.009520 0.004649 0.004590 0.003331
A15 2 0.008536 0.004559 0.004596 0.005003
A15 3 0.006327 0.003244 0.003207 0.003342
A15 4 0.006318 0.003000 0.002966 0.003874

the proposals in Table 3.2. Figures 3.13(a) and 3.13(b) back up this observation. Indeed,
the exponential-based models seem to follow the measurements very well. The quadratic
curve overestimates the power for the lower temperatures but performs very well for larger
ones. The linear curve does not adequately represent the temperature/power relationship
in this temperature range compared to the other proposed models.

Let’s see how the curves behave in a more pertinent temperature range; between 25◦C–
55◦C. Aggregated errors are given in Table 3.4. Due to the quantization noise within this
temperature span the fitting for the A7 traces don’t always converge properly. This ham-
pers the fitting process and renders the results unreliable; therefore the A7 analysis is
omitted here. For the A15 microprocessor, it is observed that the competitive advan-
tage of the exponential-based curves has shrunk. The sign test significantly favors the
quadratic curve over the linear curve. The quadratic curve in the 25◦C–55◦C temper-
ature range is, however, as good as the exponential curve following the same sign test.
Also, the quadratic-exponential model performs significantly less than the exponential
model. In the case of the A9 microprocessor, based merely on the aggregated errors, the
quadratic curve presents itself as the best fit, but its performance is not significantly dif-
ferent from the exponential-quadratic model according a sign test with 0.01 significance
level. Nevertheless, the linear curve is also a good match compared to the quadratic
and the exponentials. The exponential model does perform worst in this case, which is
contradictory for the observation made for the A7 and A15 microprocessors.

Based on the A7 and A15 traces, the two exponential-based model’s performance best,



Temperature/Power Modeling 47

Table 3.5: Practical guidelines for choosing a temperature/power model with the aim of mini-
mizing model complexity and fitting error. The models are chosen depending on the temperature
range ∆T of the system.

temperature range model
∆T < 20◦C linear

20◦C < ∆T < 40◦C quadratic
40◦C < ∆T exponential

where the exponential model has the upper hand. Following Ockham’s razor, model 3 is
preferred as it is less complex, which is in line with the sign tests.

Even though the curves are most likely exponential-based, in this limited temperature
range the quadratic curve performs as well as the exponential curve. The performance of
the linear curve is also acceptable nonetheless. Table 3.5 shows guidelines for choosing
a proper model depending on the temperature range as discussed. This is a positive
conclusion for TMUs and previous research that assumed a linear or quadratic relationship
between temperature and power. Analytical derivations can be notably simplified by
virtue of said assumptions. It is noted, however, that the A9 traces suffer from the so
called distant-sensor-syndrome, explained in Section 3.4.1, and were hence transformed
as per Equation 3.8 before being processed here.

3.6.2 Parametric Temperature/Power Model
For diverse applications, amongst others simulations, it is useful to construct a power
model, for arbitrary temperature, clock frequency and number of active cores. The vari-
ables a∗ in Table 3.2 need to be defined in function of the temperature, clock frequency,
and active cores, in order to arrive at a parametric power model. Two different modeling
approaches are taken; first the parameters a∗ themselves are modeled, as they are actually
functions of f , and, secondly, the power’s temperature shift is modeled.

Let us look at the modeling of the a∗ parameters first. Here, the expression of the
exponential is assumed in a slightly different form than was shown in Table 3.2:

a?1e
T/a2 + a0 = e(T−a1)/a2 + a0, where a?1 = ea1/a2 .

From analyzing the A7 and A15 traces it appears that a2 is seemingly constant for all
measurement data. Observing the fitted values for a1 reveal that these are linearly corre-
lated with frequency and active core count. For the a0 case, the values are quadratically
correlated with the frequency and linearly with the active core count. Moreover, the lines
pertaining a2 values for a fixed frequency, when extrapolated, seem to converge to a single
point on the abscissa. Following these observations the following expressions for a0 and
a1 are obtained:

gs = m1 +m2f +m3f
2

go = gs/m4

a0 = gsc+ go (3.10a)
a1 = m5f +m6 + (5− c)m7, (3.10b)

where f is the microprocessor’s clock frequency, c the active core count, and m∗ case
specific parameters, to be defined via fitting of the power traces. For both microprocessors
it is observed that m4 and m7 are almost equal. Whereas this model is based on correlation
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Table 3.6: Frequency (GHz) and voltage (mV) settings for the A7, A9, and A15 microproces-
sors. The data for the A7 and A15 is assessed via measurements. The A9 voltage levels are
retrieved from the Linux kernel.

Frequency (GHz)
0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

A7 – 950 950 987 1100 1225 – – – – – – – – – –
A9 925 – 950 950 950 975 1000 1025 1075 1125 1175 1225 1250 1275 1325 1350
A15 – – – – – – – 900 925 962 1000 1025 1062 1100 1137 1162

procedure Power-Model-1.A7(T, f, c)
gs ← 0.028− 0.093f + 0.371f2

go ← gs/2.202
a0 ← gsc+ go
a1 ← −38.242f + 187.668 + (5− c) · 8.430
a2 ← 33.105
return exp((T − a1)/a2) + a0

end procedure

Procedure 3.1: Cortex A7 power consumption model based on the modeling of the a∗ pa-
rameters of exponential model number 3 in Table 3.2, parameters: temperature T (◦C), CPU
frequency f (GHz), and active core count c [1:4].

with the microprocessor’s clock frequency, the correlation of the microprocessor’s supply
voltage and the a∗ parameters was also assessed. However, no satisfactory correlation was
identified. For the sake of completeness the frequency/voltage relationship is shown for
the A7, A9 and A15 microprocessors in Table 3.6.

A prototype implementation of the power models for the A7 and A15 is given in
Procedure 3.1 and Procedure 3.2, respectively, which can be copy-pasted directly into
any simulation or script. Based on the collected traces the A15 power model shows a
median error of 1.19% and a maximum error of 7.11%; for the A7 microprocessor the
median error is 2.89% and the maximum is 8.31%. In absolute terms both models deviate
about equally from the measurements, but as the A7 consumes less power its relative error
is larger. The error of the models is not negligible. After analyzing our data three sources
were identified that introduce errors/noise: the initial temperature conditions that vary
for each trace, temperature and power sensor noise (the former being larger than the
latter).

As an alternative to estimating the power consumption via Equations 3.10, a model

procedure Power-Model-1.A15(T, f, c)
gs ← 0.220− 0.315f + 0.467f2

go ← g.s/2.202
a0 ← gsc+ go
a1 ← −56.652f + 165.896 + (5− c) · 8.430
a2 ← 33.105
return exp((T − a1)/a2) + a0

end procedure

Procedure 3.2: Cortex A15 power consumption model based on the modeling of the a∗ pa-
rameters of exponential model number 3 in Table 3.2, parameters: temperature T (◦C), CPU
frequency f (GHz), and active core count c [1:4].
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procedure Power-Model-2.A7(T, f, c)
fV ← cbind(c(0.6,1.225),c(0.5,1.100),c(0.4,0.987),c(0.3,0.950),c(0.25,0.950))
params ← cbind(c(0.001548354,-0.2271537,0.2527928),

c(0.001076922,-0.1989523,0.4096225), c(-0.001276455,-0.2114213,0.5880604),
c(-0.004916091,-0.2525054,0.8008379))

omega ← cbind(c(0.9165315,36.64675,128.5582),c(0.9446261,33.04807,133.2030),
c(0.9550139,31.69125,135.3539),c(0.9624107,30.69523,136.8430))

mV ← fV[(fV[,1] == f),2]
Pref ← params[c,1] + (1+mV*params[c,2])*params[c,3]*f*mVˆ2
scale ← omega[c,1] + exp((T-omega[c,3])/omega[c,2])
return scale * Pref

end procedure

Procedure 3.3: Alternative Cortex A7 power consumption model scaling a reference power
consumption to an arbitrary temperature, parameters: temperature T (◦C), CPU frequency f
(GHz), and active core count c [1:4]. The pseudo code is R-based.

procedure Power-Model-2.A15(T, f, c)
fV ← cbind(c(0.8,0.900),c(0.9,0.925),c(1.0,0.962),c(1.1,1.000),c(1.2,1.025),

c(1.3,1.062),c(1.4,1.100),c(1.5,1.137),c(1.6,1.162))
params ← {{0.06304262,0.8507527,0.3143365),c(0.09711657,0.6573983,0.5889670),

c(0.15714696,0.9571463,0.6840582),c(0.20643708,1.1880969,0.7855338))
omega ← cbind(c(0.9275326,33.37058,124.3985),c(0.9368108,33.98474,130.4629),

c(0.9468184,33.19642,134.5030),c(0.9489654,32.72711,134.2357))
mV ← fV[(fV[,1] == f),2]
Pref ← params[c,1] + (1+mV*params[c,2])*params[c,3]*f*mVˆ2
scale ← omega[c,1] + exp((T-omega[c,3])/omega[c,2])
return scale * Pref

end procedure

Procedure 3.4: Alternative A15 power model scaling a reference power consumption to an
arbitrary temperature, parameters: temperature T (◦C), CPU frequency f (GHz), and active
core count c [1:4]. The pseudo code is R-based.

can be set up that is based on the exponential temperature/power model. The idea is
that the power consumption at a reference temperature Pref is computed and then scaled
by ω to any arbitrary temperature:

Pcpu(T ) = ω(T ) · Pref =
(
ω2 + e

T−ω0
ω1

)
· Pref . (3.11)

Procedures 3.3 and 3.4 show a prototype implementation. This power model takes the
same parameters as arguments as the model of Procedures 3.1 and 3.2, and comes along
with more fixed values compared to those models. Mainly because, besides the model-
ing of the exponential relationship, a power model is also present. Moreover, the clock
frequency parameter for these procedures is supposed to be chosen within the discrete
set of microprocessor clock frequencies. As a contrast, procedures 3.1 and 3.2 allow for
continues values for the clock frequency. The median and maximum relative errors of
Procedures 3.3 and 3.4 are, respectively, 0.55% and 4.46% for the A7, 0.56% and 4.88%
for the A15. The model errors of these procedures are about half as small as the model
errors of Procedures 3.1 and 3.2. One could thus favor the power models of Procedures 3.3
and 3.4 when it comes to accuracy. On the other hand, the advantage of the power models
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procedure Power-Temperature-Transformation.A7(Tinit,Tdest,c)
temp ← cbind(c(0.9165315,36.64675,128.5582),c(0.9446261,33.04807,133.2030),

c(0.9550139,31.69125,135.3539),c(0.9624107,30.69523,136.8430))
init ← temp[c,1] + exp((Tinit-temp[c,3])/temp[c,2])
dest ← temp[c,1] + exp((Tdest-temp[c,3])/temp[c,2])
return (dest/init)

end procedure

Procedure 3.5: Cortex A7 power transformation model based on the exponential tempera-
ture/power model, parameters: initial temperature Tinit (◦C), destination temperature Tdest
(◦C), and active core count c [1:4].

procedure Power-Temperature-Transformation.A15(Tinit,Tdest,c)
temp ← cbind(c(0.9275326,33.37058,124.3985),c(0.9368108,33.98474,130.4629),

c(0.9468184,33.19642,134.5030),c(0.9489654,32.72711,134.2357))
init ← temp[c,1] + exp((Tinit-temp[c,3])/temp[c,2])
dest ← temp[c,1] + exp((Tdest-temp[c,3])/temp[c,2])
return (dest/init)

end procedure

Procedure 3.6: Cortex A15 power transformation model based on the exponential tempera-
ture/power model, parameters: initial temperature Tinit (◦C), destination temperature Tdest
(◦C), and active core count c [1:4].

of Procedures 3.1 and 3.2 is the continuous clock frequency parameters. Depending on
the context in the sequel one or the other procedure will be favored.

The temperature scaling factor ω from Equation 3.11 can also be used to transform
a power sample, measured at one temperature, to another arbitrary temperature. This
is basically achieved by normalizing the temperature and then scaling it to an arbitrary
temperature. The procedures to convert the power consumption for the A7 and the A15
are shown in Procedure 3.5 and 3.6 respectively. Knowledge of the exponential tempera-
ture/power curve is necessary to achieve this transformation, and therefore incorporated
into the procedures. This temperature transformation of the power is also the subject of
the next section.

3.7 Temperature/Power Relationship Application

In the previous section it was shown that the temperature/power relationship follows
well an exponential-based model. For a limited temperature range a linear or quadratic
relationship is adequate as well. Using the temperature/power relationship, it is demon-
strated how to cancel power inflations stemming from temperature fluctuations. This
improves the power measurement’s accuracy and provides a more valuable indication of
power demands, and hence also energy consumption. Figure 3.14(a) shows three random
power measurement traces. The temperature traces, recorded at the same time as the
power traces, are shown in Figure 3.14(b).

The goal here is to convert all the measured power samples as if they were measured
at a fixed arbitrary reference temperature. Based on the temperature/power relationship
models in the previous section it may be assumed that there must exist a transformation
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Figure 3.14: Figure (a) power/time traces (black line): (top) an A15 running at 1.3 GHz with
3 active cores, (middle) an A15 running at 0.9 GHz and (bottom) an A7 running at 0.6 GHz
with 4 active cores. The blue and red lines are the transformed power traces in the case of
linear and quadratic temperature/power approximations, respectively. An arbitrary reference
temperature was chosen at, from top till bottom, 40◦C, 46◦C, and 55◦C. The accompanying
temperature/time traces are shown in figure (b).
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function (linear/quadratic/exponential) such that the transformed power is constant6.
As a result of the transformation, the power traces, as shown in Figure 3.14, should
appear flat after the transformation. A linear relationship between temperature and
power (P = η1T + η0) yields the following transformation function:

Pr − η1Tr = Pm − η1Tm

Pr = Pm + η1∆T, (3.12)

where Tr is the arbitrary reference temperature; Pr is the power consumption at the
reference temperature, Pm and Tm are the measured power and temperature, and ∆T =
Tr − Tm. Similarly, a quadratic temperature/relationship (P = η2T

2 + η1T + η0) yields
the following power transformation function:

Pr = Pm + η2(T 2
r − T 2

m) + η1∆T. (3.13)

To find the optimal transformation function, it isn’t required to know the micropro-
cessor’s precise thermal behavior. A linear or quadratic regression between temperature
and power of the collected trace suffices to obtain the η∗ values. As stated before, the
linear and quadratic approach is appropriate when the testbed temperature variations are
no more than what is advised in Table 3.5; otherwise one needs to resort to exponential
fits to maintain acceptable accuracy.

Figure 3.14 shows power traces of a microprocessor under constant load with vari-
able convective cooling applied. Their resulting linear (blue) and quadratic (red) power
transformations are also shown. As can be observed, the jerky power traces are converted
into somewhat stable traces, besides the presence of the measurement instrument’s noise.
Temperature noise and sensor inaccuracy are a known problem for TMUs [60]. The most
important feature of the power transformation is that the arbitrary distribution is trans-
formed into a symmetric distribution. Statistical measures, such as the mean, variance
and median, have only valuable meaning when dealing with symmetric distributions. Fig-
ure 3.15 shows the distributions of the measured and the transformed power traces. The
measured power trace distributions in Figure 3.15(a) have a shape dictated by the temper-
ature variation of the system. The transformed power trace distributions in Figure 3.15(b)
have smaller variances, and are more symmetric. This facilitates the reproducibility of
measurement results, and ameliorates the meaningfulness and stability of statistical esti-
mators.

Table 3.7 shows an overview of the transformation’s performance at different reference
temperatures. The measured power fluctuation (mpf):

mpf = max(Pm)−min(Pm)
median(Pm) (3.14)

due to varying temperature is shown to be between 1.21% and 3%. The relative power
fluctuation (rpf) is computed as the transformed power (Pr) fluctuation over the mea-
sured power (Pm) fluctuations:

rpf = max(Pr)−min(Pr)
median(Pr)

/
max(Pm)−min(Pm)

median(Pm) . (3.15)

It can be seen that the power fluctuations, due to the power transformation, are dimin-
ished by a factor of about three to four in all cases. This can also be visually verified

6In practice, due to noisy measurements, the variance of the power is to be minimized.
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Figure 3.15: Power distribution of the original and transformed power traces from Figure 3.14.
The power traces were normalized before being plotted. Densities are plotted for a bin-size of
0.025 on the left, and 0.01 on the right. It can be observed that the original distributions are
transformed into distributions that are more symmetric and smaller in variance.

in Figure 3.14. Moreover, the resulting transformation’s distribution is quasi symmetric.
This is shown with the rat metric in Table 3.7, which represents the departure of the
median from the mean. If the median differs significantly from the mean then the dis-
tribution is not symmetric. It can be seen, however, that in all cases the median and
mean are very close too each other, indicating that the transformation produces a quasi
symmetric distribution. Now that the power is converted as if it were measured at a
reference temperature, statistical methods have more practical value. If non-robust sta-
tistical methods would be applied directly to the measured power, the estimators would
produce estimates that are biased based on the arbitrary distribution of the measured
power samples. This non-robust estimator mismatch should be avoided by all means7.

It is noted that it is advisable to choose a reference temperature within the measured
temperature range, preferably not too close to the extremities, to minimize transformation
errors.

3.8 Conclusion
The power consumption of a microprocessor is temperature-dependent and was shown via
experimental measurements on two SoCs. Also, an overview of temperature/power models
was presented from the literature. Yet, these models focus usually on the temperature
dependency of the leakage currents, which contribute to the power consumption of the
microprocessor. Other sources of temperature dependency were highlighted; they can also
contribute to fluctuations in power consumption.

The temperature/power analysis on experimental traces showed that a simple expo-
nential model can describe the relationship very well for a temperature range between
25◦C and 85◦C. For a more limited temperature range, e.g., 25◦C < T < 55◦C, a linear
or quadratic relationship is acceptable as well. Moreover, a practical example was given

7More information on robust statistics can be found in the work of Maronna et al. [74].
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Table 3.7: Performance metrics of the power transformation, for different reference tempera-
tures T (◦C), and microprocessor configurations, for the traces in Figure 3.14. The measured
power fluctuation is provided (mpf) as a measure of variance; the relative fluctuation (rpl) for
the linear (l) and quadratic case (q) are shown. The relative increase of the median over the
mean is also stated (rat) to quantize the distribution’s symmetry.

A15 @ 1.3 GHz
T mpfl rpl-l rpl-q rat-l rat-q
35 1.21 0.297 0.311 0.753·10−3 0.403·10−3

38 1.21 0.295 0.310 0.750·10−3 0.401·10−3

41 1.21 0.294 0.309 0.747·10−3 0.400·10−3

A15 @ 0.9 GHz
T mpf rpl-l rpl-q rat-l rat-q
43 1.80 0.231 0.212 -1.706·10−3 -2.591·10−3

46 1.80 0.229 0.211 -1.697·10−3 -2.579·10−3

49 1.80 0.228 0.210 -1.688·10−3 -2.565·10−3

52 1.80 0.227 0.208 -1.679·10−3 -2.551·10−3

A7 @ 0.6 GHz
T mpf rpl-l rpl-q rat-l rat-q
50 2.99 0.359 0.327 -0.249·10−3 8.677·10−3

54 2.99 0.355 0.324 -0.247·10−3 8.615·10−3

58 2.99 0.352 0.321 -0.245·10−3 8.532·10−3

62 2.99 0.349 0.317 -0.243·10−3 8.430·10−3

showing how to use the temperature/power relationship to cancel temperature bias in
power measurements to improve their accuracy. Another model is advanced that allows
for backtracking temperature measurements that were recorded at a finite distance of a
heat source. Such models allow for a better understanding of the microprocessor’s heat
dynamics from an observer’s point of view, including the distant-sensor-syndrome. After
fine tuning, all these models are also applicable to other microprocessors. Temperature
traces should be phrased adequately before they are correlated with power traces in order
to avoid side-effects, including the temperature/power hysteresis loops.

The models developed in this chapter and the concepts broached, especially w.r.t. the
microprocessor’s thermal behavior, help in producing power measurements that are mean-
ingful and reproducible. This is an important aspect of energy estimation and modeling.
The latter is the subject of the following chapters.



Chapter 4

The Energy/Frequency
Convexity Rule

In chapter 2 a power and an execution time model, was presented which, when mul-
tiplied, produces the microprocessor’s energy consumption model following Equa-
tion 2.2. In this chapter, the behavior of this energy consumption model is analyzed
via sensitivity analysis and demonstrated practically with experimental execution

time and power measurement traces.
The chapter starts with a state of the art presenting energy/frequency curves found

in the literature. The Energy/Frequency Convexity Rule for a single-core microprocessor
is developed theoretically in Section 4.2. Then, in Section 4.3, experimental power and
execution time measurements of two application processors are presented that demon-
strate the existence of the energy/frequency convexity. These measurement-based models
will also be used in the following chapters. Section 4.4 analyses the sensitivity of the
Energy/Frequency Convexity Rule’s parameters. The chapter is concluded in Section 4.5.

4.1 State of the Art

To preempt the reader’s intrigue by virtue of the catchy chapter title, it is noted that
the energy consumption of a microprocessor shows convex properties with regards to its
clock frequency. The convex property of the energy consumption curve has been hinted at
before in the literature. A series of papers, approaching the problem from an architectural
point of view, have shown a convex energy consumption curve with respect to Dynamic
Voltage and Frequency Scaling (DVFS) [35, 64, 105, 111]. The literature puts forward
some motivation for the energy consumption’s convexity, but rarely provides analytical
frameworks based on physical explanations. For example, Senn et al. [103] and Austin
and Wright [5] provide a heuristic model. Other studies, e.g., Hager et al. [46] and Freeh
et al. [40], discuss what the consequences are of said behavior and how to exploit them,
from a high-level point of view. Other researchers have also shown energy measurements
under DVFS processes but no convexity is shown by the measurements, e.g., Sinha and
Chandrakasan [108], and Šimunić et al. [106], who are not running their benchmarks
on top of an OS. Authors, such as Austin and Wright [5] and Snowdon [35, 111], have
shown more specifically that for applications with certain behavioral patterns no energy
convexity is observed. However, the energy consumption model about to be scrutinized
can explain such behavior.
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In the VLSI design domain, voltage scaling has also been discussed but usually for a
fixed frequency [14, 62, 139]. The aim of the voltage scaling is to find a minimum energy
operation point where the digital circuit yields the correct output. The major trade-off
is between increased circuit latency and leakage power, and decreasing dynamic power.
This trade-off also yields a convex energy consumption curve, but for a fixed frequency.
In this chapter, however, the combined effect of voltage/frequency scaling is of interest.
Clock frequency modulation is another approach to energy optimization, similar to DVFS.
Clock frequency modulation is, however, not discussed in this work. Experimental work,
e.g., by Cicotti et al. [26] and Wang et al. [126], has pointed out similar behavior between
clock frequency modulation and DVFS in terms of energy consumption with potential
convex properties.

There is some work that covers the energy/frequency convexity properties in a limited
analytical framework. Figure 4.1, continued in Figure 4.2, show excerpts of convex en-
ergy graphs provided by the cited work. Yuki and Rajopadhye [137] explored the energy
consumption of high performance computers in the context of compiler optimization and
optimal frequency conditions of the microprocessor. One of their conclusions is that for
power-hungry systems the race-to-halt1 energy optimization technique is more effective
than DVFS. Hager et al. [46], on the other hand, showed that race-to-halt is not always
the most effective strategy in a multi-core context with bandwidth-bound codes. The
authors studied the energy consumption of modern multi-core chips via simple machine
models and showed how to minimize the energy consumption with respect to number of
cores, serial code performance, and clock frequency. Austin and Wright [5] examined the
energy consumption of micro-benchmarks and applications on a Cray CX30 super com-
puter system. The authors developed a simple linear heuristic energy model. They also
stressed that the frequency/energy minimum is applications-specific. Cho and Chang [25]
assessed the optimal frequency conditions for a microprocessor in conjunction with a
memory. Their resulting model is fairly complex; yet the authors show the feasibility
of a microprocessor’s optimal frequency conditions in conjecture with a memory system.
Cho and Melhelm [24] produced a convex model derived from Amdahl’s law and extended
with the notion of energy. The authors use a simplifying assumption for the representa-
tion of power and execution time. They show via their model that there is a certain clock
frequency range that yields both energy and speed improvements. Similarly, Rizvandi et
al. [96] devised a convex model but, just as Cho and Melhelm, simplified representations
of power and execution time were assumed. Tudor and Teo [116] developed an analytical
energy consumption model for multi-core ARM-based servers. Their time model is elab-
orate, based on M/G/1 queues and Pareto distributions, but their power model is basic.
Despite their extensive time modeling efforts, the analytical model, however, doesn’t fit
perfectly on the authors’ experimental measurements.

From an experimental perspective, Halimi et al. [48] claim to save up to 39 % of
energy, and Qiu et al. [88] advertise an energy gain of 25 %, by adjusting the microproces-
sor’s clock frequency via an experimental algorithm with predefined user or application
constraints. Although no theoretical framework was provided by the authors about the
energy/frequency convexity, their algorithm is essentially chasing the energy convex mini-
mum. Senn et al. [103] showed also convex energy/frequency curves, based on a simplified
system model, for their TI C55 C62 C64 C67 platforms.

The work presented here focuses on embedded systems, in contrast with Yuki and
1The energy optimization technique race-to-halt runs the microprocessor at full speed until all tasks

are completed, then the microprocessor is put in a low-power mode.
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Figure 4.1: Excerpts of energy/frequency measurements as found in the literature. Convex
minimums are observable for the energy at a certain microprocessor clock frequency, depending
on the microprocessor and architecture. In the sequel the behavior of this convex minimum
is analyzed. All figures were originally published in the papers referenced in their respective
captions.
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Figure 4.2: Excerpts of energy/frequency measurements as found in the literature. All figures
were originally published in the papers referenced in their respective captions.

Rajopadhye’s, Hager et al. and Austin and Wright’s work, which is dedicated to more
powerful computer architectures. In the sequel, the sensitivity of the parameters that
constitute the energy consumption equation are also analyzed via both an analytical
approach and via experimental data, the former fitted with data from the latter. The
convex energy model presented is, in contrast with the mentioned works, more extensive,
which allows for a more realistic modeling of reality. For example, temperature has not
been a subject of interest and a sensitivity analysis of parameters has also not been carried
out in any of the referenced works.

