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Abstract Monitoring groundwater tables (GWTs) remains challenging due to limited spatial and temporal
observations. This study introduces an innovative approach combining an artificial neural network,
specifically a multilayer perceptron (MLP), with continuous passive Multichannel Analysis of Surface Waves
(passive‐MASW) to construct GWT depth maps. The geologically well‐constrained study site includes two
piezometers and a permanent 2D geophone array recording train‐induced surface waves. At each point of the
array, dispersion curves (DCs), displaying Rayleigh‐wave phase velocities (VR) over a frequency range of 5–
50 Hz, were measured daily from December 2022 to September 2023, and latter resampled over wavelengths
from 4 to 15 m, to focus on the expected GWT depths (1–5 m). Nine months of daily VR data near one
piezometer, spanning both low and high water periods, were used to train the MLP model. GWT depths were
then estimated across the geophone array, producing daily GWT maps. The model's performance was
evaluated by comparing inferred GWT depths with observed measurements at the second piezometer. Results
show a coefficient of determination (R2) of 80% at the training piezometer and of 68% at the test piezometer,
and a remarkably low root‐mean‐square error (RMSE) of 0.03 m at both locations. These findings highlight
the potential of deep learning to estimate GWT maps from seismic data with spatially limited piezometric
information, offering a practical and efficient solution for monitoring groundwater dynamics across large
spatial extents.

Plain Language Summary This study combines deep learning with seismic ambient noise
measurements to infer and monitor groundwater table (GWT) depths. The study site includes two piezometers
and a sensor array that captures seismic waves induced by passing trains, providing daily seismic velocity
measurements. An artificial neural network was trained using GWT depth data from one piezometer and seismic
data collected at the same location. The trained model was then applied to estimate GWT depths across the entire
sensor array, generating daily maps. The model's accuracy achieves a coefficient of determination (R2) of 80%
around the training piezometer, and 68% around the test piezometer. Estimation errors are also remarkably low,
with a root‐mean‐square error (RMSE) of just 0.03 m at both locations. This research demonstrates the
effectiveness of deep learning in estimating GWT depths from passive surface‐wave data. It offers a practical
tool for understanding underground water dynamics, improving water resource management, and
environmental hazard assessment. Notably, this method enables efficient groundwater monitoring over large
areas using limited data from a single piezometer.

1. Introduction
Groundwater (GW) systems are in dynamic balance between climatic forcing and human pressure. They play a
pivotal role in addressing various water resource management and civil engineering matters. Monitoring the
dynamics of groundwater table (GWT) geometry is essential for evaluating the resilience and quality of aquifers,
predicting water availability, and allowing for sustainable extraction and use, particularly during extreme floods
and droughts. Additionally, this understanding proves equally crucial for identifying high‐risk infrastructures
susceptible to GW‐induced natural hazards. In fact, waterlogging events, landslides (Panda et al., 2022; Rahardjo
et al., 2010), and sinkholes (Gutiérrez et al., 2014; Parise, 2019; Waltham et al., 2004; Xiao et al., 2020) are
potential threats that can be anticipated and mitigated more effectively by incorporating knowledge of the dy-
namics of GWTs.
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GWTs evolve beneath our feet and still represent a terra incognita (Kleinhans, 2005). The assessment of their
geometry and dynamics remains a scientific barrier to be lifted. While piezometers can locally measure GWT
depths with high precision and accuracy, it is important to acknowledge that their deployment is often spatially
limited, resulting in sparse estimations across larger areas. To reduce this limitation, GWT maps are often
interpolated from piezometric data, through techniques such as linear estimators and kriging (Maillot et al., 2019),
and represent an important tool for hydrogeologists and civil engineers. While interpolation techniques offer
unbiased results for GWT geometry, they do not account for the soil spatial heterogeneity between piezometers
and are limited by the spatial distribution and number of piezometers. The effectiveness of the interpolation is
contingent on the availability and strategic placement of these monitoring points, impacting the overall accuracy
and reliability of the generated GWT maps.

One effective solution to address this limitation involves the conversion of lithofacies into hydrofacies infor-
mation to constrain GWT map interpolations and simulations (Dagan, 1982; Tsai & Li, 2008). The integration of
geophysical data can significantly enhance hydrological knowledge by providing spatial information where
conventional hydrological measurement techniques are limited (Dafflon et al., 2009). Time‐lapse geophysical
methods, offer real‐time data on changes in subsurface properties, aiding in the characterization of GWT ge-
ometry and the identification of spatial variability and temporal trends (Dangeard et al., 2021; Hermans
et al., 2023). Methods such as ground‐penetrating radar (GPR), induced polarization, self‐potential, and re-
sistivity, use the electrical and magnetic properties of the near‐surface and are relevant in assessing soil water
content (Garambois et al., 2002; Jougnot et al., 2015; Klotzsche et al., 2018; Loeffler & Bano, 2004; Samouëlian
et al., 2005). However, they tend to be ineffective in very electrically conductive or resistive environments. Active
seismic approaches, such as seismic reflection, refraction (Whiteley et al., 2020) and Multichannel Analysis of
Surface Waves (MASW, Park et al., 1999) have been successfully used for water content monitoring (Bergamo
et al., 2016; Lu, 2014) and GWT geometry characterization (Dangeard et al., 2021; Pasquet, Bodet, Dhemaied
et al., 2015; Pasquet, Bodet, Longuevergne, et al., 2015). They mostly rely on the study of the pressure‐(P) and
shear‐(S) wave velocities (VP and VS) to estimate VP/VS or Poisson's ratios (Biot, 1956a, 1956b), which are
sensitive indicators of fluid presence. However they face limitations due to the difficulty to regularly deploy
active sources in adverse conditions, making continuous characterizations impossible.