4.2 Single-Core Convexity Model
The energy consumption of a computer system comprising a microprocessor and possibly
other components is equal to the integral of the system’s power consumption over time:

E =
∫ ∆t

0
P (t) dt =

∫ ∆t

0
I(t) · V (t) dt. (2.2)

If the power is considered constant the integral is equivalent to the product of the power
consumption and the timespan of interest. V can often be considered constant by design;
for example, portable devices such as smartphones are supplied by 3.7 V lithium-ion bat-
teries, and microprocessors operate at very specific voltage levels. I, on the other hand,
may show a certain variance, even over small time frames. The current’s variance depends
on the context, its history and the state of the microprocessor. However, at the time frame
of an instruction execution, henceforth referred to as a time quanta, the energy consump-
tion can be deemed quasi constant. Following this definition, the parameters that define
the energy consumption during a time quanta are also constant. As such, similar to the
rationale behind the Riemann sum, the total system energy consumption Esys of a code
sequence can be thought of as the sum of the energy consumption Esys,i during each time
quanta:

Esys =
n∑
i=1

Esys,i =
n∑
i=1

Psys,i ·∆ti, (4.1)



Single-Core Convexity Model 59

where n is the number of time quanta, and Psys,i the power during time quanta ∆ti.
Let us consider the execution of a code sequence executed by a microprocessor during

a time quanta with a length ∆t (Equation 2.16) requiring a constant power Psys (Equa-
tion 2.11). The energy consumption of said computer system is then equal to:

Esys = Psys ·∆t
= (Pdynamic + Pleak + Pback) ·∆t

=
(
(1 + γV ) ξfV 2 + Pback

)
· ccb

(
1

f − fk
+ β

)
. (4.2)

Here, Psys is a monotonic increasing function of f , whereas ∆t is a monotonic decreasing
function of f , given that all its parameters are elements of R+. When Psys and ∆t are
multiplied the resulting function may very well have convex properties. Such convexity
would be of interest as there would exist a microprocessor configuration that minimizes
the energy consumption for that particular context. Let us explore the constraints un-
der which such convexity is exploitable by the microprocessor. The following derivation
is similar to Yuki and Rajopadhye [137]; however, different frequency and voltage rela-
tionships are used, mainly more contemporary, and the leakage current is scaled more
realistically. Note that Pback can be arbitrarily large; its value is inherent to the computer
system and independent of the microprocessor. In the remainder of this work it is also
assumed that the temperature of the microprocessor remains constant unless otherwise
noted. Section 4.4.4 analyzes the influence of the temperature on the energy/frequency
convexity in particular.

4.2.1 Voltage/Frequency Relationship
For modern microprocessors, the frequency and supply voltage in the DVFS process are
approximately linearly related as shown in Figure 4.3. The exact relationship is depen-
dent on the physical abilities of the microprocessor, but also on the capability of the
microprocessor’s voltage and frequency regulator to scale the voltage and frequency on-
demand. When the frequency of a microprocessor is ramped up, the transistors inside
need to switch faster to meet timing and delay constraints. As subparts of transistors are
essentially very small capacitors as well, a finite time is required to switch the transistor
from one state to another. Thus if stringent timing delays need to be met, the micro-
processor voltage needs be increased accordingly. The higher voltage supply will decrease
the transistors’ transition time and capacitors’ charging time.

A linear relationship between the voltage and frequency is expressed as follows:

V = m1f +m2, (4.3)

where m1 and m2 are regression coefficients. Figure 4.3 shows the voltage and frequency
relationship for several microprocessors. It is noted that the S3C6410 and the PXA320 are
fairly dated microprocessors with low performance, whereas the Exynos series and the
Intel M are more recent microprocessors designed for embedded multimedia applications,
e.g., smartphones and tablets. The values m1 = 2

3 and m2 = 1
3 , the dashed blue line in

Figure 4.3, are motivated to be adequate for high-performance microprocessors based on
theoretical values [137]. Here, the values m1 = 1

3 and m2 = 4
5 are shown to better represent

the voltage/frequency relationship for microprocessors for embedded applications. These
values are approximates of a linear fit on the combined data of the Exynos and the Intel
M microprocessor.
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Henceforth, the microprocessor’s default clock frequency window (Fcpu) over f is de-
fined as the clock frequency range bounded by the minimum and maximum clock frequency
of the microprocessor:

Fcpu = fmin ≤ f ≤ fmax. (4.4)
If fk > fmin, then the execution time for fmin ≤ f ≤ fk has no physical meaning as
limf→+fk ∆t = +∞. Hence, the exploitable clock frequency window (Fepx) is defined as
the frequency range with an upper bound characterized by the microprocessor’s maxi-
mum frequency fmax, and the lower bound defined by the largest of the microprocessor’s
minimum frequency fmin and fk:

Fepx = max(fmin, fk) ≤ f ≤ fmax. (4.5)

It is the exploitable clock frequency window that is open for optimization.

4.2.2 Energy Consumption Model
The energy consumption model independent of V is obtained by inserting the V /f de-
pendency (Equation 4.3) in the definition of Esys:

Esys =
(
(1 + γV )ξfV 2 + Pback

)
·∆t

=
(
(1 + γ(m1f +m2))ξf(m1f +m2)2 + Pback

)
·∆t

= (af 4 + bf 3 + cf 2 + df + Pback) · ccb

(
1

f − fk
+ β

)
, (4.6)
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where a = γξm3
1, b = m2

1ξ(1 + 3γm2), c = m1m2ξ(3γm2 + 2), and d = m2
2ξ(γm2 + 1).

Note that following Equation 4.6, ccb is a scaling factor of Esys and implies that the
energy consumption of a piece of code is linearly dependent on its code size. Moreover,
this also implies that compiler optimization techniques that target code size reduction
will indirectly also lead to an improved energy profile of the code. On the other hand,
a microprocessor can also reduce energy consumption by overlapping code execution,
increasing power demands but reducing execution time. Similar observations between the
interaction of energy and power consumption were made by Valluri and John [118].

For further analysis the normalized energy consumption En for code size-independent
analysis is introduced. The normalized energy consumption is defined as

En = Esys

ccb
. (4.7)

Normalizing the energy consumption Esys has no effect whatsoever on its tentative convex
properties as it’s merely a scaling factor.

The energy function in Equation 4.7 is called strictly convex over the exploitable clock
frequency window, if and only if (iff),

∀f1 6= f2 ∈ fcpu,∀t ∈ (0, 1) : En(tf1 + (1− t)f2) < tEn(f1) + (1− t)En(f2). (4.8)

In other words, if Esys is strictly convex, then Esys possesses no more than one minimum
over the exploitable frequency window. If the minimum of Esys is not one of the micro-
processor’s boundaries: fmin < fopt < fmax, then the minimum can be found via the first
and second derivative of Esys:(

∂En

∂f

)
f=fopt

= 0 and ∂2En

∂f 2 > 0. (4.9)

To simplify the derivative calculation of Equation 4.6, En is split into a polynomial and
non-polynomial part, namely EA

n and EB
n :

EA
n = (af 4 + bf 3 + cf 2 + df + Pback) · β (4.10a)

EB
n = (af 4 + bf 3 + cf 2 + df + Pback) · 1

f − fk
(4.10b)

En = EA
n + EB

n ,

The respective derivatives are then as follows:

∂EA
n

∂f
= (4af 3 + 3bf 2 + 2cf + d) · β (4.11a)

∂EB
n

∂f
= 3af 4 + (2b− 4afk) f 3 + (c− 3bfk) f 2 − (2cfkf + Pback + dfk)

(f − fk)2 (4.11b)

∂2EA
n

∂f 2 = (12af 2 + 6bf + 2c) · β (4.11c)

∂2EB
n

∂f 2 = 6af 4 + (2b− 16afk) f 3 + (12af 2
k − 6bfk) f 2

(f − fk)3

+ 6bf 2
kf + 2(Pback + cf 2

k + dfk)
(f − fk)3 . (4.11d)
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Intuitively, convex properties can already be observed for En. For f +→ fk: EA
n will

approach βPback, whereas EB
n is amplified, and tends to positive infinity because of the

presence of f in the denominator. When f
2 < fk, the system is spending more energy

in overhead than in the actual program, as the overhead has priority over the program.
In the limit, En goes to infinity at fk. At this point the system is overloaded and is
not reactive anymore from the point of view of ccb. For f → ∞, it is EA

n that inflates
whereas EB

n approaches zero. In other words, for the smaller frequencies, by virtue of the
increased execution time more energy due to leakage currents needs to be accounted for.
The execution time for large frequencies are dramatically lower, but the dynamic power
consumption of the microprocessor increases cubically and the leakage currents increase
quartically with frequency. As a result, the global minimum of the energy function, at the
optimal frequency fopt, is the point where a balance is found between the consequences
of the inflated execution time and the quartic power consumption of the microprocessor.

4.2.3 Approximate Energy Consumption Model
The power model in the energy consumption formulation of Equation 4.6 is of the fourth
order. In Section 4.3.2, it will be seen that the fourth-order power equation can be ade-
quately approximated with a quadratic polynomial, therefore simplifying the derivations
somewhat. The power consumption of the system can then be represented as:

Psys = af 4 + bf 3 + cf 2 + df + Pback ≈ kf 2 + lf +m+ Pback, (4.12)

and accordingly the energy consumption of the system becomes

Esys = (kf 2 + lf +m+ Pback) · ccb

(
1

f − fk
+ β

)
. (4.13)

k ∈ R+
0 , though {l,m} ∈ R. The first and second derivative of the normalized energy

consumption are then as follows

∂En

∂f
= β(2kf + l)− fk(2kf + l)− kf 2 +m+ Pback

(f − fk)2 (4.14a)

∂2En

∂f 2 = 2kβ + 2(f 2
kk + fkl +m+ Pback)

(f − fk)3 . (4.14b)

There exists a convex minimum if ∂En
∂f

has a root and ∂2En
∂f2 is a monotonous increasing

function. In other words:

0 = β(2kf + l)(fk − f)2 − (fk(2kf + l)− kf 2 +m+ Pback)
= 2kβf 3 + (k + β(l − 4fkk))f 2 + 2fk(β(fkk − l)− k)f

−(m+ Pback + fkl(1− βfk)) (4.15)

2kβ ≥ −2f
2
kk + fkl +m+ Pback

(f − fk)3 .

The solution to Equation 4.15 is the frequency that minimizes energy consumption. Via
the well-known Ferarri2 solution for the calculation of the roots of a third order polynomial,

2Ferarri developed an analytical method to solve the roots of both a third and forth order polynomial.
Appendix A.2 shows Ferarri’s derivation for a fourth order polynomial is shown, which includes the
derivation of a third order.
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the optimal frequency can be determined analytically. Yet, the analytical formulation to
calculate the roots of a cubic polynomial is still elaborate. Lets assume some further
simplifications. For β = 0 one gets that

fopt = fk +

√
4k2f 2

k + 4k(m+ Pback + fkl)
2k (4.16)

0 ≤ 2f
2
kk + fkl +m+ Pback

(f − fk)3 .

If all parameters are elements of R+, the latter inequality holds whenever fk < f . Addi-
tionally for fk = 0 one obtains

fopt =
√
m+ Pback

k
(4.17)

0 ≤ 2(m+ Pback)
f 3 ,

but only valid for −Pback < m. These simplified models for β = fk = 0 may be used when
the context allows for, i.e., when ccb is executed without any interruption. For example,
from practical experience and in the literature, fk is often observed to be close to zero in
a multi-core context. β may vary considerably for different applications and should be
assessed per case before deeming insignificant.

4.3 Experimental Results
In the sequel experimentally-obtained power and execution time measurement traces are
presented. The measurement traces were obtained while running benchmarks on specific
testbeds. The next subsections describe the testbed and the used benchmarks. The actual
collected measurements are presented and discussed after.

4.3.1 Platform and Benchmark Description
The exact same platforms were used as previously expounded in Section 3.5. Benchmarks
were run on an ODROID XU+E and a Samsung Galaxy S2. The ODROID features a
Cortex A7 and Cortex A15 quad-core microprocessor, while the Samsung Galaxy S2
sports a Cortex A9 dual-core microprocessor. The A7 runs at {0.25,0.3,0.4,0.5,0.6}GHz,
the A15 from 0.8 GHz to 1.6 GHz in steps of 100 MHz, and the Galaxy S2 from 0.2 GHz
to 1.6 GHz in steps of 100 MHz.

Two benchmarks were used during the experimentation: the Bristol Energy Efficiency
Benchmark Suite (BEEBS) and the Gold-Rader bit-reverse algorithm. BEEBS [83] is a
select set of benchmarks representative for typical embedded systems applications. The
control code of the benchmarks however were amended such that the input size of the
benchmarks could be scaled. This was successfully accomplished for all benchmarks except
for fdct and cubic. Table 4.1 shows an overview and description of the benchmarks.
The benchmarks are rated high (H), medium (M) and low (L), regarding the following
properties: branching frequency (B), memory access intensity (M), integer operations (I),
floating-point operations (FP). BEEBS was run on the ODROID testbed.

The Gold-Rader bit-reverse algorithm was run on the Galaxy S2 testbed. The Gold-
Rader implementation of the bit-reverse algorithm was used, part of the ubiquitous FFT
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Table 4.1: Overview of the Bristol Energy Efficiency Benchmark Suite (BEEBS). The bench-
marks are labeled high (H), medium (M) and low (L), according to their properties: branching
frequency (B), memory access intensity (M), integer operations (I), floating-point operations
(FP). More details about the benchmark can be found in the work of Pallister et al. [83].

Name B M I FP Category Description
blowfish L M H L networking symmetric block cipher encryption algorithm

crc32 M L H L automotive cyclic redundancy check
cubic L M H L networking root calculation of cubic equations

dijkstra M L H L consumer graph shortest-path algorithm
fdct H H L H automotive image compression algorithm

float matmult M H M M automotive floating-point matrix multiplication
int matmult M M H L security integer matrix multiplication

rijndael H L M L networking symmetric block cipher encryption algorithm
sha H M M L automotive cryptographic hash function

2dfir H M L H security image transformation algorithm

algorithm, which rearranges deterministically elements in an array. The reason that not
all benchmarks were run on all the testbeds is that a hardware failure rendered the Exynos
4210 SoC of the Galaxy S2 unusable, very likely due to excessive thermal stress.

4.3.2 Execution Time and Power Measurements
The power consumption and the execution time of the benchmarks were measured sepa-
rately to obtain an estimate of the energy consumption using Equation 4.2.

Execution Time

Figure 4.4 shows the execution time of the Gold-Rader algorithm on the A9 and an excerpt
of the BEEBS benchmarks on the A7 and A15. The traces for different input sizes look
similar and therefore not depicted.

Table 4.2 shows a subset of the fitted execution time parameters as per Equation 2.16.
For the A7 and A15 traces the parameters fk and β were initially measured to be negligibly
small or zero and were therefore left out of the final fitting process to prevent overfitting
practices. This was not the case for the A9 traces, however. The reason for this is that
the second core of the A9 was disabled whereas all the cores were available on the A7
and the A15. Thus on the A9 the benchmark had to share the microprocessor with other
processes. On the A7 and A15 the benchmark was scheduled on a separate core where
the benchmark had all the clock cycles available for itself, thus fk ≈ 0. Memory accesses
were limited or well hidden by the cache for the A7 and A15 as β was measured to be
close to zero.

The fitted execution time model has a relative absolute error with 90 % of the errors
between 0.18 % and 7.36 % and a median of 3.12 % for the A9 execution time traces. The
A15 execution time model fit has 90 % of its values between 0.02 % and 3.57 % and a
median of 0.31 %. The A7 execution time model fit has 90 % of its values between 0.01 %
2.32 % and a median of 0.15 %. In general, the errors are an order of magnitude larger for
the A9 traces compared to the A7 and A15 traces. This may be because the benchmark
in the case of the A9 was running alongside other code on the same microprocessor core,
e.g., the OS, which was not the case for the A7 and A15 cases. This resource sharing may
introduce some variation in the observed execution times.
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Figure 4.4: Execution time experimental measurement traces on the Cortex A7, A9 and
A15 microprocessors. The execution time of different input sizes is shown for the Gold-Rader
algorithm and the BEEBS benchmarks. The solid lines represent the measured data whereas
the dotted lines is the data fitted on the execution time model (Equation 2.16). The BEEBS
benchmarks are labeled as follows: a) 2dfir, b) blowfish, c) crc32, d) cubic, e) dijkstra, f)
fdct, g) float matmult, h) int matmult, i) rijndael, and j) sha. The execution time for the
BEEBS benchmarks were measured for multiple input sizes, only a random input size is selected
to be plotted however, as they all look alike.
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Table 4.2: Benchmark execution time model parameters: ccb, fk and β as per Equation 2.16
for running the Gold-Rader algorithm on the A9 microprocessor and the BEEBS benchmark on
the A7 and A15 microprocessors. These values were used for the fitted models in Figure 4.4.
fk and β for the A7 and A15 execution time models were found to be negligibly small or zero.
Only a subset of ccb is shown for the A7 and A15.

Gold-Rader – input size 2N – A9
N 6 8 10 12 14 16
ccb 1.943 8.596 31.1 144.359 670.8 2918.837
fk 0.134 0.129 0.137 0.13 0.13 0.129
β -0.166 -0.167 -0.152 -0.202 -0.183 -0.182

BEEBS – A7 & A15
ccb × 10−3
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A7 0.005 0.178 9.816 0.173×10−3 0.02 0.001 0.744 2.113 317.435 93.995
A15 0.004 0.13 14.604 0.326×10−3 0.034 0.001 0.593 2.26 926.348 249.964

Power Consumption

Figure 4.5 shows the power consumption of the Gold-Rader algorithm on the A9 micro-
processor and excerpts of the BEEBS benchmarks on the A7 and A15 microprocessors.
The traces for each benchmark with different input sizes of BEEBS look similar and there-
fore not all are depicted. All traces were recorded while the temperature of the hardware
fluctuated. During the recording of the A9 traces the temperature of the testbed was
artificially oscillated around 37◦C and then the power samples with a temperature of
37◦C were selected. The A7 and A15 power traces were converted to 37◦C based on the
transformation formula given by Procedure 3.12.

Table 4.3 shows the fitted values for ξ, γ and Pback as per Equation 2.11 for the A9 mi-
croprocessor, and a subset of the parameters for the A7 and A15 microprocessors. Discrete
voltage/ frequency pairs were used to fit the measured data as reported in Figure 4.3 for
the Exynos 4210 and Exynos 5410 microprocessors.

As observed from Figure 4.5 the power model fits well on the experimental data. The
fitting errors for the A7 are between 0.01 % and 1.42 % with a median of 0.31 %. For the
A15 the fitting errors are between 0.06 % and 2.79 % with a median of 0.67 %. And for
the A9 the fitting errors are between 0.07 % and 3.18 % with a median of 0.86 %. The
fitted model for the A9 in Figure 4.5(a) for f = 1.5 GHz seems to deviate persistently
from the measured data. This could be due to a slightly higher supply voltage at 1.5 GHz
than reported in Figure 4.3 for the Exynos 4210 microprocessor.

The fitted model parameters in Table 4.3 for the A9 seem to be consistent for an
input size up to 212. The fitted model parameters for larger input sizes seem to be much
different. Note that array sizes up to 29 fit in the L1 cache, while sizes over 218 are too
big to fit in the L2 cache. Therefore external memory accesses and microprocessor slack
time may influence the power expenditure of the microprocessor. This is also reflected in
the power model parameters of the BEEBS benchmarks; there seem to be no consistency
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Figure 4.5: Power consumption experimental measurement traces on the Cortex A7, A9 and
A15 microprocessors. The power consumption of the benchmarks with different input sizes is
shown for the Gold-Rader algorithm and a subset of the traces for the BEEBS benchmarks. The
solid lines represent the measured data whereas the dotted lines is the data fitted on the power
model (Equation 2.11). The BEEBS benchmarks are labeled as follows: a) 2dfir, b) blowfish,
c) crc32, d) cubic, e) dijkstra, f) fdct, g) float matmult, h) int matmult, i) rijndael, and
j) sha. The power consumptions for the BEEBS benchmarks were measured for multiple input
sizes; only a subset is selected to be plotted however.
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Table 4.3: Benchmark power model parameters: ξ, γ and Pback as per Equation 2.11 for
running the Gold-Rader algorithm on the A9 microprocessor and the BEEBS benchmark on the
A7 and A15 microprocessors. These values were used for the fitted models in Figure 4.5. Only
a subset of ξ, γ and Pback is shown for the A7 and A15.

Gold-Rader – input size 2N – A9
N 6 8 10 12 14 16
ξ 0.101 0.108 0.134 0.137 0.44 0.011
γ 5.578 5.127 4.030 4.36 1.035 65.985

Pback 0.480 0.480 0.477 0.469 0.394 0.407

BEEBS – A7 & A15
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ξ 0.565 0.595 0.73 1.254 0.748 1.058 0.886 0.836 0.634 0.639
A7 γ × 10−3 6.959 5.906 7.095 8.409 7.551 9.019 8.767 7.778 7.178 6.818

Pback 0.11 0.103 0.087 0.066 0.097 0.08 0.087 0.092 0.095 0.097
ξ 2.192 0.618 0.624 0.599 20.155 6.492 2.874 1.675 0.656 4.14

A15 γ × 10−3 84.526 39.107 32.402 21.595 109.447 99.307 89.409 59.195 37.847 74.986
Pback 0.201 0.313 0.302 0.313 0.024 0.073 0.151 0.151 0.296 0.086

in the values for the different benchmarks. After all, consistency is not expected as each
benchmark performs different types of computations and hence stresses different parts of
the microprocessor. This results in different power consumption profiles for each distinct
benchmark and implies that power consumption is application-specific. Overall, the power
consumption variation for the different benchmarks and different input sizes are not as
large as what was observed for the case of the execution time. The power magnitude of
all traces are all of the same order, whereas for the execution time the order of magnitude
may differ by multiple orders.

In the sequel, it will be useful to have an expression for the upper and lower bounds
on the power consumption of the Exynos 5410. The goal is not to be as accurate as
possible. A simple expression is desired to describe the power consumption space with
as few parameters as possible. Figure 4.6 shows the upper bounds and lower bounds
of the measured power consumption of the A7 and the A15 microprocessors taken over
all BEEBS benchmarks. A quadratic polynomial was used to fit the upper-bounds and
lower bounds. A single scaling factor is introduced to scale the polynomial’s coefficients
such that a representative power consumption curve in function of the microprocessor’s
frequency is generated. Table 4.4 shows the polynomial’s coefficients and their respective
scaling factor for the A7 and A15 microprocessor. The power consumption, in function
of the microprocessor’s frequency f , is calculated as follows: P (f) = sx(s2f

2 + s1f + s0).
As can be seen from Figure 4.6 the quadratic approximation is reasonably well able to
describe the upper bounds and lower bounds of the power consumption.
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Figure 4.6: Power consumption upper bound and lower bound for the A7 and A15 micropro-
cessors. The boundaries are fit with quadric polynomials. A single scaling factor, further on
referred to as sx, is able to scale between the upper and lower bounds for each microprocessor.
The coefficients and scaling factors are shown in Table 4.4. The left vertical axis indicating
power is dedicated to the A7 microprocessor whereas the right axis is representative for the A15
microprocessor.

Table 4.4: Coefficients for the upper and lower bounds on the power P (f) of the Cortex A7
and Cortex A15 microprocessor. The power consumption, in function of the microprocessor’s
frequency f , is computed as P (f) = sx(s2f

2 + s1f + s0). The scaling factor is used to scale the
polynomial coefficients to generate the upper and lower bounds, but also to generate intermediate
power consumption levels.

Scaling Factor sx Polynomial Coefficients
min(sx) max(sx) s0 s1 s2

A7 1 1.175 0.083 -0.373 0.828
A15 1 2 0.276 -0.426 0.569

4.3.3 Energy Consumption

The estimated experimental energy consumption are obtained by multiplying the power
traces with the execution time traces for each frequency. This was done for both the
experimental traces and the fitted power and execution time models. Figure 4.7 shows
the energy consumption of the Gold-Rader algorithm on the A9 microprocessor and an
excerpt of the BEEBS benchmarks on the A7 and A15 microprocessors. The traces for
different input sizes look similar and therefore not depicted. The fitted errors are the sum
of the errors of the power and execution time traces separately. It is observed that the
fitting errors are larger for the A9 case than for the A7 and A15.

For the A9 traces a clear energy convex minimum is seen between 500 MHz and
800 MHz. The A7 traces show a convex minimum at 300 MHz to 200 MHz, however,
the minimum is not as clear as in the A9 case. For the A15 traces a convex minimum
is not present within this frequency range, the minimum energy consumption is at the
microprocessor’s minimum frequency: 0.8 GHz.



70 The Energy/Frequency Convexity Rule

1

input size (2N)
N=6
N=8

N=10
N=12

N=14
N=16

frequency (GHz)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

en
er

gy
(n

J)
30

40
50

60
70

(a) Gold-Rader on A9

1

a
b

c
d

e
f

g
h

i
j

frequency (GHz)
0.3 0.4 0.5 0.6

en
er

gy
(µ

J)
0.

1
1

10
10

0
10

00
0

1e
+

06

(b) BEEBS on A7

1

a
b

c
d

e
f

g
h

i
j

frequency (GHz)
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

en
er

gy
(µ

J)
0.

1
1

10
10

0
10

00
0

1e
+

06

(c) BEEBS on A15

Figure 4.7: Experimental energy consumption data for the Cortex A7, A9 and A15 micro-
processors. The energy consumption of the benchmarks with different input sizes is shown for
the Gold-Rader algorithm and the BEEBS benchmarks. The solid lines represent the measured
data whereas the dotted lines is the product of the fitted power and execution time models from
Figure 4.5 and Figure 4.4, respectively. The BEEBS benchmarks are labeled as follows: a) 2dfir,
b) blowfish, c) crc32, d) cubic, e) dijkstra, f) fdct, g) float matmult, h) int matmult,
i) rijndael, and j) sha. The execution time for the BEEBS benchmarks were measured for
multiple input sizes; only a subset of the input sizes are selected to be plotted.
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Figure 4.8: Energy consumption and execution time relationship at different frequencies for
the bit-reverse algorithm benchmark on the A9. The dashed lines represent the benchmark’s
performance with a given input size (data size). The solid lines is the benchmark’s performance
at different microprocessor clock frequencies. The colored lines are within the microprocessor’s
operating range, whereas the solid black lines are extrapolated theoretical values.

4.3.4 Energy Consumption and Execution Time Relationship

Figure 4.8 shows the relationship between energy consumption and the execution time
of the benchmark, based on the A9 measurements and Equation 4.2. It can be observed
that for this benchmark the energy consumption and the execution time exhibit a linear
relationship. This is also apparent from Equation 4.2 where ccb is a scaling factor of Esys.
This implies that performance optimization is the same as optimizing for energy in this
case. Such findings have been pointed out before in the literature. Pallister et al. [84]
showed via different compiler settings that the energy needed to execute a sequence of code
is approximately linearly proportional to the time needed to execute that sequence, i.e.,
∝ ccb. Bellosa [7] showed similar measurements for integer and floating point operations.
This is in line with the observation that the energy needed to execute a single instructions
doesn’t differ largely [20, 108]. The total microprocessor’s energy consumption however
also depends on the length and the state of the pipeline, inter-instruction Hamming
distance, number of operands, or the inter-instruction effects [20]. A random sequence
of instructions will nonetheless yield a total energy consumption that is approximately
proportional to the number of instructions in the sequence.

We point out that increasing the microprocessor frequency from 0.2 GHz to 0.4 GHz
speeds up the program by a factor of 4, whereas a frequency increase from 0.8 GHz
to 1.6 GHz improves execution time by a factor of 2.5. Decreasing the execution time
requires a super-linear clock frequency need. Moreover, the energy required to sustain this
frequency increase becomes relatively increasingly larger than the time gain. For example,
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for an input size of 4 KiB, to speed-up by three-fold between 0.7 GHz and 1.6 GHz, 1.46
times more energy is required. Similarly, to speed up the benchmark three-fold from
1.6 GHz the processor needs to be theoretically clocked at 3.6 GHz, that would require 1.9
times more energy. These conclusion can also be deducted from Equation 4.2.

4.4 Sensitivity of the Convexity Model
To analyze the behavior and sensitivity of the convexi model of Equation 4.2, the Cortex
A9 processor of the Exynos 4210 is used as reference use case, representative for embedded
multimedia applications, e.g., smartphones [29]: m1 = 0.330 [V/f], m2 = 0.808 [V], β
= 0 [s], γ = 3.137 [V−1], fk = 0.130 [GHz], ξmax = 0.181 [W/(GHz·V2)], ξmin= 0.155
[W/(GHz·V2)], and the microprocessor’s clock frequency starts at 200 MHz and goes to
1.6 GHz. ξ is a parameter that describes the power profile of an application. The values
for β, fk, γ and ξ were defined via fitting as presented in the previous sections. The
microprocessor’s clock frequency is also considered a continuous variable in this section.
In reality the clock frequency is limited to a discrete set. But for analytical purposes, not
to mention the aesthetics of the graphs, the clock frequency is deemed continuous.

4.4.1 What About Those frequency thieves?
When considering the execution time of a code sequence, fk was previously defined as
the number of clock cycles per time unit not available to the execution of the code.
These clock cycles are spent, for example, to handle microprocessor exceptions, or to
execute operating system routine tasks. fk can therefore be regarded as little frequency
thieves. From a mathematical point of view, the presence of fk in Equation 4.2 also
introduces some complexity to derivations such as Equation 4.11. Bear in mind that the
microprocessor’s clock frequency f must always be larger than fk; otherwise the execution
time is not defined. Consequently, fk < fmax must be satisfied as the microprocessor
becomes overloaded at fk ≥ f , and hence unusable.

Figure 4.9 shows the sensitivity of fk with regards to the optimal frequency fopt, the
microprocessor power (Pcpu ∝ ξ), and the background power Pback. In the left plot it
is seen that fopt(fk = 0, Pback = 0.5) ≈ 0.8 GHz. The optimal frequency increases for
increasing values of fk and hits the microprocessor’s maximum frequency fmax = 1.6 GHz
around fk = 0.7 GHz. At this point, about 45 % (≈ 0.7/1.6) of the clock cycles would not
be available to the code sequence. Furthermore, it is observed that fopt > fk always holds.
The effect of the microprocessor’s power demands on fopt is fairly small, expressed by the
ξ parameter. A 30 MHz to 50 MHz difference in fopt is observed between the minimum
and maximum microprocessor’s power usage as ξ varies between 0.155 V−1 and 0.181 V−1.

The background power usage Pback has a bigger impact on fopt than ξ. For Pback = 0,
fopt even drops below the minimum operation frequency of the microprocessor. Increasing
Pback inflates fopt. For fk = 0 and Pback ≈ 2.5 W the optimal frequency already surpasses
fmax. For a typical value of fk (130 MHz) an increase in fopt is observed for increasing
values of Pback; yet, the increase becomes smaller for larger values of Pback. The average
difference between fopt(fk = 0) and fopt(fk = 0.13), within the microprocessor’s clock
frequency range, is approximately 100 MHz.

In the rest of this section it will be assumed for simplicity that fk � f unless otherwise
stated. For a more realistic estimate of fopt, in case fk is not negligible, it was observed
from the graphs that adding 100 MHz to fopt is a reasonable assumption.
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Figure 4.9: Optimal microprocessor frequency fopt for variable levels of fk in function of ξ, on
the left, and Pback on the right. A typical value for fk is drawn at 0.13 GHz (dashed vertical line).
The area encapsulated by the dotted line signals the microprocessor’s default clock frequency
window: max(0.2 GHz, fk) ≤ f ≤ 1.6 GHz.

4.4.2 Absence of frequency thieves
It is not unthinkable that, in particular contexts, fk is negligibly small compared to f :
fk � f . For example, such occasions may occur when the clock frequency microprocessor
is reasonably fast, or the code sequence of concern is running only on one of the avail-
able cores of a multi-core microprocessor without interruption. Assuming fk negligible
considerably simplifies Equation 4.11. The system of equations for fk = 0 becomes:

∂EA
n

∂f
= (4af 3 + 3bf 2 + 2cf + d) · β (4.18a)

∂EB
n

∂f
= 3af 2 + 2bf + c− Pback

f 2 (4.18b)

∂2EA
n

∂f 2 = (12af 2 + 6bf + 2c) · β (4.18c)

∂2EB
n

∂f 2 = 6af + 2b+ 2Pback

f 3 . (4.18d)

For max(fmin, fk) < fopt < fmax, En was said to be strictly convex iff there exist only one
point in the exploitable clock frequency window for which ∂En

∂f
= 0 and ∂2En

∂f2 > 0. Given
the system of Equations 4.18, these two requirements translate, respectively, into:

4aβf 3
opt + 3(a+ bβ)f 2

opt + 2(b+ cβ)fopt + (dβ + c) = Pback

f 2
opt

(4.19a)

12aβf 2
opt + 6(a+ bβ)fopt + 2(b+ cβ) + 2Pback

f 3
opt

> 0. (4.19b)

Recall that for all constants in this system of equations: {a, b, c, d, β} ∈ R+. Thus the
requirement in Equation 4.19b is satisfied by default as the left-hand side will never be
negative. Accordingly, the root requirement of Equation 4.19a is also satisfiable. It is
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Figure 4.10: Optimal microprocessor frequency fopt for variable background power consump-
tion Pback. On the left fopt is shown for various microprocessor loads ξ. On the right the ratio
between the background power and the microprocessor power Pcpu at fopt is shown. The area
between the dotted lines signals the default clock frequency window: 0.2 GHz ≤ f ≤ 1.6 GHz.

immediately clear that the background power demands Pback directly controls the opti-
mal frequency fopt. The constants {a, b, c, d} describe the microprocessor’s power usage
whereas Pback describes the power demands of everything in the computer system besides
the microprocessor. For systems with a large Pback, e.g., servers or desktop computers,
fopt will therefore be higher than for systems with a low Pback, e.g., wireless sensors.
Moreover, fopt may be so high that it is larger than the maximum microprocessor’s clock
frequency.

Figure 4.10 shows the optimal frequency for a variable background power consumption
Pback and microprocessor loads ξ. Also, the ratio between the microprocessor Pcpu and
the background Pback power consumption is given. The area encapsulated by the dotted
line signals the operating range of the microprocessor. For the microprocessor to be able
to exploit the minimum-energy operation frequency, the background power consumption
needs to be between 0.02 W and about 2.75 W, depending on the exact microprocessor
load. The influence of the different microprocessor loads on Pback is not significant; at
1.6 GHz there is a 0.5 W difference between Pback for ξmin and ξmax. If Pback is larger
than 2.75 W, it is advised to run the microprocessor at the maximum clock frequency
to minimize energy consumption of the system. Under such conditions, the energy op-
timization technique known as race-to-halt is a good strategy. This was also Yuki and
Rajopadhye’s [137] main conclusion while studying high-performance computers. The op-
timal frequency fopt surpasses the microprocessor’s maximum frequency roughly around
the point where the background power demands become larger than the microprocessor’s
power usage. Battery-powered electronic systems such as embedded systems, wireless
sensors or smartphones aim at minimizing their background power demands, which thus
increases the feasibility of fopt exploitation. For more powerful computers, however, such
as servers, the optimal frequency will be very likely out of reach of the microproces-
sor’s capabilities: fopt > fmax. For example, Seo et al. [104] claim that DVFS in general
hardly improves the energy efficiency of mobile multimedia electronics. The testbed power
measurements of their embedded system show, however, that their Pcpu to Pback ratio is
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Figure 4.11: Optimal microprocessor frequency fopt for variable levels of β in function of ξ,
on the left, and Pback, on the right. The area between the horizontal dotted lines signals the
microprocessor’s default clock frequency window (0.2 GHz ≤ f ≤ 1.6 GHz).

smaller than 1 to 18, and their m1 is very small. For their specific testbed, fopt is very
likely larger than fmax, and race-to-halt should indeed be most beneficial when aiming for
energy savings.

4.4.3 Out-of-Order Execution
Out-of-order execution (OOE) is parametrized via σx ∈ [0, 1], which is a subpart of β in
Equation 4.6: σx = 1 for a system without OOE, σx = 0 when OOE is perfectly able to
cover the time during external memory accesses with data-independent code execution.
The system’s normalized energy consumption, assuming fk ≈ 0, is given by:

En = (af 4 + bf 3 + cf 2 + df + Pback) ·
(

1
f

+ σxβ

)
.

Its requirements for convexity are then defined as:

(4af 3
opt + 3bf 2

opt + 2cfopt + d) · σxβ +
3af 4

opt + 2bf 3
opt + cf 2

opt

f 2
opt

= Pback

f 2
opt

(4.20a)

(12af 2
opt + 6bfopt + 2c) · σxβ +

6af 4
opt + 2bf 3

opt + 2Pback

f 3
opt

> 0. (4.20b)

It can be observed that for σx = 0 the most left-hand term in Equation 4.20a becomes
zero, resulting in an increased fopt for the equality to be satisfied. Similarly, the larger
σx or β, the more fopt needs to decrease for the inequality of Equation 4.20b to hold.
Figure 4.11 shows the sensitivity of the β parameter on the optimal frequency fopt. The
parameter β is scaled here because the exact value of Mm is not known. Scaling β has
the same effect as changing σx. Indeed, from the figure, it is observed that fopt decreases
for increasing β. Moreover, fopt changes about 100 MHz over a 0 to 0.25µs β range for
medium levels of Pback. The larger Pback, the larger the spread in fopt for variable β.
For Pback over 4 W, the fopt spread between β = 0 and β = 0.25 increases to more than
200 MHz.
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Figure 4.12: Optimal microprocessor clock frequency fopt for variable temperature levels T
in function of ξ, on the left, and Pback, on the right. The temperature is varied between 25◦C
and 85◦C. The area between the horizontal dotted lines signals the operating range of the
microprocessor (0.2 GHz ≤ f ≤ 1.6 GHz). The power model of the A9 is used, mixed with the
temperature/power model of the A15 because of the lack of a decent A9 temperature/power
model.

In theory, σx can be frequency-dependent as well. That is, the memory clock frequency
can be scaled along with the microprocessor’s frequency, this to ensure the timely delivery
of data in the microprocessor registries and caches. σx in such case would not be constant
over f . In Section 6.1 a model will be developed for the optimal clock frequency in n-
buddy systems, where multiple entities collaborate while having their respective energy
profile and clock frequencies.

Here, it was assumed that the microprocessor’s clock frequency, once set at fopt, doesn’t
change over time. Another common approach to save energy is to have a variable clock
frequency to minimize OOE slack-time and also energy consumption. This is discussed in
Chapter 6.

4.4.4 Temperature Dependency
The temperature of the microprocessor has influence on its power and energy consump-
tion. This primarily originates because of the leakage currents that are shown to be
temperature-dependent as discussed in Chapter 2. The parameter γ controls the leakage
current of the power equation, and is a function of temperature and others, as defined in
Equation 2.10. In Section 2.1.4, it was shown, however, that such formulation to describe
the leakage current is probably not the best possible. The A9 traces are unfortunately too
noisy to be useful to derive an accurate temperature/power relationship. As an alterna-
tive, the temperature/power model of the A15 is borrowed and plugged into Equation 2.12
to get an estimate of fopt’s temperature dependency.

Figure 4.12 shows fopt for various temperature levels T in function of the micropro-
cessor’s power, represented by ξ, and the background power demands Pback. Over the
temperature range 25◦C < T < 85◦C, it can be seen in Figure 4.12(a), that the optimal
frequency fopt may variate about 200 MHz. The optimal frequency is decreasing for in-
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creasing temperatures above fopt = 600 MHz. That is because the larger the temperature,
the larger the leakage currents and power drawn. To offset this leakage power the pro-
cessor runs slower to consume less dynamic power. Below 600 MHz, on the other hand,
the optimal frequency increases for increasing temperatures. Now, the increased leakage
power is offset by a faster execution. The execution time decrease per Hertz is larger
closer to 0 Hz than at higher frequencies, because of its asymptotic properties. Therefore,
below 600 MHz, running faster decreases the execution time more than the total power
consumption increases, proportionally. Hence energy consumption is minimized.

Figure 4.12(b) shows the optimal frequency for various levels of microprocessor power
levels. As seen in the previous graph, the optimal frequency decreases for increasing
temperatures. The optimal frequency fopt changes about 50 MHz over the whole tem-
perature range and maximum and minimum power levels of the microprocessor. Given
that a contemporary microprocessor often operates with 100 MHz clock frequency steps,
the temperature thus has likely minimal effect on the optimal clock frequency for vari-
ous application power profiles. However, as observed in Figure 4.12(a) the difference in
frequency in the temperature extremities becomes larger for larger levels of background
power demands.

4.5 Conclusion

In this chapter the energy consumption equation of a microprocessor operating in a com-
puter system with other components is developed and analyzed. An analytical analysis,
along with numerical simulation and measurement data, is used to study the behavior and
sensitivity of its parameters. It was shown via an analytical framework, measurements,
and literature review that the energy consumption curve shows convex properties with
regard to the clock frequency of the microprocessor. The convex minimum is the point
with a given clock frequency fopt where the computer system consumes the minimum
amount of energy while executing a code sequence. The energy saving gained by running
at the optimal clock frequency is a trade-off with the performance of the system, in terms
of execution time. For applications requiring human interaction, it has been shown by
Seeker et al. [101], however, that the clock frequency can be scaled down considerably
without affecting the user’s experience.

Given the energy/frequency convex behavior, three classes of code execution can be
distinguished as shown in Figure 4.13. When the optimal clock frequency fopt is left of the
default clock frequency window: fopt < fmin, executing as slow as possible yields the best
energy gains; if max(fmin, fk) < fopt < fmax then chasing fopt will earn the best energy
efficiency; and when fopt > fmax, then the race-to-halt energy optimization technique was
shown to be most effective. It was noted by Rizvandi [95] that under certain circumstances
it can be more efficient, in terms of energy consumption, to have a binary frequency scheme
with the maximum and minimum clock frequency rather than scaling the clock frequency
through the whole frequency space. The presented performance-oriented work, and also
the user-oriented work of Seeker et al. [101], suggest that this is, in fact, not the case. fopt
may assume any frequency within the default clock frequency window, and may fluctuate
throughout the code execution depending on the kind of operations scheduled.

The existence of the energy/frequency convexity property was further confirmed via
experimental measurement traces on two multimedia microprocessors commonly used for
embedded system applications. The main conclusions of the analysis are:
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Figure 4.13: The location of the optimal frequency fopt w.r.t. default clock frequency window
(blue) is an indication for which energy optimization technique is most effective: (a) when fopt
is left of the exploitable clock frequency window: fopt < fmin, one should set the clock frequency
as low as possible; (b) if max(fmin, fk) < fopt < fmax then chasing fopt will yield the best energy
efficiency; (c) when fopt > fmax then the race-to-halt energy optimization technique is most
effective.

• Energy/frequency convexity occurs always, but, to be exploitable, fopt should be
within the exploitable clock frequency window: max(fmin, fk) < fopt < fmax;

• The background power requirement (Pback) is the parameter that influences the op-
timal frequency the most; the larger the background power demands, the larger the
optimal clock frequency: when Pback equals Pcpu, fopt will be close to the maximum
microprocessor clock frequency;

• An application’s power profile (ξ) has a minimal effect on the optimal frequency,
mostly because the variations in power profiles are fairly small, an average of 50 MHz
in fopt between the power profile’s extremities was oserved;

• The number of instructions of a code sequence (ccb) has no influence on the optimal
clock frequency, following the energy consumption model, but does scale the energy
consumption linearly on the premise that ξ has minimal effect;

• Application concurrency and clock cycle thieves (fk) significantly affect the optimal
frequency; the less clock cycles available to the applications, the larger the optimal
clock frequency: on average for a 1 GHz increase in fk, fopt increases by 2 GHz;

• Microprocessor slack time (β), during off-chip operations, forces the optimal clock
frequency down: 300 MHz for 0 < β < 0.25 in the extreme case;

• The temperature, influencing mostly the leakage currents (γ), has a notable effect
on the optimal frequency, in the extreme case 200 MHz between 25◦C < T < 85◦C;

• The race-to-halt strategy is justified only when the optimal clock frequency is larger
than the microprocessor’s maximum frequency.

Given that Pback has a large effect on the optimal frequency fopt it was shown that a
system with a Pback of the order of Pcpu and larger will have a fopt likely outside the reach
of the microprocessor’s clock frequency range. Thus chasing the optimal clock frequency
fopt is especially beneficial for low-power systems, such as for embedded applications, as
their Pback is much smaller than what would be expected for high performance computer
systems.



Chapter 5

Passive Cooling of Microprocessors

An exact analytical solution to the heat transfer equation of a passively cooled mi-
croprocessor is developed in this chapter, subject to convection, radiation, and

internal heat generation. Such models are useful for Thermal Management
Units (TMUs) and Dynamic Thermal Management (DTM) to evaluate and

predict the thermal behavior of a microprocessor. Whereas before the power-dependent
thermal behavior of microprocessor was studied, here the transient thermal behavior is
developed. Analyzing the exact thermal behavior of a microprocessor is, however, in-
tractable due to the complex nature of the physics involved including fluid dynamics,
all heat transfer modes, complex electronic component configurations, turbulence, reat-
tachement, conjugate problems etc. [99] To curb the complexity, a simplified reality will be
assumed where an isothermal piece of silica oxide, representing a microprocessor, is placed
in an infinite open space subject to (natural) convection and radiation. Such conditions
are also assumed when dealing with Newton’s law of cooling.

First, the temperature’s temporal behavior of a microprocessor is considered, subject
to Newton’s law of cooling and internal heat generation, in Section 5.2. Then, in Sec-
tion 5.3, the impact of radiation and internal heat generation is added to the model,
to develop the passively cooled heat equation for a microprocessor with internal heat
generation. The performance difference between the passive and active coolings law is
also assessed in Section 5.4. Besides, some approximations to the exact solution of the
passive cooling law are proposed in Section 5.3.6, as it will turn out to be a fairly elab-
orate equation. The thermal runaway of the passive heat equation applied to a realistic
microprocessor model is also studied.

5.1 Cooling in Thermal Management Techniques
Thermal management techniques for microprocessors have been devised to control their
heat dissipation. Excessive heat dissipation may have adverse effects on performance,
energy consumption, and the short term and long term failure rates of the microproces-
sor. Basic run-time thermal management techniques can be rudimentary, such as clock
gating. Yet, if service continuation is needed, more advanced thermal techniques are re-
quired. Thermal-aware design of microprocessors can also be effective to minimize peak
and average heat and power dissipation during run time. The challenge here, however,
lies in decision making based on incomplete design and run-time details.

To get a current perspective on how such issues are addressed in the literature, top
computer architecture and VLSI conferences are surveyed for papers devoted to micro-
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processor thermal models for TMUs and DTMs and temperature-aware design methods
based on heat transfer theory. The conferences surveyed are ISCA, MICRO, ASPLOS,
HPCA, PACT, ISLPED, ICCAD, DAC, DATE and ASP-DAC from 2010 to 2014. 35 pa-
pers were identified focusing on the thermal optimization of microprocessors using heat
transfer models. 90 % of these papers base their results solely upon simulation or nu-
merical analysis; the remaining ones use either actual measurements or a combination
of simulation and measurements to make their point. Beside custom thermal simulators
and models, non-commercial and open-source thermal simulators are mostly used: these
are based on finite-element methodologies. Commercial applications such as COMSOL
Multiphysicsr, Autodesk Simulation CFD or FLoTHERMr, which support the radiative
heat transfer mode, are not used in the selected papers. About 40 % of the selected
papers deploy Hotspot for their thermal simulations. Hotspot [55] is a self-proclaimed
accurate and fast thermal model designed for microprocessor architectural analysis, e.g.,
floor planning. The basic setup of Hotspot includes active cooling via a heat sink. No
passive cooling capabilities are available in Hotspot. Other experimental simulators, such
as LightSim [100], CONTILTS [49], ISAC [133] and PowerBlurr [85], also allow for thermal
analysis of microprocessors, but are less popular and none support radiative cooling. In
most of the simulations, both the temperature at steady state and transient temperatures
are available, where the steady-state case is much faster to compute than the transient
behavior.

It is worthwhile to ponder upon why no non-commercial simulators support radiative
cooling. One reason could be that the non-linear behavior of radiation is not easy to
handle in mathematical formulations and advanced finite element techniques need to be
employed in numerical simulations. Also it is not always clear to what extent radiation
actually affects the thermal behavior of semiconductors. As a result, given the lack of
passive cooling support in most simulators, it is not surprising that passive cooling has not
gotten much attention in the thermal management research community. In fact, only one
paper [122] was found, about 3D integrated circuits, which mentions that radiation may
influence the thermal behavior of microprocessors; yet in this work no further reference
to radiation is found. Nevertheless, 30 % of the papers surveyed claim that their research
is applicable to mobile embedded systems, a situation in which passive cooling is usually
of the essence.

Beside generic thermal microprocessor simulators, dedicated embedded system thermal
simulators were also developed. Therminator [131], for example, is a thermal simulator
designed to simulate heat dissipation in smartphones. Finite element methodologies are
used to compute the heat propagation through an arbitrary smartphone configuration,
which may include a PCB, battery, case, display etc. The authors show that their dedi-
cated thermal simulator produces results that are close to what commercial computational
fluid dynamics (CFD) software would calculate. Therminator takes the convective and
conductive heat transfer modes into account. Heat loss via radiation, however, is not
implemented in their thermal simulator. Luo et al. [73] analyzed the issue of thermal
management on mobile phones based on numerical simulation and basic thermal models.
The authors came up with design proposals on how to improve the thermal management
of mobile phones by studying the steady-state behavior of the system. Even though ra-
diation is mentioned in the introduction, including formulations, radiation is not present
in their steady-state analysis. Gurrum et al. [45] decomposed, just as Luo et al. [73], a
hand-held device in multiple subparts with different physical properties and analyzed its
thermal behavior. Radiation, however, did not come to their attention.
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From our literature survey it is concluded that the numerical tools used for thermal
behavior of embedded systems can be classified into three categories. First, the general-
purpose CFD software, which is able to simulate arbitrary systems including all modes
of heat transfer. These systems require the most efforts to produce interesting results.
The second class corresponds to dedicated embedded system simulators. It was observed
that the designers of the simulators are aware of surface radiation but they do not pro-
vide support in their simulators. And last, which are the most popular, are the generic
microprocessor thermal simulators. None of these microprocessor simulators were noticed
to support the radiative heat transfer mode. This provides a strong motivation for this
work, which strives to understand the possible impact of radiation on the transient and
steady-state thermal behaviors of micro-processors in the context of embedded systems.

5.2 Active cooling: the Newtonian Approach
Actively cooled computer systems spend energy to forcibly cool down the system. The
most basic active cooling technique is an air fan mounted directly on the microprocessor
or on a heat sink. Water and cooling fluids-based cooling devices are more effective but
also more expensive, more complex to maintain and more hazardous for the hardware.
Examples of technologies under development for active thermal management of portable
electronic devices are phase change materials, micro heat pipes, conductivity materials
such as carbon [43], thermoelectric cooling, and two-phase refrigerant cooling.

Newton’s law of cooling states that the temperature rate of change of an object is pro-
portional to the difference between the ambient temperature and the object’s temperature.
TMUs and DTMs often assume the system to cool down following the resulting exponential
Newton’s law of cooling. Accordingly, it is implicitly assumed that the system’s power
consumption, as a result, also exhibits exponential behavior over time, comparable to an
RC network. Such assumptions are frequently found in experimental thermal management
systems [21, 27, 39, 53, 58, 60, 140]. For actively cooled systems, i.e., cooled using forced
convection (such as computer fans or water cooling), an exponential assumption is a good
approximation when radiative and conductive cooling may be neglected.

Assume that for such systems the stored energy is approximated by the sum of the heat
transfer induced by convectional cooling: hacS(Ta − T ), and an internal heat generation
(ihg), which is deemed linear as a first-order approximation: η1T + η0, then

C
dT

dt
= convection + internal heat generation

= hacS(Ta − T ) + (η1T + η0) , (5.1)

where C is the body’s heat capacity and Ta the ambient temperature. Note that, if
the active cooling system consists of a fan and heat sink, then hac depends upon the
dimensions of the heat sink or body surface area, and the revolutions per minute (rpm) of
the fan. Moreover, η1 and η0 are also dependent on the microprocessor’s clock frequency,
type of computations, and the load on the system. Similar to Weissel and Bellosa’s [127]
work, resulting from Equation 5.1:

C
dT

dt
= hacS(Ta − T ) + (η1T + η0)

C
dT

dt
= −(hacS − η1)T + (η0 + hacSTa)
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∫ 1
T − η0+hacSTa

hacS−η1

dT = −
∫ (hacS − η1)

C
dt

ln
(
T − η0 + hacSTa

hacS − η1

)
= −(hacS − η1)

C
t+ co

T − η0 + hacSTa
hacS − η1

= coe
− (hacS−η1)

C
t, (5.2)

while imposing the initial condition at t = 0: T (0) = T0. Therefore c0 = T0 − η0+hacSTa
hacS−η1

,
and thence

Tac(t) = η0 + hacSTa
hacS − η1

+
(
T0 −

η0 + hacSTa
hacS − η1

)
e−

(hacS−η1)
C

t. (5.3)

It is clear that such a system is only stable if the cooling process with constant hac
convects heat away from the system faster than the system is generating heat internally.
The system is stable if there exists an equilibrium temperature Te for the system, which
is equivalent to stating that

0 = hacS(Ta − Te) + (η1Te + η0) ⇒ hac = η1Te + η0

S(Te − Ta)
, (5.4)

where all constants {Te, Ta, η1, η0} ∈ R+. It can be stated, given that hac must be positive:
∃h → Te > Ta. From Equation 5.4 it can also be concluded that hac is always larger
than η1/S. If hac < η1/S, the exponent in Equation 5.3 would go to infinity over time.
In practical applications the value of hac must be dimensioned properly such that the
system’s Te stays below the maximum operation temperature.

Not surprisingly, Newtonian cooling with linear internal heat generation yields again
an exponential relationship between temperature and time. Consequently, the power P
consumed by the system, which is an affine transformation of temperature (P = η1T +
η0), will also exhibit exponential behavior. An exponential model for actively cooled
systems with linear (or constant, η1 = 0) internal heat generation is therefore a valid
approximation. The exponential assumption is however not quite the same as assuming
Newtonian cooling, as the coefficients in both models are different, mainly due to the
presence of the internal heat generation. In the case of the presence of internal heat
generation, the equilibrium temperature Te of the system will be larger than the ambient
temperature Ta:

Te = T (∞) = η0 + hacSTa
hacS − η1

+
(
T0 −

η0 + hacSTa
hacS − η1

)
e−∞ = η0 + hacSTa

hacS − η1
.

This is the same result as obtained in Equation 5.4.
The resulting cooling law for a system with an internal heat generation following a

second-order polynomial can be derived similarly as before. Its solution is then given by:

C
dT

dt
= hacS(Ta − T ) + (η2T

2 + η1T + η0)

Tac(t) = ω1 + ω2e
−κ2
A
t

1 + e−
κ2
A
t

+ co,
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where the constants κ2, co and ω∗ are as follows:

κ2 = η2

ω∗ = RootsOf[η2T
2 + (η1 − hacS)T + (η0 + hacSTa)]

A = 1
ω2 − ω1

co = Te − ω1.

Such system is, however, a bit more complex than Newton’s exponential law of cooling
but will be similar in behavior.

5.3 Passive Cooling with Internal Heat Generation
Microprocessors that are not actively cooled must rely on passive cooling for the system
to attain a temperature equilibrium state. Passive cooling implies that no energy is spend
to enforce the system to cool down, e.g, via a spinning fan. Passive cooling, just as active
cooling, happens through the three fundamental modes of heat transfer. Though, the
convection in this case may be considerably smaller than when the system is actively
cooled. The convection arising here may be originating from buoyancy forces, or natural
movement of air, e.g., wind. For this reason, sometimes the convection is referred to as
natural convection as the movement of air is not forced onto the system.

Assume an isothermal body subject to radiative cooling and convection with internal
heat generation. The temperature change of such an object at any given point in time is
equal to the heat absorbed from the environment, plus the internal heat generation, minus
the heat released to the environment. Absorption of heat, and the release of heat to the
environment can happen via radiation and convection. The temperature change of such
a system, with internal heat generation (ihg), can then be represented by the following
equation:

C
dT

dt
= radiation + convection + internal heat generation

= εσS(T 4
a − T 4) + hpcS(Ta − T ) + (η1T + η0) , (5.5)

where C is the heat capacity of the body, S is the radiation surface of the object, ε
is the emissivity of the body, and σ is the Boltzmann constant. Here it is assumed
that the internal heat generation is linearly dependent on the temperature of the body:
H(T ) = η1T + η0. Yet, higher order polynomials (up to the 4th order) can be used as
well for the following derivation to hold (see Section 5.3.3).

By rearranging Equation 5.1 the following is obtained:

dT

dt
= 1
C

[−εσST 4 + (η1 − hpcS)T + (η0 + S(hpcTa + εσT 4
a ))]. (5.6)

Here, the right-hand side is a 4th-order polynomial. This becomes clear when the equation
is rearranged and the following variables are introduced κ4 = εσS

C
, κ1 = η1−hpcS

C
, and

κ0 = η0+(hpcTa+εσT 4
a )S

C
:

dT

dt
= −κ4T

4 + κ1T + κ0. (5.7)
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In the next section the differential equation, given by Equation 5.7, is solved. Checking
the units of this equation yields a unit equality (keep in mind that W = J/s):

κ4 = eσS

C
= W

m2K4m
2K

J
= 1
sK3

κ1 = (η1 − h)S
C

=
(
W

m2K
− W

m2K

)
m2K

J
= 1
s

κ0 = η0 + (hTa + eσT 4
a )S

C
=
[
W +

(
W

m2K
K + W

m2K4K
4
)
m2
]
K

J
= K

s
.

And so the units of Equation 5.7 equate:
K

s
= 1
sK3K

4 + 1
s
K + K

s
.

5.3.1 Exact Solution of f(T ) = t

The exact solution is now developed for a differential equation of the form
dT

dt
= −κ4T

4 + κ3T
3 + κ2T

2 + κ1T + κ0, (5.8)

where the constants κ4 ∈ R+
0 and κ{0,1,2,3} ∈ R+. The solution to this equation is found

by separating first the temperature and time variables on the opposite sides:
dT

−κ4T 4 + κ3T 3 + κ2T 2 + κ1T + κ0
= dt∫ 1

T 4 − κ3
κ4
T 3 − κ2

κ4
T 2 − κ1

κ4
T − κ0

κ4

dT = −κ4

∫
dt. (5.9)

The integration of the fraction on the left-hand side can be achieved via partial fraction
decomposition:∫ 1

T 4 − κ3
κ4
T 3 − κ2

κ4
T 2 − κ1

κ4
T − κ0

κ4

dT =
∫ 1

(T − ω1)(T − ω2)(T − ω3)(T − ω4)dT (5.10)

The roots of the 4th-order polynomial in the denominator are obtained via Ferrari’s
theorem [15]. Given that there exist a maximum at one or two real values for T that
satisfy

κ4T
4 =

3∑
i=0

κiT
i,

it can be stated that two roots are real, let’s say ω{1,2}; the other two roots are complex
conjugates (see Section 5.3.3)1. This means that <(ω3) = <(ω4) and =(ω3) = −=(ω4),
and simplifies a few things. As the initial differential equation is real, a real solution
is looked for as well; thus the imaginary part must equate to zero. This is, however,
automatically taken care of as the product of the two complex roots yield a real sum:

1
(T − ω3)(T − ω4) = 1

(T − [<(ω3) + i=(ω3)])(T − [<(ω4)− i=(ω4)])

= 1
(T −<(ω3))2 + =(ω3)2 .

1Appendix A.1.1 explains the case where there are four real, and four complex roots. Such configura-
tions have no physical meaning in the context of our application, however.
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Whence, Equation 5.10 becomes

∫ 1
T 4 − κ3

κ4
T 3 − κ2

κ4
T 2 − κ1

κ4
T − κ0

κ4

dT

=
∫ [

A

(T − ω1) + B

(T − ω2) + CT +D

(T −<(ω3))2 + =(ω3)2

]
dT. (5.11)

Henceforth α = <(ω3) and β = |=(ω3)| and ω1 < ω2 are defined. Then the following
equality must be solved to obtain the values of A, B, C and D:

1
(T − ω1)(T − ω2)((T − α)2 + β2) = A

(T − ω1) + B

(T − ω2) + CT +D

(T − α)2 + β2 , (5.12)

which can be expressed as a system of equations:


0 = A+B + C

0 = D − ω1(B + C)− ω2(A+ C)− 2α(A+B)
0 = α2(A+B) + β2(A+B) + 2α(ω2A+ ω1B)− (ω1 + ω2)D + ω1ω2C

1 = − α2(ω2A+ ω1B)− β2(ω2A+ ω1B) + ω1ω2D

and can be solved via Gaussian elimination:


0
0
0
1

 =


1 1 1 0

−ω2 − 2α −ω1 − 2α −ω1 − ω2 1
α2 + β2 + 2αω2 β2 + 2αω1 + α2 ω1ω2 −ω1 − ω2
−α2ω2 − β2ω2 −α2ω1 − β2ω1 0 ω1ω2

×

A
B
C
D

 . (5.13)

So the expressions for A, B, C and D are obtained:

A = 1
(ω1 − ω2)((α2 + β2)− ω1(2α− ω1))

B = − Aα
2 + β2 − ω1(2α− ω1)
α2 + β2 − ω2(2α− ω2)

C = − (A+B)
D = A(2α− ω1) +B(2α− ω2).

(5.14a)

(5.14b)

(5.14c)
(5.14d)

Continuing with Equation 5.11 yields:
∫ A

(T − ω1) + B

(T − ω2) + CT +D

(T − α)2 + β2dT

=
∫ A

(T − ω1)dT +
∫ B

(T − ω2)dT +
∫ CT +D

(T − α)2 + β2dT

= A ln |T − ω1|+B ln |T − ω2|+ co +
∫ CT +D

(T − α)2 + β2dT,

where co is an integration constant. The last term of the right-hand side may be integrated
via substitution, where u = (T − α)2, then du = 2(T − α)dT , and also v = T−α

β
, then
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dv = 1
β
dT :∫ CT +D

(T − α)2 + β2dT =
∫ C(T − α)

(T − α)2 + β2dT +
∫ αC +D

(T − α)2 + β2dT

= C

2

∫ 2(T − α)
(T − α)2 + β2dT + αC +D

β2

∫ 1(
T−α
β

)2
+ 1

dT

= C

2

∫ 1
u+ β2du+ αC +D

β

∫ 1
(v2 + 1)dv

= C

2 ln |u+ β2|+ αC +D

β
arctan(v) + co

= C

2 ln |(T − α)2 + β2|+ αC +D

β
arctan

(
T − α
β

)
+ co.

Then the solution to Equation 5.8 is as follows∫ 1
T 4 − κ3

κ4
T 3 − κ2

κ4
T 2 − κ1

κ4
T − κ0

κ4

dT = A ln |T − ω1|+B ln |T − ω2|

+ C

2 ln |(T − α)2 + β2|+ αC +D

β
arctan

(
T − α
β

)
+ co, (5.15)

where A, B, C and D are given by Equations 5.14, and ω∗ are the real roots of the
polynomial in the denominator on the left-hand side, α = <(ω3), β = =(ω3), and co is an
integration constant. Now Equation 5.9 can be completed:

− κ4

∫
dt =

∫ 1
T 4 − κ3

κ4
T 3 − κ2

κ4
T 2 − κ1

κ4
T − κ0

κ4

dT (5.16)

t = − 1
κ4

(
A ln |T − ω1|+B ln |T − ω2|+

C

2 ln |(T − α)2 + β2|

+αC +D

β
arctan

(
T − α
β

)
+ co

)
, (5.17)

where the kappa variables for a linear internal heat generation H(T ) are:

κ4 = −eσS
C

, κ3 = κ2 = 0, κ1 = η1 − hpcS

C
, and κ0 = (hpcTa + eσT 4

b )S + η0

C
.

Similarly, for a second-order H(T ) the kappa variables are as follows:

κ4 = −eσS
C

, κ3 = 0, κ2 = η2

C
, κ1 = η1 − hpcS

C
, and κ0 = (η1Ta + eσT 4

b )S + η0

C
.

co must satisfy the initial conditions f(T0) = 0:

co = −A ln |T0 − ω1| −B ln |T0 − ω2|

− C

2 ln |(T0 − α)2 + β2| − αC +D

β
arctan

(
T0 − α
β

)
. (5.18)

A prototype implementation in R of Equation 5.17 is given in Appendix B.1.1.
A system, whose transient behavior is described by Equation 5.17, is in an equilibrium

state if its derivative (Equation 5.8) equates to zero. This happens when the temperature
T equals one of the roots of Equation 5.8. Before ω1 < ω2 was defined, and the two other
roots are complex conjugates. As ω1 is almost always negative in the context of this work,
see Section 5.3.3, the equilibrium temperature Te of the system is defined to be ω2.



Passive Cooling with Internal Heat Generation 87

5.3.2 Dimensionless Solution χ(θ) = τ

Let’s normalize the temperature, of the exact solution to the passive heat equation, by
introducing the dimensionless quantity

θ = T

Te
(5.19)

The equilibrium temperature Te was previously defined to be the positive real root ω2 of
the 4th-order equation. Given θ and Tedθ = dT , then:

−κ4T
4
e

∫
dt =

∫ Te
θ4 − κ3

κ4Te
θ3 − κ2

κ4T 2
e
θ2 − κ1

κ4T 3
e
θ − κ0

κ4T 4
e

dθ

The solution to this equation is similar to the previously defined solution in Equation 5.17:

t = − 1
κ4T 3

e

(
A ln |θ − ω1|+B ln |θ − ω2|+

C

2 ln |(θ − α)2 + β2|

+ αC +D

β
arctan

(
θ − α
β

)
+ co

)
.

When A is brought to the front then

t = − A

κ4T 3
e

(
ln |θ − ω1|+

B

A
ln |θ − ω2|+

C

2A ln |(θ − α)2 + β2|

+ αC +D

βA
arctan

(
θ − α
β

)
+ co

)
.

Here the fraction A/κ4, via Equation 5.14a, has the dimension s as

κ4 = 1
K3s

and A = 1
(K)((K2)−K(K)) = 1

K3 , thus A

κ4
= sK3

K3 = s.

Now, γ can be used to introduce the dimensionless time quantity

τ = t

γ
. (5.20)

Thus the dimensionless solution χ(θ) = τ to the exact heat equation is given by

τ = − 1
T 3
e

(
ln |θ − ω1|+

B

A
ln |θ − ω2|+

C

2A ln |(θ − α)2 + β2|

+ αC −D
βA

arctan
(
θ − α
β

)
+ co

)
. (5.21)

Surprisingly this solution is similar to the solution presented by Besson [10], even
though he modeled a different physical problem. In Section 4 of Besson’s work on analyt-
ical solutions to cooling laws, the author focuses on the combined effect of radiative and
convectional cooling, but not internal heat generation. The differential equation formulat-
ing his cooling problem shows similarities to our passively cooled microprocessor thermal
model. Besson however assumed some simplifications and solved the differential equation
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Figure 5.1: Typical graph of the dimensionless cooling law χ(θ) as per Equation 5.21 showing
the cooling and heating of a body. Constants used are κ4 = −2.24 · 10−10, κ3 = κ2 = 0,
κ1 = −2.39 · 10−13, and κ0 = 0.1, while κ1 is scaled according to the legend. The scaling of κ1
can be understood as a non-linear scaling of the internal heat generation’s slope.

via other methods, not via Ferrari’s theorem as done here. Nonetheless, his solution also
contains three logarithms, one of which contains a second-order polynomial, and an arc-
tan. Because of Besson’s simplifying assumptions, however, his equation is limited to the
case where T − Ta = T + η1

η0
.

Figure 5.1 shows an example of the dimensionless cooling and heating processes as per
Equation 5.21. If one looks carefully, especially where the temperature is approaching
its asymptote, one can observe that the cooling process happens faster than the heating
process. Given the dependence of the radiative cooling on the fourth-power of the tem-
perature, cooling happens faster at larger temperatures than smaller temperatures. If
it was not for the presence of the internal heat generation, the equilibrium temperature
would be equal to the ambient temperature Ta.

5.3.3 Applicability of the Exact Heat Equation
Previously it was assumed that the internal heat generation H(T ) was a linear function,
i.e., polynomial of the first-order with regression constants η{0,1} ∈ R+. Given that the
radiation absorbed or emitted by a body follows a fourth-order polynomial, the implica-
tions of an arbitrary internal heat generation H(T ) up to the third order is discussed. A
heuristic reasoning will show that the analytic solution in the sequel holds for H(T ) up
to the third order under certain conditions.

Let’s define a body that is radiating energy at a rate δ and is subject to other heat
transfer mechanisms described by a polynomial K(T ), e.g., internal heat generation. Let
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Figure 5.2: Visualization of Equation 5.23 for several variations of the right-hand side poly-
nomial (K(T )). Polynomials: 1st order (green,black), 2nd order (red, gray), 3rd order (purple),
and κ4T

4 (blue). The black bullets represent the intersects of each polynomial with κ4T
4.

K(T ) be a polynomial of an order not higher than three. Then the energy stored (Equa-
tion 2.21) into the body at any given time is equal to:

C
dT
dt = −δT 4 +K(T )

= −δT 4 + (κ3T
3 + κ2T

2 + κ1T + κ0), (5.22)

where δ ∈ R+
0 , κ0,1,2,3 ∈ R. δ4 must be positive as −δ4T

4 represents the heat emitted by
the body via radiation. κ0,1,2,3 are the constants of a polynomial describing the function
K(T ). To solve the differential in Equation 5.22, the roots need to be found. This is
easily done analytically via Ferrari’s theorem [15]. In particular, the differential equation
for a fourth order polynomial was solved assuming two real and two complex conjugate
roots. Equation 5.22 is evaluated at Te where CdT/dt = 0 to find its roots:

δT 4
e = κ3T

3
e + κ2T

2
e + κ1Te + κ0. (5.23)

This equality is visualized in Figure 5.2, where the solid blue curve represents the con-
tribution on the left-hand side, and the other dashed lines are possible examples of the
polynomial on the right-hand side. It can be seen that it is easy to construct polynomials
that have two intersections with δT 4. Also, curves can be constructed that intersect δT 4

only in one point (for example the dashed black line in Figure 5.23); such points are
counted as double roots. The dashed gray line is an example of a polynomial without any
intersection with δT 4.

The fundamental theorem of algebra states that an nth-order polynomial has exactly
n roots. Thus Equation 5.22 must have exactly four roots. If K(T ) has one or two
intersections with δT 4, it can be concluded that there exists two real roots, and two
complex roots, which are conjugates following the complex conjugate root theorem. The
complex conjugate root property can be understood as follows. If z is a complex root of
a polynomial f of the nth order: 0 = f(z) = ∑n

i=0 κiz
i, then

0 =
n∑
i=0

κi(z)i =
n∑
i=0

κi (z)i = 0.
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Table 5.1: Parameters assumed for the COMSOL validation simulation. Specific values were
used for the convective heat transfer coefficient (h) and internal heat generation (ihg) such that
the proper equilibrium temperature is attained.

Constants Variables
symbol value dim. symbol value dim.
σ 5.670×10−8 W/(m2K4) ihg min ihg max
ε 0.94 - hheat -4.359 11.144 W/(m2K)
Ta 20 ◦C hcool 2.764 76.939 W/(m2K)
D 2 mm η1 1.053 9.407 mW/K
S 0.01 m2 η0 0.098 1.318 W
C S ×D× 1548709 J/K

This shows that, if z is a complex root of a polynomial, then its complex conjugate z is
a root as well.

In Section 5.3.1 an analytical solution was calculated for the differential equation as
defined in Equation 5.22. The solution presented is applicable for an arbitrary polyno-
mial K(T ) up to the third order with two real and two complex conjugate roots. In
Appendix A.1.1 the solutions are given for a polynomial K(T ) with four imaginary roots
and four real roots.

5.3.4 Validation with Finite Element Analysis
To validate, in the absence of accurate temperature/time experimental data, the passive
cooling solution defined in Equation 5.17, a set of CFD simulations is set up in COMSOL,
where the transient thermal behavior of a slice of silica glass (SiO2) is analyzed, as glass
has the thermal properties close to the ones of a microprocessor. A 3D conjugate heat
transfer scenario was created, with simulation settings as shown in Table 5.1. The exact
same values, as listed in this table, were also used for the theoretical model. As can be
seen in the settings table, hheat igh min is negative. This implies that heat is added to the
system to attain the desired equilibrium temperature. To simulate an isothermal object
in COMSOL the thermal conductivity of the silica glass is multiplied by 103. The silica
glass has a surface area of 0.01 m2. For the heating process T0 is set to 25◦C and Te is
scaled between T0 and 45◦C. Similarly, for the cooling process T0=45◦C and Te is scaled
between T0 and 25◦C. The temperature values chosen correspond to what is typically
encountered when using a mobile device. Linear internal heat generation is used with the
parameters as shown in Table 5.1. The convective heat transfer coefficient was set such
that, with the given internal heat generation, the proper equilibrium temperature is at-
tained. The two different levels of internal heat generation were derived from ARM Cortex
A15 quad-core processor power measurements on the Exynos 5410 SoC introduced in Sec-
tion 3.5. The minimum internal heat generation represents the A15 processor running a
single applications at minimum processor frequency, whereas the maximum internal heat
generation represents the A15 processor running at maximum frequency while executing
four applications in parallel.

Figure 5.3 shows the transient thermal behavior of the silica glass as described above.
On the left, the case for maximum internal heat generation is shown and, on the right,
for minimum internal heat generation. Both the cooling and heating processes are shown
in the same graph. Data for various surface areas and equilibrium temperatures was
generated but all graphs look similar; hence not all are shown. Our model curves follow
the COMSOL curves well. The maximum temperature difference between our model and



Passive Cooling with Internal Heat Generation 91
1

time (s)
0 100 250 400 550 700 850 1000

te
m

pe
ra

tu
re

(◦
C

)
29

8
30

1
30

4
30

7
31

0
31

3
31

6

model
COMSOL
SPICE

(a) maximum internal heat generation

1

time (s)
0 1000 2000 3000 4000 5000 6000

te
m

pe
ra

tu
re

(◦
C

)
29

8
30

1
30

4
30

7
31

0
31

3
31

6

model
COMSOL
SPICE

(b) minimum internal heat generation

Figure 5.3: Transient thermal behavior of an isothermal slice of silica glass as per COMSOL,
the analytical model and SPICE simulations given the parameters in Table 5.1. The SPICE
simulations follow the analytical model well. The discrepancy between the CFD results and the
analytical model is no larger than 0.5◦C.

the COMSOL results is less than 0.5◦C. Though, the COMSOL transient data seems to
have a slightly steeper slope than our theoretical model. This could be originating from
the fact that the COMSOL object is not 100 % isothermal. Besides the small temperature
discrepancy between our analytical model and the COMSOL data, the model is deemed
an appropriate solution for passive cooling with internal heat generation.

Figure 5.3 also shows the results of a simulated electrical circuit in SPICE, modeling
the same cooling problem, based on the current/thermal equivalence2. The SPICE simula-
tions follow the analytical results systematically well. The maximum difference is around
25 mK, which is negligibly small.

5.3.5 Thermal Runaway
Thermal runaway of a system occurs when the system’s internal heat generation becomes
larger than its total heat dissipation capabilities. At this point the system enters an
irreversible process where the heat generation engages in a feedback loop that leads to a
self heating process. This temperature feedback loop continues until the system destroys
itself, something that should, for obvious reasons, be avoided. Systems with temperature-
dependent internal heat generation, such as microprocessors, are most prone to thermal
runaway. For microprocessors, the temperature-dependent leakage currents contribute
most to the effect of thermal runaway. During a thermal runaway the power consumption,
and hence also the energy consumption, increases as the temperature inflates. Liao et
al. [69] formulated mathematically the conditions for a thermal runaway:

1. dT/dt > 0: the temperature must be increasing;

2. d2T/dt2 > 0: the increment of internal heat generation is larger than the increment
in system’s power heat removal capabilities.

2The source code for the SPICE simulation is given in Appendix B.1.3.
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When both criteria are met, the system falls back to an infinite heating loop. Thus under
no circumstances should the system surpass this critical temperature point. IC designers
usually state a maximum operation temperature for ICs that should not be surpassed.
For example, the OMAP 4470 dual-core applications processor’s datasheet states that the
absolute maximum junction temperature has to remain below 125◦C and the maximum
average junction temperature be below 110◦C. Such temperature limits lay below the
point of thermal runaway by a safe margin. This safety temperature limit does not only
prevent thermal runaways, but also prevents possible irreversible hardware damage to
the IC due to excessive temperature, e.g., dielectric breakdown, or creep in the bonding
materials [17].

Figure 5.4 provides visual aids for understanding thermal runaway. In Figure 5.4(a) the
first derivative of temperature is shown, which is essentially the graphical representation
of Equation 5.5. Three distinct parts are identified in the graph: dT/dt > 0 on the left
for heating, dT/dt < 0 in the middle for cooling, and on the right again dT/dt > 0 for
thermal runaway. The system is in a state of thermal runaway only in the right most
part as there the second derivative is positive, see Figure 5.4(b). Figure 5.4(c) shows the
effect of thermal runaway for various initial temperatures T (t = 0) = T0. The equilibrium
temperature of the system here is 83.21◦C; all curves for T0 below the point of thermal
runaway Ttr asymptotically approach this temperature. All curves above the point of
thermal runaway, i.e., Ttr=146.25◦C, accelerate into infinity. Note that the system is very
sensitive around the point of thermal runaway. This is better visible in Figure 5.4(d); here
the internal heat generation is scaled for a fixed temperature T0 at t = 0. In this case,
when the temperature doesn’t approach a horizontal asymptote it is deemed potentially
thermally unstable, and prone to thermal runaway. The point where the system becomes
potentially thermally unstable in this example is around a ihg scale of 1.51. Here, the
ihg scaling factor could reflect the microprocessor’s clock frequency of Procedure 3.2.
The internal heat generation increases for higher clock frequencies, see Chapter 3. The
maximum internal heat generation of this power model is at 1.6 GHz. This means that
this system has the potential to become unstable when residing too long in maximum
power mode. In Figure 5.4(d), under those conditions, the temperature starts to increase
exponentially around 1500 s or 25 min. Very small steps in frequency around 1.51 GHz
yield a large difference in thermal runaway behavior. In all cases the temperature tends
to infinity, but dT/dt is very sensitive for small frequency steps. The power model used
to generate this example, and Figure 5.5, was shown to be representative between 25◦C
and 85◦C in Section 3.6. Here the model is extrapolated up to 300◦C; the resulting graphs
should thus be taken with a grain of salt.

Let us analyze the point of thermal runaway for a system as was described, for the
COMSOL simulations, in Table 5.1, for passively cooled and actively cooled systems,
respectively. Figure 5.5 provides visual aids to understand thermal runaway. Figure 5.5(a)
shows the point of thermal runaway Ttr for a passively cooled system for different levels
of internal heat generation. Ttr drops for smaller surface areas. The smaller the surface
area, the less effectively a system can dissipate heat to its environment; therefore it is
understandable that Ttr decreases for smaller surface areas. The temperature difference
between the smallest and largest surface areas is between 150◦C and 175◦C, respectively,
depending on the magnitude of the internal heat generation. For each increased clock
frequency step, or about 15 % more internal heat generation, Ttr drops 8◦C. The ratio of
Ttr for an actively cooled system over a passively cooled system with equal equilibrium
temperature is depicted in Figure 5.5(b). The average discrepancy between the Ttr for
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Figure 5.4: Thermal runaway exemplified for a system subject to radiative, convective cooling
and internal heat generation: h=6 W/(m2·K), Ta=20◦C, S=0.01 m2, C=30 J/K, and internal
heat generation (ihg) as per Procedure 3.2 for f=1.4, and c=4. For a fixed ihg in Figure (c), the
equilibrium temperature is Te=83.21◦C, and the point of thermal runaway is at Ttr=146.25◦C.
Figures (a) and (b) show the conditions for a thermal runaway: dT/dt > 0 and d2T/dt2 > 0.
Figure (c) shows the transient temperature for various values of T (0)=T0. Figure (d) scales the
internal heat generation for a fixed T0=65◦C. A red horizontal dotted line is drawn at T=125◦C
indicating a typical maximum junction temperature for applications microprocessors.
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Figure 5.5: Point of thermal runaway Ttr for a passively cooled system (a) with properties as
listed in Table 5.1, with different levels of internal heat generation (ihg) and surface areas. (b)
shows the ratio of Ttr for an actively cooled system over a passively cooled system with the same
equilibrium temperature is shown on the left.

active and passively cooled systems is around 10 %. For smaller surface areas, the ratio
seems to drop fast, the latter for the same reasons as will be explained in Section 5.4.

5.3.6 Approximate Solutions to f(t) = T

The exact solution for the passive heat Equation 5.17 is of the form f(T ) = t. Ideally, for
practical motivations, the inverse f(t) = T is likely to be known. For example, this may
be convenient for the equation to be used by DTMs, TMUs, and in proportional-integral-
derivative (PID) controller systems. Calculating the inverse of Equation 5.17 is, however,
a challenging endeavor. Therefore, some effective approximations are assumed to obtain
an invertible heat equation.

Finding a useful expression f(t) = T requires isolating T in Equation 5.17. Mainly
the presence of the arctan throws a monkey wrench in the mathematical derivation.
Linearization or differential approximation will not provide any help as the derivative
within the pertinent temperature range, i.e., between 20◦C and 55◦C, is far from being
constant. Converting the arctan into a logarithm introduces imaginary numbers, yet,
applying complex exponentiation rules will not get rid of the arctan either. The arctan
keeps recurring further on in the derivation. So a different approach is to be taken to come
to a solution for f(t) = T , mainly by assuming some simplifications. In the sequel the
following chosen approximations are analyzed: quadratic approximation of the radiation,
and binomial expansion of the first and second-order, also referred to as the O’Sullivan
approximations. Figure 5.6 shows an illustrative example of the exact solution and the
approximations. The approximations were computed with the exact same values as the
exact solution. It can already be observed that the approximations are not perfectly
accurate. Section 5.3.7 is devoted to the performance comparison of the approximations
and the exact solution.
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Figure 5.6: Illustration of the discussed approximate solutions to f(t) = T . Both the cooling
and heating processes of a slice of silica glass are depicted: S=0.1m2, Tmax=55◦C, Tmin=35◦C.
The same values were used to generate the exact solution and the approximations. Note that
the approximations are not perfectly following the exact solution.

The Coefficient Approximation

Stefan-Boltzmann’s law of radiation states that the energy emitted by radiation is pro-
portional to T 4 (Stefan-Boltzmann’s law: Equation 2.27). Because of this term the poly-
nomial of Equation 5.7 is of the fourth-order. More specifically, it are the two imaginary
roots of the fourth-order polynomial that introduce the arctan in Equation 5.17. If T 4

were to be approximated with a second-order polynomial then the heat equation is as-
serted to have two real roots, and the arctan would disappear. Hence, isolating T will
be less difficult. The quadratic approximation

T 4 = q0 + q1T + q2T
2

= 29700057265− 251483462T + 598262T 2, (5.24)

where T is expressed in Kelvin, introduces an error for 20◦C < T < 65◦C up to 0.072 %,
which is very acceptable. Then the quadratic approximation to Equation 5.8 would be
equal to solving

dT

dt
= κ2T

2 + κ1T + κ0. (5.25)

The solution to this equation, assuming two real roots ω∗ = (−κ1 ±
√
κ2

1 − 4κ2κ0)/(2κ2)
and that κ2 < 0:

t = − 1
κ2

(A ln |T − ω1|+B ln |T − ω2|+ co) , (5.26)
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where A = 1/(ω2 − ω1) and B = −A. Now T can be isolated as follows:

t+ co
κ2

= −A
κ2

(ln |T − ω1| − ln |T − ω2|)

−κ2t+ co
A

= ln
(
|T − ω1|
|T − ω2|

)

coe
−κ2
A
t = |T − ω1|

|T − ω2|
. (5.27)

Let’s define ω1 and ω2 such that ω1 < ω2. In this case, T is always larger than ω1, which
will be approximately around 100 K for problems around room temperature. Thus, as the
temperature range 0◦C < T < 100◦C is of primal concern, T will always be larger than
ω1. Hence it can be assumed that T − ω1 > 0. The presence of |T − ω2| in Equation 5.27
forces us to distinguish two cases, i.e., where T > ω2 and T < ω2. This corresponds
either to the heating or the cooling process, respectively. Bear in mind that ω2 is also the
equilibrium temperature Te of the system. Thus if T = ω2 = Te, then the temperature of
the system is stable over time. Let’s look at the cooling process first. If T > ω2, then

T − ω1 = (T − ω2)coe−
κ2
A
t

T − coe−
κ2
A
tT = ω1 − ω2coe

−κ2
A
t

T = ω1 − ω2coe
−κ2
A
t

1− coe−
κ2
A
t

T =
−κ1 +

√
κ2

1 − 4κ2κ0 + (κ1 +
√
κ2

1 − 4κ2κ0)coe−
κ2
A
t

2κ2(1− coe−
κ2
A
t)

T =

√
κ2

1 − 4κ2κ0(1 + coe
−κ2
A
t)

2κ2(1− coe−
κ2
A
t)

− κ1

2κ2
(5.28)

and accordingly, for T < ω2, or the heating process, one gets:

T =

√
κ2

1 − 4κ2κ0(1− coe−
κ2
A
t)

2κ2(1 + coe
−κ2
A
t)

− κ1

2κ2
, (5.29)

where co is an integration constant used to meet the initial condition f(0) = T0:

co = |T0 − ω1|
|T0 − ω2|

=
|2κ2T0 + κ1 −

√
κ2

1 − 4κ2κ0|

|2κ2T0 + κ1 +
√
κ2

1 − 4κ2κ0|
.

The equilibrium temperature Te is defined by the positive real root ω2. A prototype
implementation of Equation 5.29 is provided in Appendix B.1.2.

In the above expound, the coefficients q∗ in Equation 5.24 are fixed. These values
were chosen to fit best in a certain temperature range. To be more universally applicable,
however, the coefficients could be generated dynamically such that they are optimally
tailored to the temperature range of concern.

The First Order O’Sullivan Approximation

O’Sullivan [82] presented an approximation for a cooling law including convection and ra-
diation, but without the presence of internal heat generation. Though, his approximation
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can be extended with internal heat generation. An alternative formulation of the internal
heat generation is used such that a variable substitution can be applied more easily later
on: H(T ) = η1T + η0 = η1(T − Ta) + η1Ta + η0. The initial definition of the passive heat
Equation 5.5 then becomes

−C dT
dt = εσS(T 4 − T 4

a ) + hS(T − Ta)− (η1(T − Ta) + η1Ta + η0)

= εσS(T 4 − T 4
a ) + (hS − η1)(T − Ta)− (η1Ta + η0).

Let’s introduce the variable θ = T − Ta:

−C dθ
dt = εσS((θ + Ta)4 − T 4

a ) + (hS − η1)θ − (η1Ta + η0).

Now, binomial expansion3 to (θ − Ta)4 can be applied, whence:

− C dθ
dt = εσS[(θ4 + 4Taθ3 + 6T 2

a θ
2 + 4T 3

a θ + T 4
a )− T 4

a ] + (hS − η1)θ − (η1Ta + η0)

= εσS(θ4 + 4Taθ3 + 6T 2
a θ

2) + (hS − η1 + 4εσST 3
a )θ − (η1Ta + η0)

= kθ4 + lθ3 +mθ2 + nθ + p, (5.30)

where the coefficients are as follows, with magnitude estimates for surface areas ≈1 dm2:

k = εσS (∼ 10−10)
l = 4εσSTa (∼ 10−7)
m = 6εσST 2

a (∼ 10−5)
n = (hS − η1 + 4εσST 3

a ) (∼ 0.01)
p = −(η1Ta + η0) (∼ 1).

Now, if (T − Ta) is not too large the series on the right-hand of Equation 5.30 side
converges reasonably fast [82]. Depending on the accuracy desired, the higher-orders may
be dropped. Let’s see how well the first-order and second-order approximations fit. As
expected, the first-order approximation yields also an exponential:

−C dθ
dt = nθ + p∫ 1

θ + p/n
dθ = − n

C

∫
dt

ln(θ + p/n) = − n
C
t+ co

θ = coe
− n
C
t − p

n
,

where co is an integration constant such that θ(t = 0) = T0:

co = θ0 + p

n
= (T0 − Ta) + p

n
.

And so the first-order O’Sullivan approximate solution is:

T =
(
T0 − Ta + p

n

)
e−

n
C
t − p

n
+ Ta. (5.31)

3Binomial expansion of the 4th order: (x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.
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Surprisingly, this approximation is a pure exponential function. The equilibrium temper-
ature Te and the convection heat transfer coefficient h at Te are given by:

Te = η0 + η1Ta
hS − η1 + 4εσST 3

a

+ Ta

h = η0 + η1(Te − Ta)
S(Te − Ta)

− 4εσT 3
a

A prototype implementation of Equation 5.31 is provided in Appendix B.1.2.

The Second Order O’Sullivan Approximation

The second-order O’Sullivan approximation is a bit more complex compared to the first-
order O’Sullivan approximation. Moreover, the derivation looks also significantly different
to the original derivation of O’Sullivan [82], given the presence of the constant term p in
Equation 5.30. The second-order O’Sullivan approximation is similar to the quadratic
approximation in the sense that solving

− C dθ
dt = mθ2 + nθ + p (5.32)

is similar to solving Equation 5.25. Thus the solution for the second-order O’Sullivan
approximation will be the same as for the quadratic approximation, besides the constants.
It can thus be stated that the second-order O’Sullivan approximation is given by:

T = ω1 ± ω2coe
m
AC

t

1± coe
m
AC

t
+ Ta, (5.33)

where “±” becomes “+” for T > Te, and “−” for T < Te. ω∗ is given by:

ω1 = −
√
n2 − 4pm− n

2m and ω2 =
√
n2 − 4pm− n

2m .

The constant A and integration constant co such that θ(0) = θ0 are:

A = − 1
ω2 − ω1

and co = |θ0 − ω1|
|θ0 − ω2|

, (5.34)

where θ0 = T0 − Ta. The equilibrium temperature Te is defined by ω2 + Ta.

Alternative Second Order O’Sullivan Approximation

Alternatively, the second-order O’Sullivan approximation can also be computed as follows,
yielding a solution with a hyperbolic tangent. Rearranging Equation 5.32 reveals an
alternative formulation:

mθ2 + nθ + p = m

(
θ2 + 2 n

2mθ + n2

4m2 −
n2

4m2 + p

m

)

= m

((
θ + n

2m

)2
−
(
n2 − 4mp

4m2

))
, (5.35)
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which when integrating its inverse (1/f(θ)), yields an inverse hyperbolic tangent, knowing
that strictly {m,n} ∈ R+

0 and p ∈ R−0 :∫ 1
(θ + a)2 − b

dθ = − 1√
b

atanh
(
θ + a√

b

)
.

Though, the hyperbolic arctangent comes with the constraint that the function is only
defined within

∣∣∣ (θ+a)√
b

∣∣∣ < 1. Thus translating this constraint to Equation 5.35 yields:
(
θ + n

2m

)2
− n2 − 4mp

4m2 < 0

T <

√
n2 − 4mp

4m2 − n

2m + Ta = Te,

which means concretely that, for the hyperbolic tangent to be satisfied, T < Te. This
corresponds to the heating process. For the cooling process, the hyperbolic tangent is to
be replaced with the hyperbolic cotangent coth in the sequel. The hyperbolic cotangent
is defined for

∣∣∣ (θ+a)√
b

∣∣∣ > 1. Let’s express the alternative solution to the second-order
O’Sullivan approximation for the heating process:∫ 1

mθ2 + nθ + p
dθ = − 1

C

∫
dt

1
m

∫ 1(
θ + n

2m

)2
−
(
n2−4mp

4m2

)dθ = − 1
C

∫
dt

− 1
m
√

n2−4mp
4m2

atanh
 θ + n

2m√
n2−4mp

4m2

 = − 1
C
t+ co,

where atanh is the inverse hyperbolic tangent. Let’s define the variable w =
√
n2 − 4mp:

atanh
(

2mθ + n

w

)
= w

2C t+ co

θ = w

2m tanh
(
w

2C t+ co

)
− n

2m
T = w

2m tanh
(
w

2C t+ co

)
− n

2m + Ta, (5.36)

where co an integration constant that must satisfy the initial condition θ(t = 0) = T0−Ta:

co = atanh
(

2m(T0 − Ta) + n√
n2 − 4mp

)
.

Similarly, for the cooling process:

T = w

2m coth
(
w

2C t+ co

)
− n

2m + Ta, and co = acoth
(

2m(T0 − Ta) + n√
n2 − 4mp

)
, (5.37)

where coth is the hyperbolic cotangent, and acoth is the inverse hyperbolic cotangent.
The equilibrium temperature Te of the system is defined for t→∞:

Te =
√
n2 − 4mp− n

2m + Ta. (5.38)
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Table 5.2: Recapitulation of approximations to the exact inverse cooling law f(t) = T . The
quadratic coefficient and the first and second-order O’Sullivan approximations are shown to-
gether with their equilibrium temperature.

Approximation T (t) T (∞) = Te

Coefficient T = ω1 ± ω2coe
−κ2
A t

1± coe−κ2
A t

Te =
√
κ2

1 − 4κ2κ0 − κ1

2κ2

O’Sullivan 1st T =
(
T0 − Ta + p

n

)
e− n

C t − p

n
+ Ta Te = − p

n
+ Ta

O’Sullivan 2nd T = w

2m tanh
( w

2mt+ c0

)
− n

2m + Ta Te =
√
n2 − 4mp− n

2m + Ta

A prototype implementation of Equations 5.36 and 5.37 is provided in Appendix B.1.2
Surely, the solution of the alternative second-order O’Sullivan approximation in Equa-

tion 5.36 must be equal to the exponential-based solution of Equation 5.33. This can be
shown by replacing the tanh by its exponential representation and expressing the atanh
by its logarithmic representation. The resulting proof is given in Appendix A.1.2.

5.3.7 Battle of the Approximate Solutions
Let’s analyze the accuracy of the approximations of Section 5.3.6. The measure of accu-
racy is defined as the root-mean-square error (RMSE)4 between the exact cooling solution
and an approximate solution. The number of samples over which the RMSE is computed
was set to 500 and equally spaced between 0 < t < f(0.99 · Te). The exact cooling law
and its approximations are generated with the same constants as the COMSOL simula-
tion in the previous section; these are listed in Table 5.1. The accuracy for changing
surface area S is investigated, together with internal heat generation (ihg), equilibrium
temperature Te, and for the cooling and warming process separately. T0=25◦C is set for
the heating process and T0=55◦C for the cooling process. The equilibrium temperature
Te is scaled between 25◦C and 55◦C. The convective heat transfer coefficient is computed
accordingly to attain the respective equilibrium temperatures based on Equations 5.4 and
5.38. The variables generated for the exact cooling law are then used to compute the
approximations.

Table 5.2 shows an overview of the three different approximations considered. Fig-
ure 5.7 shows the RMSE of the approximations for different surface areas, internal heat
generation and equilibrium temperature settings. From all graphs the quadratic ap-
proximation is clearly performing best. Also, the second-order O’Sullivan approximation
is considerably better than the first-order O’Sullivan approximation. However, for very
small surface areas the errors in all approximations are acceptable. Interestingly, the
first-order O’Sullivan approximation does well for small surface areas, because the radia-
tive part in the heat equation becomes negligible for smaller surface areas, and so the
passive heat equation tends towards an exponential cooling law. Consequently the first-
order O’Sullivan approximation, being an exponential function, is able to approximate
the accurate cooling law well for very small surface areas: S < 0.005 m2.

4The root-mean-square error is defined in Appendix A.3.
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Figure 5.7: Root mean-square error (RMSE) between the exact cooling law and the approx-
imations. On top (a,b) the surface area of the object under study is a variable (Te=55◦C),
whereas the equilibrium temperature Te is variable in the bottom graphs (S=0.01m2) (c,d).
The Quadratic Approximation seems to outperform the other approximations. The Second-
order O’Sullivan approximation is performing acceptably well for small values of |T − Ta|.
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The errors for small internal heat generation seem to be systematically larger than
the errors for the maximum internal heat generation case. The same observation can be
made for the heating and cooling processes. The heating approximation seems to be more
erroneous than the cooling process.

For variable equilibrium temperatures it is seen that, the higher the temperature, the
error increases for the heating process and descends for the cooling process. In the deriva-
tion of the O’Sullivan approximations it was assumed that T−Ta remains relatively small.
This implies that the larger T departs from Ta the more imprecise the approximation be-
comes. For the cooling process T0=55◦C and the equilibrium temperature Te was scaled
between 25◦C and 55◦C. Similarly, for the heating process T0 was set to 55◦C and Te was
scaled between 25◦C and 55◦C. In both cases Ta was fixed to 20◦C. Thus as the cooling
process approaches Ta for increasing |T0 − Te|, T − Ta becomes smaller, and hence also
the error between the O’Sullivan approximations and the exact cooling law. The reverse
observation is also valid for the heating process; RMSE becomes larger for larger values
of T − Ta. The error properties in the case of the quadratic approximation depends on
the fit of the second-order polynomial on the (quadratic) radiation function.

Let’s define an additional measure of accuracy. Whereas the RMSE is perhaps hard
to mentally represent, the temperature error Θ is introduced to be more tangible. The
temperature error Θ is defined as the distance between the exact solution ψ and its
approximations φ evaluated at their respective equilibrium temperature:

Θ = |ψ(t =∞)− φ(t =∞)|. (5.39)

Figure 5.8 shows Θ for variable surface area S and equilibrium temperature Te, with the
same conditions as before. The quadratic approximation is no longer the overall win-
ner based on the temperature difference at equilibrium temperature. In Figure 5.8(a)
and 5.8(b), especially for a small surface area, the cooling of the O’Sullivan approxi-
mations perform well. For the heating process, the errors become quite large, even to
such an extent that the first O’Sullivan approximation should really be avoided. In Fig-
ure 5.8(c) and 5.8(d), as |T −Ta| becomes smaller, the O’Sullivan approximations perform
increasingly better, as expected. Though, as before, the first-order O’Sullivan approxi-
mation should be used with caution, notably when the internal heat generation is small.
The second-order O’Sullivan approximation and the quadratic approximation stay almost
always below 1◦C temperature error.

Overall, it is not advised to use the first-order O’Sullivan approximation, unless the
surface area is really small. The second-order O’Sullivan approximation can be used but
with caution. The equilibrium temperature should not depart too much from the ambient
temperature Ta; T−Ta < 15◦C seems acceptable. The use of the quadratic approximation
is, however, recommended, even though the solution isn’t much elegant when the large
polynomial coefficients are introduced.

5.3.8 Impulse Responses
The solutions f(t) = T from the previous sections represent the temperature response of
the system to a (Heaviside) step function , i.e., the step response. The Heaviside function
can practically be thought of as a microprocessor’s transition from one regime to another,
having different ξ values. To obtain the temperature response for an arbitrary power
input, the convolution of the impulse response of f(t) with the arbitrary power trace can
be computed. The impulse response δ(t) of f(t) is obtained by the first derivative of the
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Figure 5.8: Temperature difference at equilibrium temperature between the exact heat equa-
tion and its approximations. On top (a,b) the surface area of the object under study is a
variable (Te=55◦C), whereas the equilibrium temperature Te is variable in the bottom graphs
(S=0.01m2) (c,d). The quadratic approximation seems to the best choice on the average. The
second-order O’Sullivan approximation is performing acceptably as well.
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step response. Then, the convolution of the impulse response with an arbitrary power
trace is given by

(P ∗ δ)(t) =
∫ ∞
−∞

P (τ) δ(t− τ) dτ. (5.40)

As the exact inverse of f(T ) = t is not know, for reasons explained in the previous
sections, the impulse response is obtained from its approximations. Let us state the
impulse response δ(t) of the quadratic approximation and the tangent expression of the
second-order O’Sullivan approximation:

• Quadratic Approximation:

δ(t) =
−ω2c0

κ2
A
e−

κ2
A
t

1− c0e
−κ2
A
t
−
cκ2
A
e−

κ2
A
t(ω2c0e

−κ2
A
t + ω1)

(1− c0e
−κ2
A
t)2

;

• Second-order O’Sullivan Approximation:

δ(t) = w

2m

(
1− coth2

(
w

2C t+ co

))
.

Computing the convolution of the power with any of these impulse responses may
incur considerable overhead. For TMUs or DTMs in low-power systems this may not be a
tractable approach to energy optimization.

5.4 Passive and Active Cooling Law Comparison
Given the intrinsic complexity of the (inverse) function describing passive cooling com-
pared to the rather straightforward exponential specification of other cooling modes, it
is worth investigating in which cases dealing with it in practice is necessary. A series of
simulations are run to understand under what circumstances the passive and active cool-
ing law differ from each other. The main difference between the active and the passive
cooling law is the presence of the radiative heat transfer mode. Thus, if the radiative heat
transfer is negligible compared to the convective heat transfer, the passive cooling law
will approach an exponential cooling law. Such situations are explored based on concrete
microprocessor use cases. Let’s recall the equations governing the cooling process of a
passively and actively cooled isothermal body with internal heat generation:

active cooling: C
dT

dt
= hacS(Ta − T ) +H(T ) (5.1)

passive cooling: C
dT

dt
= hpcS(Ta − T ) +H(T ) + εσS(T 4

a − T 4), (5.5)

and their respective convective heat transfer coefficients h, at equilibrium temperature:

active cooling: hac = H(Te)
S(Te − Ta)

(5.42a)

passive cooling: hpc = εσS(T 4
a − T 4

e ) +H(Te)
S(Te − Ta)

, (5.42b)

where H(T ) is a function defining the temperature-dependent internal heat generation of
the body. In Section 3.6, it was shown that H(T ) is well described by an exponential
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Table 5.3: Parameters assumed for the comparison of the active and passive cooling laws. Two
internal heat generation settings are used defined by the first and second values of α, β and γ.

Constants Variables
symbol value dim. symbol value dim.
σ 5.670× 10−8 W/(m2·K4) S [0, 6]×10−3 m2

ε 0.94 - C S ×D × cv J/K
Ta 20 ◦C T [25, 85] ◦C
D 2 mm h (see Equation 5.42) W/(m2·K)
cv 1708800 J/(m3· K) α {0.396, 4.030} W

β {29.015, 32.010} -
γ {82.738, 149.797} -

equation. Even more, within the temperature range 25◦C < T < 55◦C, the exponential
can be approximated adequately with a linear or quadratic polynomial. Though, for a
more extended temperature ranges, 25◦C < T < 85◦C, an exponential function is advised.

The active and passive cooling of a microprocessor are compared in the context of an
embedded system, i.e., a low-power microprocessor subject to internal heating generation
and cooling. In order to do so, a simplified microprocessor model was assumed: an
isothermal volume, with the physical properties of silicon-dioxide (SiO2), and cooled via
convection and radiation. Table 5.3 shows the values used in the simulations. The table
lists the fixed variables: σ, ε, Ta and D. The emissivity of PVC for ε was chosen and was
fixed Ta to be representative for room temperature. The height of our microprocessor D is
characteristic for a modern SoC. The variables that may vary during the analysis are also
listed. The impact of the surface area S over which the device cools via convection and
radiation was studied. The minimum size was set to a square with a side of 1 cm. This
is representative for a small SoC; for example, the Samsung Exynos 5410 SoC has a side
length of 1.6 cm. The maximum surface area was set to 0.1 m2, which is a representative
area for a large tablet. The behavior of the system was analyzed within the temperature
range T ∈ [25, 85]◦C. Throughout the analysis the internal heat generation H(T ) was
defined to be an exponential function (α+e(T−γ)/β); the coefficients are shown in Table 5.3
as pairs. The left values are for minimal internal heat generation, the right values for
maximum internal heat generation. The values for α, β and γ were derived from the
A15 power and temperature measurements of the Samsung Exynos 5 SoC as reported in
Chapter 3. The system’s behavior is studied when the A15 is running at full capacity, i.e.,
at 1.6 GHz, and when the A15 is running in lowest-power mode; at 800 MHz. The heat
capacity of the body C is the product of its volume S ×D and its specific heat capacity
and density (≈ 0.712 · 2.4× 106).

5.4.1 Convective Heat Transfer Coefficient Ratio
First, the ratio of the convective heat transfer coefficients of the passive and the active
cooling cases is looked at. The temperature T0 at t=0 is set to 25◦C. Then the respective
convective heat transfer coefficients are computed as per Equations 5.42 based on a series
of equilibrium temperatures Te. The ratio of the convective heat transfer coefficients rcr
is given by

rcr = hpc

hac
= εσS(T 4

a − T 4
e ) +H(Te)

H(Te)
.

rcr describes how much the active and passive cooling law will resemble. If rcr = 1 there
is no difference between the two cooling cases. The more rcr tends to zero, the more the
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Figure 5.9: Ratio between the convective heat transfer coefficients of active and passive cooling
at a given equilibrium temperatures Te (see curve labels in ◦C). In Figure (a) the internal heat
generation is set to a maximum, while in (b) it is set to a minimum. The vertical dashed lines
represent typical surfaces of a SoC (≈ 2.5 cm2), a smartphone (≈ 70 cm2) and a tablet (≈ 5 dm2).
A horizontal dotted reference line is drawn at rcr = 0.95.

two cooling laws will deviate in behavior.
Figure 5.9 shows the ratio of the convective heat transfer coefficient of the passive and

the active cooling cases. Given that rcr stays well above 0.95, it is observed that, for a
small object, similar to SoCs (left most vertical dashed line), the difference between active
and passive cooling will be very small for all equilibrium temperatures ranging between
20◦C to 85◦C. For a moderate surface size, e.g., the size of an average smartphone (middle
vertical dashed line), the radiative cooling starts to become more prominent already for
temperatures close to the ambient temperature Ta. For equilibrium temperatures more
than about 5◦C above Ta, signs of deviating behavior will become clearly visible. Large
surface sizes and equilibrium temperatures close to Ta will yield a rcr which is smaller
than 0.95. This implies that the radiative cooling for large surfaces should be taken into
account. As a general rule of thumb, the larger the equilibrium temperature and the
cooling surface, the more behavioral differences between passive and active coolings will
occur. So how large are the differences temperature-wise in particular?

When looking at the temperature differences between the passive and active cooling
laws at specific points in time, we must differentiate between the cooling and heating pro-
cesses. Convective heat transfer is proportional to the difference of the body temperature
and the ambient temperature, and is therefore independent of the body’s absolute temper-
ature and environment. This results in a symmetry between the heating and the cooling
process for the convective heat transfer. The radiative heat transfer, on the other hand,
is dependent on the absolute value of the body and the environment. This is illustrated
as follows for the convective and radiative heat transfer respectively:

|hS(T − (T −∆T ))| = |hS(T − (T + ∆T ))|
|εσS(T 4 − (T −∆T )4)| 6= |εσS(T 4 − (T + ∆T )4)|. (5.43)

As a consequence, due to the last inequality, the radiative heat transfer process will not
be symmetric for the cooling and the heating processes. Moreover, when radiative heat
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transfer is combined with convective heat transfer, the symmetry property of the heating
and cooling processes will not hold either.

5.4.2 Temperature Lag
Let’s define the temperature lag ∆T between an actively and passively cooled identical
body, measured at the moment when the passively cooled body reaches a reference temper-
ature Tpc. The reference temperature Tpc is henceforth defined as Tpc = 0.85(Te−T0)+T0,
i.e., when the body temperature has reached 85 % of its equilibrium temperature, starting
from T0. It is also assumed that both the passively and actively cooled bodies have the
same internal heat generation process and initial condition T0 at t = 0. Figure 5.10 shows
the relative temperature lag ∆τ , which is defined as the absolute temperature lag ∆T
divided by the temperature difference at t = 0 and at equilibrium, i.e. , |Te − T0|:

∆τ = ∆T
|Te − T0|

= Tpc − Tac

|Te − T0|
. (5.44)

The relative temperature lag ∆τ is depicted in Figure 5.10 for both a large and small
internal heat generation, as defined before, and for the heating and cooling processes
separately. A dotted reference line is drawn at ∆τ = 5 %. Data points on the right of the
dashed blue line show configurations with one or more negative convective heat transfer
coefficients. This implies that in these cases additional heat needs to added to the system
to attain the target equilibrium temperature.

For the case of large internal heat generation, the relative temperature lag ∆τ for
small surfaces stays below 0.5 % meaning that the presence of radiative heating will be
quasi unnoticeable here. ∆τ stays around 5 %, in the case of small internal heat genera-
tion, which may be difficult to spot. Contemporary on-die processor temperature sensors
report frequently temperatures in steps of 1◦C. Given this quantization noise, a relative
temperature lag of 5 % could be hard to identify when |Te − T0| > 20◦C. So for small
microprocessor temperature variations, it is again unlikely that a contemporary micro-
processor temperature sensor is able to distinguish between active and passive cooling.
For a smartphone-size cooling surface, the relative temperature lag varies significantly
depending on the situation. For a large internal heat generation and heating, there is
less than 5 % difference between passive and active cooling. For the other cases, however,
the discrepancy between the passive and active cooling can run up from nil to as high
as 10 %, depending on the equilibrium temperature. ∆τ = 10 % is already noticeable at
|Te − T0| > 10◦C in the presence of 1◦C quantization noise. The data for the tablet-sized
cooling surfaces is mostly not of our concern as the convective heat transfer coefficients
for passive and active cooling are negative. This means that heat needs to be added to
the system to attain the given equilibrium temperature.

Generally speaking, it was noticed that the relative temperature lag ∆τ for the heat-
ing case is smaller than for the cooling case. This can be explained via the inequality of
Equation 5.43. The radiative heat transfer coefficient will have greater weight when the
body’s temperature is larger than the equilibrium temperature than when the tempera-
ture is below the equilibrium, hence inflating the discrepancy between active and passive
cooling. Also, the amount of internal heat generation affects the relative temperature
lag. It appears that, the larger the internal heat generation, the smaller ∆τ becomes.
Indeed, given the differential representation of the cooling law in Equation 5.5, for a fixed
equilibrium temperature, it can be seen that the convective cooling part can outweigh
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Figure 5.10: Relative time lag ∆τ (Equation 5.44) for the internal heat generation set to the
maximum (a,c), and set to the minimum (b,d). The different curves are generated for different
equilibrium temperatures (see curve labels in ◦C). On the top row the heating process is depicted
(a,b), and the cooling process on the bottom row (c,d). The three vertical dashed lines represent
typical surfaces for a SoC (≈ 2.5 cm2), a smartphone (≈ 70 cm2) and a tablet (≈ 5 dm2). Data
points on the right of the blue dashed lines have negative convective heat transfer coefficients.



Conclusion 109

the radiative cooling the larger the internal heat generation becomes. Thus the larger the
internal heat generation, the less sensitive the body becomes to changes in the radiative
or convective cooling, and the more active and passive cooling will resemble.

5.5 Conclusion
The exact cooling law for passively cooled objects subject to radiation, (natural) convec-
tion, and internal heat generation was developed. The passive cooling law is analytically
more complex than the commonly accepted exponential cooling law, which is technically
sound for forcibly cooled objects. Unfortunately, the exact solution for the passively
cooled object is a function of temperature: t(T ). Numerical approaches can be used for
the computation of the exact inverse: T (t). The validation of the passive cooling law’s
accurate solution via CFD simulations demonstrated the cooling law’s adequacy. Ap-
proximations for the inverse solution T (t) to the passive heat equation were proposed
and their performance was assessed. The coefficient approximation came out as the best
candidate. The second-order O’Sullivan approximation performs reasonably but only for
small temperature departures from the ambient temperature.

Via analytical simulations, it was shown that the difference between active and passive
cooling depends on three factors: 1) the surface size of the object, 2) the internal heat gen-
eration, and 3) the equilibrium temperature. For large surfaces areas, it was shown that
the difference between active and passive cooling can be significant. For medium-sized
surface areas, depending on the magnitudes of the internal heat generation and equilib-
rium temperature, the discrepancy between active and passive cooling could probably go
unnoticed. For small surfaces, e.g., SoCs, an exponential cooling law is shown to be an
appropriate approximation. It was also highlighted that the quantization noise of temper-
ature sensors may conceal temporal information between active and passive cooling. As
the cooling law for passively cooled devices is quite elaborate to work with and the benefit
of a scientifically sound cooling law is limited by the current lack of accurate temperature
sensors, it can be stated that, for systems minimizing overhead, assuming an exponential
cooling law will likely not induce large perceptual deviations from reality.





Chapter 6

Optimal Energy/Frequency
Applications to Multi-Clock

Domains

The Energy/Frequency Convexity Rule from Chapter 4 is applied to specific ap-
plications in this chapter. Multi-buddy systems are studied, in Section 6.1, and
their analytical formulations are developed to find the optimal clock frequency
for all clock frequency-enabled buddies, with the aim of global system-wide en-

ergy consumption. It is shown that, to find the optimal clock-frequencies for each buddy,
the convexity rule should be reapplied each time the system changes energy states. In Sec-
tion 6.2 the convexity rule is applied to a system subject to deadlines. The findings show
that up to 55 % of energy can be save in the best case, but savings can become marginally
small when a lot of work has to be done before the deadline. Section 6.3 investigates
whether the application of the convexity rule can save energy by clock frequency scaling
individual parallel threads. It will be shown that, for a background power consumption
comparable to the energy consumption of the microprocessor, energy savings are possible
between 10 % and 3 % compared to a default Linux-like frequency governor. Section 6.4
incorporates the notion of energy in Amdahl’s law to analyze the performance per Joule of
a microprocessor. It is shown how the clock frequency that minimizes energy consumption
behaves under Amdahl’s law. In Section 6.5 the heterogeneous computing w.r.t. energy
folklore is demystified. The contrast between a low-power and a high-performance mi-
croprocessor is highlighted using the Energy/Frequency convexity Rule and the extended
Amdahl’s law.

Henceforth, a specific taxonomy is introduced for referring to specific power compo-
nents. A dynamic energy or power component is denoted by a tilde over the symbol: ,̃
whereas a static component is denoted by a bar: .̄ Similarly, a + refers to the component
in active state, and ◦ refers to the component in idle state. For example Ẽ+ is the dynamic
energy consumption in active state, and P̄ ◦ is the static power in idle state.

6.1 Two-Buddy Convexity Model

In the Section 4.2 a single microprocessor was considered in a system with constant back-
ground power demands. In various applications, however, the microprocessor coexists
with other clock-driven components that have their own power profiles. The micropro-
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Figure 6.1: Energy state machine representation of a computer component. Three distinct
states are depicted: power-down mode (PD), idle mode (I), sleep mode (SL), and active mode
(A), and their transition energy requirements E∗. There exist dynamic Ẽ and static Ē energy
costs to maintain the states, and an energy cost to change between states.

cessor may interact with these external components by exchanging some form of data.
Here, such systems are referred to as n-buddy systems, where n is the number of com-
ponents with independent clock-frequency domains. Some examples of n-buddy system
are: the coexistence of a microprocessor and an external memory, or the collaboration of
multiple cores inside a single microprocessor that are separately clock frequency scalable,
a microprocessor next to a radio driver or multimedia decoder. While the microprocessor
is polling external components it may be stalling until a response is received, or the mi-
croprocessor may continue other data-independent work in the meantime. Similarly, the
external components may be waiting for the microprocessor for a request before initiating
any work. The microprocessor and other external clock-driven components can be repre-
sented with an energy state machine. Three distinct states can be distinguished for the
energy state machine:

1. active mode: performing computations;

2. idle mode: waiting or standing-by, or performing no useful operations;

3. sleeping mode: sleeping in a low-power state;

4. power-down mode: no energy supplied to the device.

A computer component is in one state at each time. A computer component’s power dis-
sipation in the active and idle mode have both a dynamic and a static power consumption
component. Moreover, transitioning between each state can induce an energy transition
cost. Figure 6.1 shows a graphical representation of the energy state machine.

Let us develop the optimal frequency model for a system with two buddies, A and B
with their own respective clock frequency and energy profile. In such a system, each of
the two buddies will have their own proper optimal frequency: fA

opt and fB
opt at any time.

Let us assume for starters a simple synchronous system where A is the master and B
is the slave, as shown in Figure 6.2(a). Over a timespan ∆t, when A is polling B, A is idle
while B is active, and B is idle whenever A is active. The energy consumption of such a
system can be expressed as the sum of the energy consumption of each buddy separately:
EA and EB, and their energy state transition cost Etr:

Esys = EA + EB + δEtr

= (tAP+
A + tBP

◦
A) + (tBP+

B + tAP
◦
B) + δEtr

= tA(P+
A + P ◦B) + tB(P ◦A + P+

B ) + δEtr, (6.1)
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Figure 6.2: Frequency time line in (a) master/slave and (b) out-of-order two-buddy system.
When process A is active process B is idle and vice versa in case of the master/slave configuration.
Between t4 and t5 process A is able to cover idle time with data-independent code execution or
out-of-order execution. During this timespan, each buddy may have a unique frequency assigned
to minimize energy consumption.

where δ are the number of transitions between states, tA is the time during which buddy
A is active, and tB the time during which buddy B is active. tA and tB are related by the
equation ∆t− tA = tB. Here it is also assumed implicitly that whenever buddy A or B is
active they operate at a single frequency, and in idle state they operate at a lower clock
frequency. If it is assumed that buddy A starts in active state, and also ends in active
state over the timespan ∆t then δ is assumed to be even and Etr can be defined as the
sum of EAI and EIA: Etr = EAI + EIA.

The execution time tA and tB are proportional to the amount of clock cycles executed
cc by the buddies and their respective clock frequency f : t = cc/f , given by Equation 2.14,
fk and β are assumed to be zero. Additionally, let us also assume that buddies A and
B can perform out-of-order execution (OOE). Then the idle time of buddy A and B are
reduced by the parameter σx, proportional to the extent to which OOE is able to cover
the tasks in A or B with the execution of data-independent code. σx = 0 means perfect
OOE coverage, whereas σx = 1 indicates that no OOE is performed. Figure 6.2(b) shows
an explanatory time line of the two-buddy system with OOE and proper clock frequencies
at active state Xopt and idle state Xidle. From t4 to t5 process A is able to cover process’
B with data-independent code execution.

The total energy consumption of Equation 6.1 now becomes the sum of the energy
spent during the initial timespan tA and tB, minus the idle energy during the OOE overlap,
over the timespan tB(1− σx), plus the energy spent between state transition:

Esys = tA(P+
A + P ◦B) + tB(P+

B + P ◦A)− tB(1− σx)(P ◦A + P ◦B) + δEtr

= ccA

fA
(P+

A + P ◦B) + ccB

fB
[(P+

B + P ◦A)− (1− σx)(P ◦A + P ◦B)] + δEtr. (6.2)

The dynamic power components P̃ , and also the static power P̄ components, are frequency
dependent via Equation 2.8 and Equation 2.10:

P = P̃ + P̄ = (1 + γV ) ξfV 2.
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Let us also assume for now that the power consumption in idle mode P◦ = P̃◦ + P̄◦ is a
fixed constant, independent of a clock frequency. Substituting these equations in the last
definition of Esys creates an overwhelmingly large and complex equation, which is refrained
from citing. It is noted, however, that the resulting equation is, again, of the fourth order
because of the assumption of linear dependency of the voltage on clock frequency.

For max(fmin, fk) ≤ f∗ ≤ fmax the energy consumption of the two-buddy system Esys
may have the convex property, and thus a global minimum, iff its first derivative with
respect to f has a root and its second derivative is monotonically increasing. This is
expressed in Equation 4.9. Taking the first and second derivative of fA and fB yields:

∂Esys

∂fA
= ccA(3aAf 2

A + 2bAfA + cA)− ccA

f 2
A
P ◦B (6.3a)

∂Esys

∂fB
= ccB(3aBf 2

B + 2bBfB + cB)− ccB

f 2
B

[P ◦A − (1− σx)(P ◦A + P ◦B)] (6.3b)

∂2Esys

∂f 2
A

= ccA(6aAfA + 2bA) + 2ccA

f 3
A
P ◦B (6.3c)

∂2Esys

∂f 2
B

= ccB(6aBfB + 2bB) + 2ccB

f 3
B

[P ◦A − (1− σx)(P ◦A + P ◦B)], (6.3d)

where a∗ = γξs3
1, b∗ = s2

1ξ(1 + 3γs2), c∗ = s1s2ξ(3γs2 + 2) for each microprocessor
separately. All parameters in Equation 6.3 are positive: {·} ∈ R+

0 . Hence, convexity for
∂2Esys
∂f2

A
is achievable. However, for ∂2Esys

∂f2
B

the constraint

3aBfB + bB >
1
f 3

B
[P ◦B − σx(P ◦A + P ◦B)]

must hold. The optimal frequency fA
opt and fB

opt are found by equating Equation 6.3a
and 6.3b to zero:

0 = 3aA(fA
opt)2 + 2bAfA

opt + cA −
1

(fA
opt)2P

◦
B (6.4a)

0 = 3aB(fB
opt)2 + 2bBfB

opt + cB −
1

(fB
opt)2 [P ◦A + (σx − 1)(P ◦A + P ◦B)]. (6.4b)

One can observe that Equation 6.4a is independent of fB, and Equation 6.4b is indepen-
dent of fA. Thus computing the proper frequencies of the buddies is independent of the
active power consumption of the other buddy.

Now, the interesting part here is that Equation 6.3 assumed a single optimal frequency
for the active states of each buddy. Alternatively, it is also possible to define an inde-
pendent optimal frequency for the timespan during which both buddies are active; for
t4 < t < t5 in Figure 6.2, and for the other time periods where one buddy is active and
the other idle. The length of the timespan where both buddies are active is dependent of
the amount of code that buddy A can execute out-of-order while buddy B is also active,
lets say for ccC clock cycles:

EC = ccC

fA
(P+

A + P+
B ) (6.5a)

∂EC

∂fA
= ccC

(
3aAf 2

A + 2bAfA + cA −
1
f 2

A
P+

B

)
(6.5b)

∂2EC

∂f 2
A

= ccC

(
6aAfA + 2bA + 2

f 3
A
P+

B

)
(6.5c)
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To find the optimal operating frequencies fA
opt and fB

opt, Equation 6.5b needs to equal zero,
as well as the ∂EC

∂fB
counterpart:

3aA(fA
opt)2 + 2bAfA

opt + cA −
1

(fA
opt)2P

+
B = 0 (6.6a)

3aA(fA
opt)4 + 2bA(fA

opt)3 + cA(fA
opt)2 = aB(fB

opt)4 + bB(fB
opt)3 + cB(fB

opt)2 + dBf
B
opt (6.6b)

and similarly for fB the following must hold

3aA(fB
opt)4 + 2bA(fB

opt)3 + cA(fB
opt)2 = aB(fA

opt)4 + bB(fA
opt)3 + cB(fA

opt)2 + dBf
A
opt. (6.6c)

An analytically solution for the latter equation is fairly complex. Numerical methods will
come at hand here. Following this rationale, each buddy in an n-buddy system has its
respective optimal clock frequency for each combination of buddy energy states. One can
argue that such a system is more optimized energy-wise than a system that has a distinct
clock frequency for each buddy throughout the whole execution. Therefore the former
will be superior, in terms of energy consumption, compared to the latter approach.

6.2 Single Core with Deadlines
When the theoretical foundations of the energy/frequency rule were laid out in Section 4.2,
only the energy during the execution of the code sequence was accounted for. In practical
situations, e.g., when dealing with deadlines, however, a microprocessor may be in an idle-
state during certain periods of time. Then the energy consumed during idle-state should
be accounted for when assessing the optimal frequency at which energy consumption is
minimal.

6.2.1 Modeling Including Pidle

The microprocessor of concern is governed by the energy consumption law of Equation 4.2.
The microprocessor in idle-state requires Pidle Watt and it is also assumed that micropro-
cessor clock frequency transitions don’t incur a significant time or energy penalty.

Let us assume a repetitive task k, which needs ccb clock cycles to complete, is scheduled
such that within a fixed duration tmax the task is to be completed. The execution time
∆t of the task k is bounded by tmax:

tmax ≥ ccb

(
1

f − fk
+ β

)
. (6.7)

The upper-bound on the execution time implies that the task has a minimum frequency
fmin for which tmax = ∆t is satisfied. As repetitive tasks are dealt with, the background
power requirements are not going to affect the optimal frequency given that it is there
during the repetition of each task. The background power consumption should thus not
be considered when finding the optimal processor clock frequency in this case. The energy
consumption of the microprocessor is the sum of the energy spent executing the task and
the energy consumed during idle-state:

Epr = Eact + Eidle

= Pact ∆t+ Pidle (tmax −∆t)
= [(1 + γV ) ξfV 2 − Pidle]∆t+ Pidle tmax.
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Senn et al. [103] used a similar formulation for Epr, though, their power and time models
are more rudimentary. For analytical simplicity, let us assume that the time penalty for
external memory accesses and clock cycle thieves is negligibly small (β = 0 and fk = 0),
and ∆t is a function of f :

Epr = [(1 + γV ) ξfV 2 − Pidle]
ccb

f
+ Pidle tmax

= ccb

(
af 3 + bf 2 + cf + d− Pidle

f

)
+ Pidle tmax,

where a = γξs3
1, b = s2

1ξ(1 + γs2 + 2γs2), c = s1s2ξ(γs2 + 2γs2 + 2), and d = s2
2ξ(γs2 +

1), as described in Section 4.2. tmax, ccb, fk, and Pidle are fixed. All parameters are
elements of R+

0 . As before, Epr may have a convex minimum, within the exploitable
clock frequency window, if its first derivative has a root and the second derivative is a
monotonous increasing function. For a fixed Pidle one gets:

dEpr

df = ccb

(
3af 2 + 2bf + c+ Pidle

f 2

)
d2Epr

df 2 = ccb

(
6af + 2b− 2Pidle

f 3

)
.

Keep in mind that the constraint of Equation 6.7 must hold as well. Here dEpr
df is a

monotonic increasing function of f as all parameters are elements of R+
0 . The second

derivative d2Epr
df2 is in fact only a monotonous increasing function iff 6af + 2b > 2Pidle

f3 for
all f ∈ fcpu. For the system to show convex energy properties Pidle should be as small
as possible. Then, the lower Pidle, the lower fopt, being the root of the first derivative,
without violating the tmax time constraint.

6.2.2 Experimental Results
Let us insert realistic values from the previously defined Galaxy S2 testbed where the
video decoding by the microprocessor, with a frame-rate of 25 Hz, is simulated. A frame-
rate of 25 Hz translates into a decoding deadline of tmax = 40 ms. The power requirements
in idle-state Pidle can be chosen either as the power demands of the microprocessor’s lowest
frequency, or the idle power demands at the optimal frequency. The first would apply
frequency scaling on-the-fly, whereas in the second case a static frequency throughout the
decoding is assumed. The power parameters γ, ξ, and time parameters fk and β = 0
for the Cortex A9 microprocessor are assumed as reported in Table 4.2 and 4.3 for N =
10 unless stated otherwise. Accordingly, the discrete voltage/frequency pairs of the A9
from Table 3.6 are also used. The influence of ccb, fk and β are assessed during the
simulations. Figure 6.3 shows the results. In Figure 6.3(a) the microprocessor’s frequency
is scaled to the minimum frequency in idle mode (DVFS), whereas in Figure 6.3(b) the
microprocessor’s frequency remains unaltered throughout the simulation.

For the case where the microprocessor’s frequency in idle mode is scaled, Figure 6.3(a),
it can be seen that while ccb increases the system minimizes energy by increasing the
microprocessor’s frequency. The reasons are two-fold for this frequency increase; the
larger ccb the faster the microprocessor needs to run to meet its deadline but also the
energy/frequency convex minimum shifts to higher frequencies as explained in Chapter 4.
The red line in Figure 6.3(c) shows the ratio of the decoding time over the remaining time
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Figure 6.3: Optimal microprocessor clock frequency minimizing energy consumption of a
code piece executed repetitively before a deadline. In Figure (a) and (c) the microprocessor
frequency is scaled to the minimum frequency in idle mode via DVFS. In Figure (b) and (d)
the microprocessor’s frequency remains unaltered throughout the simulation. Maximum energy
savings can be seen in (c) for ccb ≈ 15 × 10−9 where smart frequency scaling can save about
55 % of energy. The parameters in the legend of Figure (a) and (b) are normalized over their
range where max(parameter) = 1, and min(parameter) = 0.
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before the dead-line. The smaller ccb, the less work to be done, so the smaller the execution
time ratio. But also, the more work to be done, the higher the microprocessor frequency
to finish the decoding before the deadline. This is visible in Figure 6.3(c) and 6.3(d); when
the execution time ratio is about to hit 1, the execution time is about to miss its deadline,
and therefore the microprocessor needs to gear up the frequency to meets its deadline.
This also explains the stair-case-like behavior of the curves in Figure 6.3(a) and 6.3(b).
For small values of ccb the optimal frequency does not go below 0.5 Ghz. This is so
because the slower microprocessor frequencies inflate the execution time asymptotically.
The smaller active power consumption is not able to offset proportionally the increased
execution time to gain an advantage energy-wise. Therefore the optimal frequency doesn’t
drop below a certain frequency, in this particular case 0.5 GHz. The energy savings of
the optimal frequency for a variable ccb are shown with the blue line in Figure 6.3(c)
as the ratio of the energy consumption while operating at the optimal frequency to the
energy consumption while running at the maximum frequency in active mode. The latter
corresponds to the on-demand and interactive frequency governor of mainstream Linux
distributions. A maximum energy can be saved of around 55 % around ccb = 0.015 ×
109 after which the energy savings gradually drop. At the maximum ccb there is no
energy saving as the optimal operating frequency is equal to the maximum microprocessor
frequency. Running at an optimal frequency can thus save considerable amounts of energy
if favorable conditions are encountered. In this application it is also shown that the race-
to-halt technique is not always the optimal strategy to save energy.

The fk parameter influences the execution time; the larger fk the longer the execution
time as less clock cycles are available. From both Figure 6.3(a) and 6.3(b) it can be
observed that fk increases the optimal frequency. An increased fk will thus also result in
a decreased possible energy gain. Similar conclusions can be drawn for the β parameter.
β incurs a time penalty for the code execution which leads to increased execution time. β
also increases the optimal execution time and hence is also detrimental for energy gains.

The stair-case-like behavior is also exhibited when the microprocessor is running at
a constant frequency, i.e., no DVFS, as shown in Figure 6.3(c). The optimal frequency,
however, drops all the way to the minimum frequency for small values of ccb in contrast
with the DVFS scenario. Here, the extra power consumption in idle-mode weighs through
more compared to the DVFS case. In the DVFS case, in idle-mode, the microprocessor
frequency was geared to the minimum frequency whereas in the constant frequency case
the frequency is not altered. This has some influence on the energy gains as well. The blue
line in Figure 6.3(d) shows a monotonic increasing energy gain curve which is between
0 and 90 % for the extreme values of ccb. The reader should however not be fooled; the
green line in the same figure shows the ratio of the energy gains in the DVFS case over
the energy gains in the constant frequency case. One can thus observe that the energy
gains in the DVFS case are up to 20 % better for small values of ccb but the competitive
advantage shrinks fast, to about 1 %, for larger values of ccb. Note that in this application
with deadlines the parameter ccb has influence on the optimal clock frequency whereas
ccb doesn’t have any effect on optimal frequency when a single code sequence is regarded.
The same conclusions for the parameters ccb and β can be drawn for the constant clock
frequency case as in the case where the microprocessor runs at a lower frequency in idle-
mode.

In practice, a performance profile of the application is required, especially with regards
to ccb, so that the microprocessor’s clock frequency can be efficiently scaled. The profile
can be defined offline or via online profiling techniques. Online parameter profiling and



Multi-core Code Execution 119

t

thread

0 ta tb tc

A

B

C

(a) global clock frequency scaling

t

thread

0 tatbtc

A

B

C

(b) individual clock frequency scaling

Figure 6.4: Energy optimization via individual thread clock frequency scaling. Leftmost, all
cores run at the same frequency incurring excessive idle time for some threads. On the right,
the threads are throttled individually to achieve global or local minimum energy consumption.

estimation techniques have been shown to be viable based on application cycle probability
distributions [136].

It is also noted that in this example the microprocessor was assumed to decode a video
stream. In fact, SoCs often provide dedicated decoding and encoding circuits to process
popular multimedia formats such as MPEG-1 or MPEG-2 Audio Layer III (MP3) and DivX.
Though, the “media“ in this example can be replaced with any other computation that
must meet deadlines.

6.3 Multi-core Code Execution
A program may have multiple data-independent threads running in parallel on multiple
cores. At a given point in time these threads need to synchronize such that the serial
portion of the program can continue. If these threads run on separate cores, where clock
frequencies can be scaled independently, then there must exist a frequency scheme to
minimize the energy consumption of the microprocessor and the whole computer system.
Figure 6.4 illustrates an example of the individual frequency scaling of three concurrent
threads. All threads must cooperate with each other, in terms of clock frequency scaling,
to attain the minimum energy consumption globally, a process henceforth referred to as
thread-cooperation. It may not be presupposed that the execution time of the shortest
threads must be matched with the longest thread to minimize energy consumption. This
is experimentally shown with the following optimization definition of thread-cooperation,
where f = {fi} is the set of clock frequencies of n cores:

minimize
f

Etot(f)

subject to ∀i ccb,i

fi
≤ tmax

fmin ≤ fi ≤ fmax,

where tmax is a predefined maximum execution time of all threads. Etot(f) : Rm → R is
the objective function to be minimized over f :

Etot(f) = Pbacktmax +
n∑
i=0

[
ccb,i

fi
P+ +

(
tmax −

ccb,i

fi

)
P ◦
]
, (6.8)
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where P+ is the power consumption when the core is performing work and P ◦ is the power
consumption of the core while being idle. A core is in idle mode whenever the thread
finished execution and is waiting for another parallel thread to finish.

The optimization problem in Equation 6.8 is fairly complex as the power terms are
non-linear. Instead of formulating a discrete optimization problem, in the case of discrete
frequency/voltage pairs, an exhaustive search simulator is developed in C++ to find the
minimum energy of the objective function. This is feasible as the search space is lim-
ited. The performance of three clock frequency assignment schemes are analyzed in the
simulation:

1. On-demand: when a core has work to do, its frequency is set to the maximum. If no
work is to be done, the core is set to an idle frequency, the lowest frequency. This
frequency scheme corresponds to the on-demand and interactive frequency governor
in the Linux kernel, and is used as a reference.

2. Selfish: each core is frequency scaled to be energy optimal by its own, disregarding
the energy consumption of the other cores.

3. Thread-cooperation: the frequencies of the cores are scaled such that all the cores
combined consume the least amount of energy globally.

Four threads are supposed to run in parallel, and need a random number of clock cycles
ccb to complete. The number of clock cycles was drawn from a uniform distribution
where 0 ≤ ccb ≤ 4.9 × 109. The Cortex A15 power model from Procedure 3.2 and the
frequency/voltage pairs are used to model the power consumption of the cores. Though in
the original A15 the cores are not individually scalable, there is only one global frequency
governing all cores, for the simulator individual core frequency scaling was introduced for
the A15. The power was estimated at a reference temperature of 37◦C. The average energy
consumption, averaged over 4096 runs, of the three frequency governors is measured for
background power requirements varying between 0 and 10 W. For the thread execution
time it is also assumed that the time penalty for external data accesses and clock cycle
thieves is negligibly small (β = 0 and fk = 0). The power consumption in idle mode is
set to the power consumption while executing no-operations at the lowest microprocessor
clock frequency.

Figure 6.5 shows the performance of the on-demand, selfish, and thread-cooperation
clock frequency assignment governors. Figure 6.5(a) shows the energy consumption of
the different frequency schemes relative to the on-demand governor. A vertical dotted
line is drawn around 2.8 W where the power consumption of the microprocessor running
on-demand equals the background power consumption. The thread-cooperation governor
performs the best, energy-wise. The selfish governor performs better than the on-demand
frequency governor for a background power consumption smaller than about 1 W. After
1 W of background power consumption, the selfish governor and the on-demand governor
consume the same amount of energy. For zero background power consumption the energy
gains of the thread-cooperation and selfish frequency governor are about 40 % compared
to the on-demand scheme. The energy savings for the thread-cooperation frequency gov-
ernor decrease in an apparent logarithmic fashion. At the 2.8 W landmark the energy
savings are 10 %, whereas the energy gains of the selfish frequency governor dropped to
0 %. For background power consumption larger than 6 W the energy savings drop be-
low 5 %. Overall, the thread-cooperation frequency governor outperforms the selfish and
on-demand frequency governors energy-wise.
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Figure 6.5: Energy consumption of multi-thread code executing on multiple cores. The per-
formance of three frequency assignment governors is shown: on-demand, selfish, and thread-
cooperation, with variable background power consumption. The vertical dotted line at 2.8 W
indicates where the background power consumption Pback equals the power consumption of the
microprocessor. The on-demand frequency governor is used as a reference in figure (a) and (b).
The selfish governor outperforms w.r.t to energy, but on-demand is best time-wise.
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Figure 6.5(b) shows the impact of the frequency governors on the execution time rela-
tive to the on-demand frequency governor. As the on-demand frequency is always running
at the highest frequency possible, the on-demand governor is the lowest-bound of execu-
tion time. Both the thread-cooperation and selfish frequency governor are equal or induce
an increased execution time compared to the lower-bound. The selfish frequency governor
performs slightly better than the thread-cooperation and selfish frequency governor time-
wise. For a background power consumption of zero Watt, the execution time is twice as
large compared to the on-demand frequency governor performance. The execution time
discrepancy drops fairly fast to equal the on-demand frequency governor around 1 W to
2 W. For Pback levels below 2 W the thread-cooperation frequency governor is a trade-off
between energy savings and prolonged execution time. Energy savings vary between 40 %
and 10 % whereas the execution time is extended up to 100 %. For Pback > 2 W there is no
execution time penalty, though energy gains are possible between 10 % and 3 %. Similar
conclusions can be made for the selfish frequency governor.

Figure 6.5(c) and Figure 6.5(d) show the frequency assignment distribution for the
thread-cooperation and selfish frequency governors at different levels of background power
consumption levels. The on-demand governor always runs at the highest frequency and
therefore its probability plot would be a pink plane, which is not very interesting to look at,
unless you’re a fan of contemporary art. The selfish frequency governors gradually ramps
up the frequencies seemingly uniformly for all cores. All cores are assigned the maximum
frequency for Pback > 1, which explains why the performance of the selfish and on-demand
frequency governors become the same at that point. For the thread-cooperation frequency
governor, the frequency assignments are more diverse. A great amount of threads are
running at the slowest and greatest frequencies. The mid-frequencies are seemingly equally
distributed. For Pback > 2.8 W the frequency distribution is more or less constant whereas
for Pback < 2.8 W the smaller frequencies dominate. The ratio between the background
and microprocessors’ power consumption seems to be an indicator of the stability of the
frequency distribution.

Halimi et al. [47] has studied a similar clock frequency assignment scheme that aims
at minimizing energy consumption of parallel programs. The authors claim to be able to
save up to 34 % of energy by accelerating and slowing down threads to minimize slack time
among the threads. For the computation of the clock frequencies Halimi et al. assumed
the energy/frequency convex model presented in this work.

6.4 Amdahl’s Law Extension for Energy Efficiency

6.4.1 Extension of Amdahl’s Law
In 1967 Gene Amdahl [4] provided an intuitive argument about performance gains, which
was latter on casted into a mathematical formulation. Concretely, Amdahl’s law predicts
a theoretical upper-bound on the speedup of algorithmic or architectural enhancements,
e.g., parallel computations for which it is most known to date. In a parallel context, Am-
dahl’s law states that the non-parallel execution rapidly diminishes the performance scal-
ability for parallel applications, irrespective of the number of parallel computations [130].

According to Amdahl’s law the execution time t(n) of a code running on n cores, with
a proportion % which can be parallelized at will follows:

t(n) = t(1) p
(

(1− %) + %

n

)
, (6.9)
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where n ∈ N+
0 , 0 ≤ % ≤ 1. 0 < p < ∞ is added to Amdahl’s law to addresses the time

penalty incurred by clock frequency scaling. The performance scaling factor

Λ = 1
p
(
(1− %) + %

n

) (6.10)

is deemed the speedup of the parallelized code: t(n) = t(1)/Λ. Woo and Lee [130] have
extended Amdahl’s law to assess the performance per Joule given a certain percentage
of parallelization. Performance per Joule is a metric for evaluating the performance
achievable in a reference battery life cycle. In essence the performance per Joule is the
reciprocal of the energy/delay product.

To model the power consumption of a multi-core microprocessor let us introduce the
parameter k that represents the fraction of power consumed in idle mode. An active core
consumes a power of P+. When a microprocessor is executing the serial part of the code
on one core, the other (n− 1) cores are in idle-mode and consume kP+(n− 1). In total,
the active core and the remaining cores consume P+ + kP+(n − 1) = P+[1 + k(n − 1)].
During the parallel execution phase all cores are assumed active and consume nP+ totally.
The average power demand W of the microprocessor is then:

W =
q
(
p(1− %)P+[1 + (n− 1)k] + p %

n
nP+

)
t(1) p

(
(1− %) + %

n

) = q (1 + (n− 1)k(1− %))
(1− %) + %

n

P+

t(1) , (6.11)

where 0 < q <∞ is a scaling factor added to Woo and Lee’s model to address the power
consumption change as a result of dynamic frequency scaling. The performance per joule
Λ
J

is then defined as:

Λ
J

= Λ
W × t

= 1
p2q
· 1
P+ ·

1
(1− %) + %

n

· 1
1 + (n− 1)k(1− %) . (6.12)

Now, k can be chosen to be the relative power consumption in idle-mode at an arbitrary
frequency. If the microprocessor’s clock frequency is dynamically scaled for idle-mode then
k is a function of the microprocessor’s frequency, just as p and q. If the clock frequency
is static k is a constant. Then for a fixed % and n the two last terms in Equation 6.12 are
constant, and the fraction 1

p2q
becomes a scaling factor. The power factor P+ is itself a

reciprocal scaling factor of the performance per joule.
The differences between the model of Equation 6.12 and that of Woe and Lee are the

presence of the variables p and q, and here the system power is not normalized.

6.4.2 Experimentation
Let us plug in some realistic values for p, q, and k derived from the A15 model, sampled
at 37◦C, as resulting from Procedure 3.2. k = 0.111 and the values for p and q, relative
to the microprocessor’s performance at maximum frequency, are listed in Table 6.1. The
Cortex A15 has only 4 cores; in this simulation however, up to 64 cores are added to
observe how the performance is affected. Figure 6.6 shows the performance per Joule for
varying number of cores n, degree of parallelization %, and this for a fixed microprocessor
frequency and Dynamic Voltage and Frequency Scaling (DVFS). P+ is set to 1 such that
the variables k, p and q can be at the center of attention. The effect of P+ would be a
vertical scaling of the performance per joule graphs.
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Figure 6.6: Performance per Joule (Λ/J), as an extension of Amdahl’s law for energy efficiency,
for a microprocessor which runs a portion of a code in parallel. The cases for fixed microprocessor
frequency (k fixed) and different microprocessor frequency in active-mode and idle-mode (k
dynamic) are addressed. For fixed k, there exists a global optimal frequency for all values of %
and n at 1.358 GHz, see Figure (a). For a dynamic k the optimal frequency is shown in Figure
(c), where the idle-mode frequency is set to be the microprocessor’s minimum frequency. The
performance per Joule at the optimal frequency in both cases is shown in Figure (b) and (c).
The black line in Figure (c) is the optimal frequency/number-of-cores pair. P+ = 1, and values
for p, q and k are derived from the Cortex A15 power model at 37◦C in Procedure 3.2.
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Table 6.1: Amdahl’s law scaling factors: q is the execution time scaling factor (fk = 0 and
β = 0); p is the frequency scaling factor; and k is the active power to idle power ratio. k is
computed against the idle-mode at minimum frequency. For a static frequency k = 0.111. The
scaling factors are relative to the microprocessor’s maximum performance, i.e., at maximum
clock frequency.

Frequency
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

p 0.291 0.343 0.405 0.478 0.561 0.654 0.759 0.874 1.000
q 2.000 1.778 1.600 1.455 1.333 1.231 1.143 1.067 1.000
k 0.111 0.094 0.080 0.068 0.058 0.049 0.043 0.037 0.032

Figure 6.6(a) shows the performance per joule scaling factor. For a fixed degree of
parallelization (%) and number of parallel cores the scaling factor simulates the effect of
running at a fixed frequency relative to the maximum microprocessor frequency. When
a core is idle, its frequency is not altered. From the figure one can observe that the
microprocessor frequency that yields the highest performance per joule in this case is
1.358 GHz. As in practice the frequency settings of the microprocessor are discrete, thus
the optimal frequency will either be 1.3 GHz or 1.4 GHz. At the optimal frequency, the
performance per Joule is 0.95 % larger than the reference performance, which is not that
overwhelmingly impressive. The performance per Joule at 1.172 GHz is equal to the
performance per Joule at 1.6 GHz. For slower frequencies the performance per Joule is
below the unit. At 0.8 GHz the performance per Joule is 13.94 % less than at 1.6 GHz.

When the microprocessor gears to another frequency in idle-mode then k is not con-
stant, and hence, the optimal frequency that maximizes the performance per Joule will
not be constant. In the most extreme case where the executed code knows no serial
part (% = 1), the core of the microprocessor doesn’t reside in idle state; thus the opti-
mal frequency equals to the optimal frequency for the constant k case, i.e., 1.358 GHz.
On the contrary, when % = 0, i.e., no parallel code execution is performed, the optimal
performance per Joule is evidentially at 1.6 GHz. The optimal frequency that maximizes
the performance per energy varies between 1.358 GHz and 1.6 GHz for all values of % and
n. The optimal frequency increases for increasing number of cores and degree of paral-
lelization. At around 16 cores the performance per Joule is maximized for % > 0.9 when
f = 1.6 GHz.

The performance per Joule for the constant k and dynamic k cases are shown in
Figure 6.6(b) and Figure 6.6(d), respectively. Both graphs look similar: the lower the
degree of parallelization, the more the curves deviate between both cases. In the most
extreme case, for % = 1, the curves are identical, as the system doesn’t know any idle time.
The performance per Joule decreases systematically for smaller degrees of parallelism. The
performance per Joule drops faster for the case of fixed k; that is because more energy
is wasted in idle-mode compared to the dynamic k case. The performance per Joule at
n = 8 and n = 64 is 14 times and 515 times larger, respectively between % = 1 and % = 0
for k fixed. For the dynamic k case the performance per Joule at n = 8 and n = 64 is
10 times and 196 times larger, respectively, between % = 1 and % = 0. The performance
per Joule for a dynamic k is 1.44 times larger at n = 8, and 2.63 times larger at n = 64,
compared to the fixed k case. It is thus clear that a dynamic k has the upper hand over a
fixed k in this particular scenario. Increasing the level of parallelism is also favorable for
the performance per Joule. From these figures it is also understood that the performance
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per Joule is maximized at a certain number of cores, which is different for each value of %.
The link between the optimal frequency and the optimal number of cores is depicted in
Figure 6.6(c) with the solid black line. It can be seen that the optimal frequency increases
fast from 1.358 GHz to 1.6 GHz. In fact, the optimal frequency/number-of-cores pair that
is not at 1.6 GHz is for one and two number of cores. This implies that the maximum
performance per Joule is nearly almost attained at maximum frequency.

In both Figure 6.6(b) and Figure 6.6(d) the higher the degree of parallelization (%),
the better the performance per Joule. Parallelization can thus be seen as method to
optimize energy efficiency. In fact, the microprocessor developed in the last decades were
able to improve on performance and energy efficiency, not necessarily by scaling up the
microprocessor’s clock frequency, but rather by providing multi-core support. This is
advantageous for multi-threaded applications, but not for single-threaded applications.
In a practical situation, however, the parallelizability of an applications is inherent to its
properties and abilities, and can only be exploited by an architecture to a limited extent.
Therefore, the maximum performance per Joule is not always practically feasible.

6.5 big-LITTLE Heterogeneous Computing
The big-LITTLE computer architecture, as marketed by Samsung, is a heterogeneous com-
puting concept that couples a low-power microprocessor (LITTLE) with a high-performance
microprocessor (big). At the same time the LITTLE microprocessor has low performance
while the big core is power-hungry. The OS can switch seamlessly between the big and LIT-
TLE cores as seen fit for its context. The registers’ states are automatically copied between
microprocessors while switching microprocessors. SoCs implementing the big-LITTLE ar-
chitecture normally activate the LITTLE core for low loads or when fast execution time
is not of the essence. The big core is employed for performance-demanding tasks. The
first commercially available big-LITTLE implementation, i.e., the default Exynos 5410,
only allows for one of the two microprocessors to be active at the same time. Future
implementation of the big-LITTLE architecture may allow for the two microprocessors
to be active at the same time; this is both a hardware and a software challenge. Now
the question arises; how does the energy/frequency convex minimum behave on such a
big-LITTLE architecture?

The ODROID XU+E testbed sports an Exynos 5410 which implements the big-LITTLE
architecture: an ARM Cortex A7 for the LITTLE microprocessor and an ARM Cortex A15
for the big microprocessor. The A7 runs at 0.25 GHz to 0.6 GHz in steps of 100 MHz. The
A15 runs at 0.8 GHz to 1.6 GHz also in steps of 100 MHz. The power model from Table 4.4
is used to generate representative microprocessor power consumption curves. Figure 6.7
shows the optimal frequency for the two microprocessors running independently and cou-
pled. Figure 6.7(a), for the two microprocessors running independently, is essentially the
same as Figure 4.9 but differently represented. Figure 6.7(b) shows the optimal frequency
if the microprocessors are coupled and enable seamless migration from one to the other.

It can be observed from Figure 6.7(a) that the optimal frequency for the low-power
core is mostly exploitable for low levels of background power consumption below 0.3 Watt.
The high-performance microprocessor is then more suitable for higher levels of background
power consumption, up to 2 Watt. When the two microprocessors allow for seamless
migration, then the microprocessor with the best energy characteristics may be chosen at
any time. In Figure 6.7(b) it can be seen that the different curves jump between 0.9 GHz
and 1.1 GHz on the A15 core to 0.6 GHz on the A7. There exists thus an operation point
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Figure 6.7: Optimal frequency for the Exynos 5410, a heterogeneous platform, featuring two
microprocessors with different performance and power profiles: a low-power Cortex A7 and an
high-performance Cortex A15. The A7 operates between 0.25 GHz and 0.6 GHz; the A15 is
active between 0.8 GHz and 1.6 GHz. The optimal frequency for different levels of background
power (Watt) is displayed as a label on the curves. Figure (a) shows the optimal frequency for
the different cores, whereas Figure (b) shows the optimal frequency when seamless switching
between microprocessors is enabled. The black dashed line in Figure (b) shows the border where
the optimal frequency switches between microprocessors. For the execution time model β = 0
and fk = 0 were assumed.

for the A15 where its energy consumption is equal to the A7, which is shown by the curved
dashed line in Figure 6.7(b). From this point of view the performance dimensioning of
the SoC was done reasonably well, as the point where the frequency that minimizes the
energy consumption switches between cores is close to the minimum frequency of the A15
and maximum frequency of the A7.

Figure 6.7 assumed that the energy consumption is the only metric by which the per-
formance of the microprocessor is measured. Let us introduce the concept of performance
per Joule from Section 6.4, which also incorporates the time-wise performance, but then
only for a single active application (%=0). The time-wise and power-wise performances at
the maximum frequency of the A15 microprocessor are taken as a reference. Figure 6.8(a)
shows the performance per Joule at various levels of background power consumption. The
figure implies that, at s = 1.51 and Pback = 0, the performance per Joule is about ten
times higher for the A7 microprocessor (20.67 at 0.31 GHz) than for the A15 micropro-
cessor (2.10 at 0.8 GHz) at the optimal frequency for each core individually. It is noted
that the performance per Joule for Pback = 0 corresponds to the performance of the mi-
croprocessor itself, whereas if Pback > 0 the performance per Joule describes a computer
system including the microprocessor and arbitrary other components. The ratio between
the peaks of the A7 and A15 increases with s. But the ratio decreases close to 1.6 for
increasing background power consumption levels, and doesn’t drop below the unit.

Figure 6.8(b) shows the time and power penalty in function of the frequency for
different levels of background power consumption relative to the A15 microprocessor’s

1The parameter s was defined in Section 4.3.2 on page 69 as a single parameter that can scale the
microprocessor’s power consumption for different application energy profiles.
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Figure 6.8: Performance per Joule of the Exynos 5410, a typical embedded system, for a
single application running on a single core with various levels of background power consumption
(Figure (a)). Figure (b) shows the scaling factors, or penalty, for power (color) and time (black)
while running at different frequency and background power levels. The penalty is relative to
the system running at the maximum frequency. The plots were generated with the following
parameters: s = 1.5, β = 0 and fk = 0, where s is a power scaling factor as shown in Figure 4.6.

best performance (highest frequency). As the frequency drops, the execution time becomes
longer; therefore the time penalty is descending in function of the frequency and larger
than the unit. The power penalty is an increasing function of frequency and smaller than
the unit as the microprocessors consumes less power for lower frequencies. The maximum
time penalty is 6.4 at 0.25 GHz. Execution time is not affected by the background power
consumption; therefore, only one curve is depicted. The power is penalized more for
larger levels of background power consumption. This is logical as the system consumes
more power while performing the same computation, the execution time is unaffected,
and thus deteriorating the performance per Joule. The maximum power penalty is 1.95
at 1.6 GHz for Pback = 2 Watt. For this level of Pback the power penalty drops just
below the unit at the lowest frequency. Yet, the power penalty may go as low as 0.023 at
0.25 GHz when there is no background power consumption. It is the combined effect of the
increasing power penalty and decreasing time penalty that creates the proper environment
to conceive a convex energy/frequency behavior.

Overall, it can be stated that the designers of the Exynos 5410 did a great job dimen-
sioning the SoC, as the performance, with regards to energy and execution time, is well
balanced between the two microprocessors. The low-power core was shown to have indeed
a superior performance per Joule; yet the high-performance core outperforms time-wise
the low-power core with ease.

6.6 Conclusion

In this chapter the Energy/Frequency Convexity Rule which was previously expounded
in Chapter 4 was applied. There, the convexity model was developed for a single core.
In the first section it was shown that a system comprising of multiple cores or entities
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with a proper clock frequency domain shows similar convexity properties. The different
clock frequency domains should cooperate to minimize energy consumption. In fact, it
was shown that the system’s clock frequency assignment can be divided in discrete time
blocks corresponding to the different combinations in energy states of the participating
entities. The clock frequency of each of the entities should be optimized for each discrete
time block to attain minimum energy consumption of the global system. This approach
works for a system with arbitrary entities; yet the complexity of finding the optimal clock
frequency increases with the number of participating entities as the convexity equation
system grows accordingly.

Furthermore, the Energy/Frequency Convexity Rule was applied to a single core sys-
tem subject to recurrent tasks with deadlines, which is common in real-time systems.
It was indicated that in such a context the background consumption doesn’t affect the
optimal frequency, but does affect the energy consumption of the system. It was shown in
Figure 6.3(c) with a practical application that, in the best case, the microprocessor can
save up to 55 % of energy. This case corresponded to a task with a fairly small clock cycle
demand. For tasks that require a lot of computation before the deadline this energy gain
may shrink to 0 %. For large tasks the race-to-halt technique can be most effective, but
for smaller tasks a more refined clock scheduling, following the Energy/Frequency Con-
vexity Rule, may yield better energy consumption efficiency. These findings may imply
that it could be beneficial to over-dimension a system and carefully set its configuration
to minimize energy consumption.

A clock frequency assignment based on the Energy/Frequency Convexity Rule, stim-
ulating thread-cooperation, for a multi-threaded code execution was also examined. The
performance of three clock frequency assignment schemes was assessed, with the Linux-
like on-demand frequency governor as a reference. Figure 6.5(a) showed that the fre-
quency governor based on the Energy/Frequency Convexity Rule outperformed the other
frequency governors energy-wise; the microprocessor could save up to 40 % of energy in
the best case, and around 10 % when the background power consumption equals the
microprocessor’s power consumption. However, the time-wise performance of the En-
ergy/Frequency Convexity Rule-based frequency governor lagged behind on the reference
for a maximum of 20 %.

Woo and Lee’s Amdahl law was also extended for energy efficiency and frequency scal-
ing. The performance per Joule metric was defined as a function of multiple parameters,
including the system’s power consumption, voltage and frequency scaling constants and
a parameter defining the degree of parallelization. It was shown in Figure 6.6(a) that for
the Exynos 5410 SoC testbed the voltage and frequency scaling factor 1/(p2q) had an op-
timal performance around 1.3 GHz. As expected, it was shown that the performance per
Joule increases for higher degrees of parallelization. Moreover, there are an optimal level
number of threads and optimal frequency which varies for the degree of parallelization.

Finally, a heterogeneous architecture of a coupled low-power and high-performance
microprocessor was studied. It was shown that the optimal frequency for the coupled
microprocessors was well balanced with the aim of minimizing energy consumption for
different loads of the microprocessor. Via the performance per Joule metric it was also
demonstrated that for the Exynos 5410 indeed the low-power core provides a superior
performance per Joule, while the high-performance cores is more power hungry but offers
better performance time-wise. The performance per Joule of the low-power core can be
up to twenty times better then for the high performance core, while the low-power core
is maximum six times slower than the high performance core.





Chapter 7

Conclusion

7.1 Final Remarks and Results

In this work the Energy/Frequency Convexity Rule was developed and supported with
experimental data. The thermosensitivity of the Energy/Frequency Convexity Rule and
microprocessors’ power profile was also discussed. Furthermore, methods to improve the
accuracy energy and power measurements were presented.

The Energy/Frequency Convexity Rule applies to a computer system whose energy
consumption can be described by Equation 4.2. If its first derivative has a single root
and its second derivative is a monotonous increasing function (see Equation 4.11), then
the system’s energy consumption has a global minimum at a given (optimal) clock fre-
quency fopt. This optimal clock frequency yields the smallest energy consumption for
the execution of an instruction sequence. If the optimal clock frequency is within the
microprocessor’s clock frequency range, it can be exploited. If not, the microprocessor is
most energy-efficient at a boundary clock frequency, either at the maximum or minimum
clock frequency. The energy consumption is a function of multiple parameters: the mi-
croprocessor’s power profile (ξ), voltage/frequency scaling capabilities (f/V ), background
consumption (Pback), slack time (β), clock cycle thieves (fk), temperature T , and some
others.

In Chapter 4 a parameter sensitivity analysis of the Energy/Frequency Convexity Rule
was carried out. The background consumption turned out to be the parameter with the
largest influence on the optimal clock frequency, minimizing the system-wide energy con-
sumption. As a rule of thumb, fopt is exploitable, i.e., fopt < fmax, if the microprocessor’s
power requirements are smaller than Pback. For some types of applications, however, fopt
is independent of Pback, for example for computer systems processing repetitive jobs as
discussed in Section 6.2. The number of clock cycle thieves also affects fopt significantly
in the sense that fopt increases the fewer clock cycles are available for computation. The
microprocessor’s power profile was shown to have a minimal effect on fopt. The number
of executed instructions has no influence on the optimal clock frequency, which is a direct
result of the energy consumption formulation of Equation 4.2. It was also indicated that
the race-to-halt energy optimization technique is only effective when fopt > fmax.

Chapter 6 applied the Energy/Frequency Convexity Rule to practical applications. It
was shown how the Energy/Frequency Convexity Rule could be applied to a computer
system that includes multiple entities, or buddies, with independent clock frequencies.
Energy can be minimized system-wide by dividing the system into time frames such that
the energy states of the buddies do not change within a single time frame. Then the
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optimal frequency for each buddy within each time frame is calculated. It was shown
that in the case of out-of-order execution (OOE), fopt can become complicated as the
buddies’ clock frequencies cannot be scaled independently during OOE. An application of
a four-buddy system was presented in Section 6.3 where the clock frequency of four threads
were scaled independently and cooperatively to attain a system-wide energy consumption
minimum. Compared to the default Linux-like clock frequency governor in the use case, a
cooperative clock frequency scaling algorithm between the multiple threads showed that a
maximum energy of 40 % could be saved under the most favorable conditions. The energy
gain shrinks to 10 % when the background components of the system require about the
same power as the microprocessor. This energy gain is however a trade-off with execution
time, which is about two times larger at 40 % energy gain. Amdahl’s law was also extended
to incorporate clock frequency scaling, from which the performance-per-Joule metric was
derived based on previous research. This metric was applied to the Exynos 5410 SoC,
which houses a low-power (A7) and a high performance (A15) microprocessors. The
performance-per-Joule metric at the most optimal configuration was shown to be ten
times higher for the A7 than for the A15, whereas the execution time, i.e., the trade-off
with performance-per-joule, increases only about 5 times.

These observations on the Energy/Frequency Convexity Rule and their applications
were based on a theoretical framework and backed up by experimental data. To obtain
the experimental data, execution time profiles were derived from the Bristol Energy Effi-
ciency Benchmark Suite (BEEBS) and the Gold-Rader bit-reverse algorithm, which were
ran on two platforms consisting of flag ship1 multimedia SoCs testbeds. The power pro-
files used were recorded on the same SoC testbed of which one implements a Cortex A9,
and the other a dual microprocessor including a Cortex A7 and A15. Power models for
the A7 and A15 processors were provided in Section 3.6.2 which can be directly used
in simulations. The neat thing about these power models is that the microprocessor’s
temperature is an input parameter. In Chapter 3 the temperature dependency of the mi-
croprocessor’s power requirements was discussed. Amongst other physical properties, the
leakage currents are most likely the greatest contributors to the temperature dependency
of the microprocessor’s power profile, which was extensively discussed in Section 3.2.1. It
was shown via empirical data of the A15 processor that, in the most extreme case, the
power requirements at 85◦C were 20 % larger than at 25◦C. An exponential-based model
was shown to best fit the temperature/power relationship over the 20◦C to 85◦C temper-
ature range. In a more pertinent temperature range, between 20◦C and 50◦C, linear and
quadratic approximations are acceptable. This temperature/power relationship was used
to demonstrate how to remove the temperature bias from a power measurement trace. It
was also stressed and illustrated that the distance of a temperature sensor from a heat
source may introduce power measurement errors, including time lag and diminished mag-
nitude. A workable but rather not-so-elegant transformation function was constructed to
cancel such behavior.

The temperature/power relationship influences the transient thermal behavior of a
microprocessor, as its internal heat generation is dependent on the temperature. The
transient thermal behavior is also dictated by how the microprocessor dissipates its heat
to the environment. Actively cooled systems release their heat to the environment via
forced convection, of e.g., air or other types of fluid, which dominates the heat trans-
fer modes. The transient behavior of such systems is well described by an exponential
cooling law. Passively cooled devices, however, rely on natural dissipation of heat, in-

1Flag ship SoCs at the time of their commercial release.
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cluding radiation. Chapter 5 explored the effects of the presence of radiative cooling on
transient thermal behavior via an exact analytical framework. A use case applied to a
microprocessor-like object showed that the radiation component cannot be neglected for
objects with a cooling surface area larger than 1 dm2, which is a representative cooling
surface area for a smartphone. For smaller cooling surface areas the exact passive cooling
law approximates an exponential cooling law. Under such conditions an exponential cool-
ing law is favored as it is much less complex than the exact passive cooling law. For when
the exact passive cooling is desired, approximations to the exact cooling law were also
provided in Section 5.3.6, designed to be used in practical applications. The coefficient
approximation was shown to perform best under various circumstances. For small depar-
tures from the ambient temperature the second-order O’Sullivan approximation performed
satisfyingly as well.

7.2 Future Work
Although no explicit open questions were stated in the presented research, there are several
lines of possible inquiry arising from this work which could be interesting to pursue.

The accuracy of the protocol to measure the temperature/power relationship can be
improved, mainly by employing more accurate temperature sensors. This is, however,
a challenging task as on-die temperature sensors have poor resolution and may have a
temperature-dependent error. External temperature measurement devices, such as IR-
based sensors, can provide a descent accuracy but they are to be used in a controlled
environment and preferably with the die exposed. The ambient temperature and the
die temperature should also be controlled properly to avoid the effects of temperature
hysteresis loops interfering with the temperature/power correlation.

From a theoretical point of view, it is interesting to assess the exact impact factor of
temperature-dependent processes, besides the leakage current, that affect the power profile
of microprocessors. With such knowledge a microprocessor temperature/power model
could be constructed, based on physical principles. This is in contrast with the heuristic
temperature/power model that was presented before. Also, the transformation model
to combat the distant-sensor-syndrome could be derived from a more sound theoretical
foundation, instead of an approximate polynomial. Though, as shown, such endeavor
will likely yield a very complex mathematical formulation which could be intractable for
practical applications.

From the power measurement point of view, more accurate power measurements will
have also benefits for the temperature/power model. Higher sampling rates could allow to
look in more detail to specific parts of instruction sequences. This leads to a finer grained
estimation of ξ. It could be beneficial to obtain the ξ information of the microprocessor’s
functional units, compared to the application-level estimation of ξ that was assumed in
this thesis. Yet, higher sampling rates come along with a larger price tag and larger
post-measurement data processing requirements. Here it was already sometimes tedious
to process 4 kHz power measurement traces. High-end data acquisition tools may have
sampling rates from 100 kHz to 1 GHz; enough disk space and patience are hence advised
to analyze extensive power traces.

More accurate ξ profiles can then also lead to more aggressive DVFS schemes, which
would yield better energy gains than the current interactive on/off frequency governors as
seen in prominent Linux distributions, ideally dynamic DVFS schemes with energy savings
comparable to what hard-coded DVFS can achieve. ξ and execution time profiles could
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also be embedded into the code as directives for dynamic energy optimization. It could
be difficult for current hardware architectures to extend their binary code translation
to support energy and time profiles. However, when embedded in byte code, (process)
Virtual Machines (VMs) can decode such information and redirect the data to an energy
management unit. Even energy profile information of binary code, which is called via a
native interface from a VM, can be passed to, and be useful for, energy management units.
As shown in this thesis, maximum energy savings are achieved by application coopera-
tion, not necessarily by individual application optimization. An energy management unit
receiving ξ parameters from all active VMs could thus optimize the system in a coopera-
tive manner, via the presented buddy rationale and DVFS for example. Basic application
cooperation already exists in Android via the so called wakelocks, which manage system
resources energy expenditure, e.g., display and sensors.

The Energy/Frequency Convexity Rule was investigated from a theoretical point of
view without the notion of human sentiment. For HPC systems that are expected to pro-
duce results as swiftly as possible, human sentiments are of no value. Devices designed for
human-computer interaction (HCI), such as smartphones, tablets, or phablets, assert the
need for a human emotional aspect into the trade-off of the Energy/Frequency Convexity
Rule. As presented in this work, the Energy/Frequency Convexity Rule is a trade-off
between energy consumption on one side, and execution time on the other side. If HCI
is involved, the user experience will be affected by a change in execution time. When
execution time increases, the computer system becomes less reactive and the user experi-
ence will deteriorate, in a non-linear fashion. Understanding the emotional impact of the
Energy/Frequency Convexity Rule should thus be a key factor when designing a system
optimized for human experience. The user’s experience can then be used as an additional
constraint when defining the optimal clock frequency. This constraint would put a lower
bound on the clock frequency that indicates the point at which the user doesn’t tolerate
any slow down of the system.



Appendix A

Mathematical Fundamentals
and Derivations

A.1 Derivations

A.1.1 Deviating Root Configurations
In Section 5.3.1 the following differential equation was solved

dT

dt
= −κ4T

4 + κ3T
3 + κ2T

2 + κ1T + κ0, (A.1)

where κ0,1,2,3 ∈ R+ and κ4 ∈ R+
0 . The polynomial on the right-hand side was assumed to

have two real roots and two complex conjugate roots. But what happens if there are four
imaginary roots, i.e., two times two complex conjugate roots? And what about four real
roots? The following two sections provide a guide to these solutions.

The Real Deal

Let us assume that the polynomial on the right hand side of Equation A.1 has exactly four
real roots. Then as before, the polynomial can be split via partial fraction decomposition:

1
(T − ω1)(T − ω2)(T − ω3)(T − ω4) = A

(T − ω1) + B

(T − ω2) + C

(T − ω3) + D

(T − ω4) ,

where A, B, C and D are constants and ω∗ are the real roots of the polynomial. The
values of ω∗ can be obtained as before by Ferarri’s theorem (see Section A.2), and the
constants A, B, C and D can be found by solving the following system of equations:

0
0
0

1

 =


1 1 1 1

−(ω2 + ω3 + ω4) −(ω1 + ω3 + ω4) −(ω1 + ω2 + ω4) −(ω1 + ω2 + ω3)
ω2ω3 + ω2ω4 ω1ω3 + ω1ω4 ω1ω2 + ω1ω4 ω1ω2 + ω1ω3

+ω3ω4 +ω3ω4 +ω2ω4 +ω2ω3
−ω2ω3ω4 −ω1ω3ω4 −ω1ω2ω4 −ω1ω2ω3

×

A
B
C

D

 .

Then the solution to Equation A.1 with four real roots takes a simpler form as before:

t = − 1
κ4

(A ln |T − ω1|+B ln |T − ω2|+ C ln |T − ω3|+D ln |T − ω4|+ co), (A.2)

where c0 is a constant such that T (0) = T0.
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The Case for Four Imaginary Roots

Let us assume that the polynomial on the right hand side of Equation A.1 has exactly
four imaginary roots. Then as before, the polynomial can be split via partial fractions
decomposition:

1
(T − ω1)(T − ω2)(T − ω3)(T − ω4) = AT +B

((T − α1)2 + β1) + CT +D

((T − α2)2 + β2) ,

where A, B, C and D are constants and ω∗ are the complex roots of the polynomial,
and α1 = <(ω1) = <(ω2), α2 = <(ω3) = <(ω4), β1 = =(ω1) = −=(ω2) and β2 =
=(ω3) = −=(ω4). The values of ω∗ can be obtained as before by Ferarri’s theorem (see
Section A.2), and the constants A, B, C and D can be found by solving the following
system of equations:


0
0
0
1

 =


1 0 1 0

α2
1 + β2 2α2 α2

1 + β1 −2α1
−2α2 1 −2α1 1

0 α2
2 + β2 0 α2

1 + β1

×

A
B
C
D

 .

Then the solution to Equation A.1 with four imaginary roots is given by:

t = − 1
κ4

(
A

2 ln |(T − α1)2 + β2
1 |+

α1A−B
β1

arctan
(
T − α1

β2

)

+ C

2 ln |(T − α2)2 + β2
2 |+

α2C −D
β2

arctan
(
T − α2

β2

)
+ co

)
, (A.3)

where c0 is a constant such that T (0) = T0.

A.1.2 Equality of the Second-order O’Sullivan Approximations
Via different derivation methodologies, what appears to be, two different solutions were
obtained for the second-order O’Sullivan approximation in Section 5.3.6, namely Equa-
tion 5.33 and Equation 5.36. In fact, these two solutions are equal:

ω1 − ω2coe
− m
AC

t

1 + coe
− m
AC

t
+ Ta = w

2m tanh
(
w

2C t+ co

)
− n

2m + Ta.

Let us focus on the heating process to prove the equality of these two formulations, the
derivation for the cooling process is similar.

Let’s begin with substituting the tanh with its exponential representation:

tanh(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
= 1− e−2x

1 + e−2x ,

then Equation 5.36 becomes:

T = w

2m
1− e−2( w

2C t+co)

1 + e−2( w
2C t+co)

− n

2m + Ta.
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Isolating and replacing co = atanh2mθ0+n
w

yields:

T = w

2m
1− e−wC te−2co

1 + e−
w
C
te−2co

− n

2m + Ta

T = w

2m
1− e−wC te−2atanh( 2mθ0+n

w )

1 + e−
w
C
te−2atanh( 2mθ0+n

w ) −
n

2m + Ta.

The arctanh can be replaced with its logarithmic formulation:

atanh(x) = 1
2 ln

(1 + x

1− x

)
for |x| < 1,

and continuing with the derivation:

T = w

2m
1− e−wC te

−2 1
2 ln

(
1+ 2mθ0+n√

n2−4mp

1− 2mθ0+n√
n2−4mp

)

1 + e−
w
C
te

−2 1
2 ln

(
1+ 2mθ0+n√

n2−4mp

1− 2mθ0+n√
n2−4mp

) − n

2m + Ta

= w

2m

1− e−wC t
(

1− 2mθ0+n√
n2−4mp

1+ 2mθ0+n√
n2−4mp

)

1 + e−
w
C
t

(
1− 2mθ0+n√

n2−4mp

1+ 2mθ0+n√
n2−4mp

) − n

2m + Ta

= w

2m
1− e−wC t

(
w−2mθ0−n
w+2mθ0+n

)
1 + e−

w
C
t
(
w−2mθ0−n
w+2mθ0+n

) − n

2m + Ta. (A.4)

Now, the term between the large brackets is the inverted integration constant co (Equa-
tion 5.34) from Equation 5.33:

w − 2mθ0 − n
w + 2mθ0 + n

=
w−n
2m − θ0
w+n
2m + θ0

= ω2 − θ0

ω1 + θ0
= 1
c0
, (A.5)

and w = −m
A

as can be shown:
m

A
= m(ω2 − ω1) =

(−n+ w

2 + n− w
2

)
= −w. (A.6)

Substituting Equation A.6 and A.5 in Equation A.4 gives

T = w

2m
1 + 1

co
e
m
AC

t

1− 1
co
e
m
AC

t
− n

2m + Ta

= w

2m
coe
− m
AC

t − 1
coe
− m
AC

t + 1
− n

2m + Ta

=
w coe

− m
AC

t−1
coe

− m
AC

t+1
− n coe

− m
AC

t+1
coe

− m
AC

t+1
2m + Ta

= w(coe−
m
AC

t − 1)− n(coe−
m
AC

t + 1)
2m(coe−

m
AC

t + 1)
+ Ta

= −w − n
2m

1
coe
− m
AC

t + 1
+ w − n

2m
coe
− m
AC

t

coe
− m
AC

t + 1
+ Ta

= ω1 − ω2coe
− m
AC

t

1 + coe
− m
AC

t
+ Ta. (A.7)
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The later equation is equal to Equation 5.33, and so it is proven that Equation 5.33
and 5.36 are, in fact, the same!

A.2 Ferarri’s Theorem
In the 15th century Lodovico Ferrari developed an algebraic algorithm to find the roots of
a quatric equation, or simply a fourth order polynomial. Given the fourth order polynomial
of the form

κ4x
4 + κ3x

3 + κ2x
2 + κ1x+ κ0 = 0, (A.8)

where κ4 ∈ R+
0 and κ0,1,2,3 ∈ R+, the four roots ω1,2,3,4 can be obtained as follows.

Let’s define first
y = x+ (b/4), (A.9)

then for aesthetical motivations κ4, κ3, κ2, κ1, κ0 are defined as a, b, c, d, e, respectively,
now the variables α, β, and γ are introduced

α = − 3b2

8a2 + c

a

β = b3

8a3 −
bc

2a2 + d

a

γ = − 3b4

256a4 + cb2

16a3 −
bd

4a2 + e

a
.

If β = 0 then the roots can immediately be computed as follows

ω = − b

4a ±
√
−α±

√
α2 − 4γ

2 , (A.10)

otherwise one continues:

P = −α
2

12 − γ

Q = − α3

108 + αγ

3 −
β2

8 .

Rp = Q

2 +
√
Q1/2 + P 1/9

Rm = Q

2 −
√
Q1/2 + P 1/9

U = R1/3
m

for U = 0 : y = −5
6α− U

for U 6= 0 : y = −5
6α− U + P

3U
Then the four roots of Equation A.8 can be calculated as follows

ω = − b

4a ±
1
2

√α + 2y ±

√√√√−(3α + 2y + 2β√
α + 2y

)
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Given the units for the κ values presented in Equation 5.8, the unit of ω can be verified.
Let us start with α, β, and γ:

α = K6s

K4s
+ K3s

Ks
= K2

β = K9s

K6s
+ K6s2

K2s ·Ks
+ K3s

s
= K3

γ = K12s4

K8s4 + K9s3

Ks ·K4s2 + K6s2

K2s · s
+ K ·K3s

s
= K4,

then the unit of ω is
ω = K3s

K2s
+
√
K2 +

√
K4 +K4 = K. (A.11)

A.3 Statistical Estimator Error

In statistics the divergence of an estimator θ̂ from a true value θ, also referred to as the
error, can be expressed in several ways.

The absolute error is given by
|θ̂ − θ|. (A.12)

The relative error is given by
|θ̂ − θ|
θ

. (A.13)

The mean squared error (MSE) over a set of n samples is given by

1
n

n∑
i=0

(θ̂i − θi)2. (A.14)

The root-mean-square error (RMSE) over a set of n samples given by√√√√ 1
n

n∑
i=0

(θ̂i − θi)2. (A.15)

A.4 Functions

A.4.1 Heaviside function
The heaviside function θ(x), also known as a step function, in one variable x is defined as

θ(x) =
{

0 if x < 0,
1 if x > 0. (A.16)

A.4.2 Sign Function
The sign function Φ(x) has a tertiary output depending on its input:

Φ(x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

(A.17)
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A.4.3 Dirac’s Delta function
Dirac’s delta function δ is defined by the following property

δ(x) =
{

0 if x 6= 0,
∞ if x = 0. (A.18)

additionally ∫ ∞
−∞

δ(x) dx = 1. (A.19)

In fact Dirac’s delta function is not a function by definition.



Appendix B

Source Code Excerpts

B.1 Implementation of the Passive Cooling Law

B.1.1 Exact Solution
A prototype implementation of the passive cooling law, as per Equation 5.17, is presented
for R. The function passive cooling coefs computes the coefficients of the passive cool-
ing law given a temperature T0 at t=0. a, b, c, d and e are the coefficients of the
polynomial on the right hand side of Equation 5.8, i.e., κ4,3,2,1,0 respectively. The function
passive cooling computes the time at which the system attains the temperature T , with
the coefficients computed by passive cooling coefs as a parameter.

passive_cooling_coefs <- function(a,b,c,d,e,T0) {
my_roots <- polyroot(c(e/a,d/a,c/a,b/a,1))
my_complex <- apply(as.matrix(my_roots), 2, function(x) {return(abs(Im(x)) > 1e-3)})
my_real <- which(my_complex == FALSE)
my_imag <- which(my_complex == TRUE)

omega <- Re(my_roots[my_real])[order(Re(my_roots[my_real]))]
alpha <- Re(my_roots[my_imag][1])
beta <- Im(my_roots[my_imag][1])

A <- 1/((omega[1]-omega[2])*((alphaˆ2+betaˆ2)-omega[1]*(alpha*2-omega[1])))
B <- -1/((omega[1]-omega[2])*((alphaˆ2+betaˆ2)-omega[2]*(alpha*2-omega[2])))
C <- -(A+B)
D <- A*(alpha*2-omega[1])+B*(alpha*2-omega[2])

co <- -(A*log(abs(T0-omega[1]))
+B*log(abs(T0-omega[2]))
+C/2*log(abs((T0-alpha)ˆ2+betaˆ2))
+(alpha*C+D)/beta*atan((T0-alpha)/beta))

output <- rbind(c(a,b,c,d,e,A,B,C,D,omega[1],omega[2],alpha,beta,co,abs(omega[2])))
colnames(output) <- c("a","b","c","d","e","A","B","C","D",

"w1","w2","alpha","beta","co","Te")
return(output)

}

passive_cooling <- function(coefs, T) {
a <- coefs[,"a"]
A <- coefs[,"A"]
B <- coefs[,"B"]
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Figure B.1: Illustration of the prototype implementation of f(t) = T in R for a = −3.56×10−11,
b = c = 0, d = 9× 10−4, e = 7.07× 10−1, T0 = 400.

C <- coefs[,"C"]
D <- coefs[,"D"]
omega <- c(coefs[,"w1"],coefs[,"w2"])
alpha <- coefs[,"alpha"]
beta <- coefs[,"beta"]
co <- coefs[,"co"]

return(1/a*(A*log(abs(T-omega[1]))
+B*log(abs(T-omega[2]))
+C/2*log(abs((T-alpha)ˆ2+betaˆ2))
+(alpha*C+D)/beta*atan((T-alpha)/beta)
+co))

}

A realistic example of the passive cooling goes as follows:
my_coefs <- passive_cooling_coefs(-3.56e-11,0,0,9e-4,7.07e-1,400)
my_temperature <- seq(400,438,0.1)
my_time <- passive_cooling(my_coefs, my_temperature)
plot(x=my_time, y=my_temperature, type="l", col="red")
abline(h=my_coefs[,"Te"], v=0, col="black", lty="dashed")

which should have the output as shown in Figure B.1.

B.1.2 Approximations
The R functions in the sequel approximate the exact cooling law, and are formulated as
f(t) = T . The following arguments are used: e is the emissivity of the object, h is the
convective heat transfer coefficient, S the surface area, Ta the ambient temperature, C the
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thermal capacity of the object, eta1 and eta2 coefficients describing the internal heat
conversion, assuming linear internal heat generation, and T0 is the temperature of the
object at t=0.

Coefficient Approximation

paristech_stefan_analytical_approx_radiation
<- function(t, e, h, S, Ta, C, eta1, eta0, T0) {

k4 <- -emission*sigma*S/C
k1 <- (eta1 - h*S)/C
k0 <- ((h*S*Ta + e*sigma*S*Taˆ4 - eta1) + eta0)/C

x <- k4*598262
y <- -k4*251483462+k1
z <- k4*29700057265+k0

omega1 <- (-y+sqrt(yˆ2-4*x*z))/(2*x)
omega2 <- (-y-sqrt(yˆ2-4*x*z))/(2*x)

A <- 1/(omega2-omega1)
B <- -A
c0 <- abs(T0-omega1)/abs(T0-omega2)

if(omega2 > T0) {
return( (omega1+omega2*c0*exp(-(t*x)/A))/((1+c0*exp(-(t*x)/A))) )

} else {
return( (omega1-omega2*c0*exp(-(t*x)/A))/((1-c0*exp(-(t*x)/A))) )

}
}

First order O’Sullivan Approximation

approximation_osullivan_first_order
<- function(t,e,h,S,Ta,C,eta0,eta1,T0) {

sigma <- 5.6704e-8
kelvin <- 273.15

k <- e*sigma*S
l <- 4*e*sigma*S*Ta
m <- 6*e*sigma*S*Taˆ2
n <- h*S - eta1 + 4*e*sigma*S*Taˆ3
p <- -(eta1*Ta + eta0)

return((T0+(-Ta+p/n))*exp(-n/C*t)+(-p/n+Ta))
}

Second order O’Sullivan Approximation

approximation_osullivan_second_order
<- function(t, e, h, S, Ta, C, eta1, eta0, T0) {
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sigma <- 5.6704e-8
kelvin <- 273.15

k <- e*sigma*S
l <- 4*e*sigma*S*Ta
m <- 6*e*sigma*S*Taˆ2
n <- h*S - eta1 + 4*e*sigma*S*Taˆ3
p <- -(eta1*Ta + eta0)

omega1 <- (-n-sqrt(nˆ2-4*m*p))/(2*m)
omega2 <- (-n+sqrt(nˆ2-4*m*p))/(2*m)

theta0 <- T0-Ta
A <- -1/(omega2-omega1)
B <- -A
co <- abs(theta0-omega1)/abs(theta0-omega2)

if((omega2+Ta) > T0) {
return( (omega1+omega2*co*exp(-m/(C*A)*t))/((1+co*exp(-m/(C*A)*t)))+Ta )

} else {
return( (omega1-omega2*co*exp(-m/(C*A)*t))/((1-co*exp(-m/(C*A)*t)))+Ta )

}
}

Alternative Second order O’Sullivan Approximation

approximation_osullivan_second_order_alternative
<- function(t,e,h,S,Ta,C,eta0,eta1,T0) {

library(pracma)

sigma <- 5.6704e-8
kelvin <- 273.15

k <- e*sigma*S
l <- 4*e*sigma*S*Ta
m <- 6*e*sigma*S*Taˆ2
n <- h*S - eta1 + 4*e*sigma*S*Taˆ3
p <- -(eta1*Ta + eta0)

w <- sqrt(nˆ2-4*m*p)

if((omega2+Ta) > T0) {
co <- atanh((2*m*(T0-Ta)+n)/w)
return( w/(2*m)*tanh(w/(2*C)*t+co) - n/(2*m) + Ta )

} else {
co <- acoth((2*m*(T0-Ta)+n)/w)
return( w/(2*m)*coth(w/(2*C)*t+co) - n/(2*m) + Ta )

}
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B.1.3 SPICE simulation
The following piece of code simulates the thermal behavior of a slice of silica glass subject
to radiative and convective cooling. The resistor representing the radiative cooling is
replaced by an equivalent voltage controlled current source. This is possible via the source
absorption theorem which establishes, quoting Ferreira et al. [38]:

The voltage source absorption theorem establishes that if, in one branch of a
circuit with current I, there is a voltage source controlled by I, the source can
be replaced by a simple impedance with value equal to the source controlling
factor.

In this case the reverse theorem is of use. Then the following electrical circuit may be
constructed:

*Current/thermal equivalent network

.PARAM kelvin = 273.15

.PARAM sigma = 5.670373e-8

.PARAM hac = 2.764

.PARAM T0 = ’kelvin+25’

.PARAM Ta = ’kelvin+20’

.PARAM S = 0.01

.PARAM epsilon = 0.94

.PARAM eta0 = 0.099733

.PARAM eta1 = 0.001053

.PARAM D = 0.002

.PARAM Hcap = 1548709

.PARAM Cth = ’S*D*Hcap’

B1 0 n1 I=(eta1*(v(n1)+Ta)+eta0)
B2 n1 0 I=’V(n1)/(1/(hac*S))’
B3 n1 0 I=V(n1)/((Ta-(Ta+V(n1)))/(sigma*epsilon*S*(Taˆ4-(Ta+V(n1))ˆ4)))
C1 n1 0 Cth IC=T0

.control
tran 0.2 3500 uic
*.print TRAN v(n1)
plot v(n1)
.endc
.end
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