Passive seismic methods, use continuous and coherent ambient seismic noise generated by natural or anthro-
pogenic activities. They rely on seismic interferometry and consist in the Green's function retrieval by cross‐
correlation between recording sensors pairs to provide a characterization of the propagation medium
(Aki, 1957; Derode et al., 2003; Larose et al., 2015; Wapenaar, 2004; Wapenaar, Draganov, et al., 2010;
Wapenaar, Slob, et al., 2010; Weaver & Lobkis, 2004). Some approaches monitor the relative temporal variation
of seismic velocities for specific wavefronts (referred to as dv/v) between pairs of sensors, and have put on
evidence a clear correlation with GWT depth variations (Barajas et al., 2021; Clements & Denolle, 2018;
Garambois et al., 2019; Gaubert‐Bastide et al., 2022; Grêt et al., 2006; Kim & Lekic, 2019; Lecocq et al., 2017;
Mao et al., 2022; Qin et al., 2022; Voisin et al., 2016, 2017; S. Zhang et al., 2023). Although this method is able to
correlate the seismic velocity variations and GWT depth variation maps (Gaubert‐Bastide et al., 2022), it provides
limited information about the aquifer geometry and the proper GWT depth.

Another employed approach is the passive‐MASW, an extension of the standard active‐MASW. This technique
relies on the propagation of ambient Rayleigh‐waves, induced by cars or trains, through linear geophone arrays to
characterize the near‐surface and has found application in various civil engineering contexts, both sporadically in
time with 1D setups (Cheng et al., 2015, 2016; Czarny et al., 2023; Mi et al., 2022, 2023; Park & Miller, 2008;
Quiros et al., 2016; Rezaeifar et al., 2023; You et al., 2023), and for continuous sinkhole monitoring with 2D
configurations (Bardainne, Cai, et al., 2023; Bardainne & Rondeleux, 2018; Bardainne, Tarnus, et al., 2023;
Bardainne, Vivin, & Tarnus, 2023; Bardainne et al., 2022; Rebert, Bardainne, Allemand, et al., 2024, Rebert,
Bardainne, Cai, et al., 2024; Tarnus et al., 2022a, 2022b). The characterization process is based on the analysis of
dispersion curves (DCs), which depict the fluctuation of Rayleigh‐wave phase velocity (VR) across frequencies,
along the linear arrays. VR variation over frequency, seen in DCs, is closely linked to the medium's VS variation
over depth, which is influenced by the water content (Solazzi et al., 2021). Nevertheless, the shift from DCs to
ground models incorporating water saturation profiles and GWT depth information involves intricate inversion
operations, combining geophysical and hydrogeological data, that are still under development.
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Piezometers offer valuable but localized and sparse hydrogeological data, while geophysical methods help in
interpolating and extrapolating this information. However, geophysical methods often lack direct connections to
hydrogeological principles. More recently, machine learning (ML) and deep learning (DL) methodologies have
gained significant prominence in hydrology and water resource applications (see Tripathy & Mishra, 2024 for an
overview on DL usage in hydrology). More specifically, physics‐guided models, incorporating geophysical
knowledge into ML or DL models, were used to effectively handle and uncover hidden patterns in complex and
high‐dimensional data sets, and served as a bridge between hydrogeology and geophysics. Abi Nader et al. (2023)
combined ML and seismic monitoring to appraise GWT depths with great precision, using raw seismic noise
records. Cai et al. (2022) was able to estimate GWT depths with more accuracy with a physics‐guided DL model
than with a pure DL model, using water balance equations as a physical constraint.

This study leverages a geologically well constrained sinkhole‐affected site equipped with a dense geophone array
and two piezometers. It offers almost a year of observed passive seismic data, revealing temporal trends that could
be correlated with the GWT depth seasonal variations. The objective is to demonstrate the utility of DCs, obtained
through passive seismic methods, in monitoring GWT depths. We couple passive‐MASW and a simple artificial
neural network, more precisely a Multilayer Perceptron (MLP), to estimate daily GWT maps from a single
piezometer. After introducing the test site and providing a comprehensive overview of the passive‐MASW survey
geometry and data, we give a description of the method employed for building, training and testing the MLP.
Subsequently, we showcase the generated GWT maps resulting from the application of this method, discuss the
hydrogeological implications, and explore the limitations associated with such approach.

2. Study Site and Data
2.1. A Sensitive but Well Constrained Site

The study site is located along a railway line in the Grand‐Est region of France (see Figures 1a and 1b) at the
eastern edge of the Paris Basin. The site features a stratigraphic composition dominated by a 75‐m‐thick cover
formation, consisting of the middle and lower Muschelkalk layers. This cover formation is composed with al-
luvium, impermeable clays, and marls, all dating back to the Middle Triassic period, and is underlayed by the
lower Triassic sandstone (LTS) formation. The subsurface aquifer has not been described at the site, only a large
GWT map of the deeper LTS confined aquifer, dating from 2010, is available at the Lorraine region scale
(Nguyen‐Thé et al., 2010).

Between 1989 and 2017, this railway site has encountered several instances of sinkhole dropouts, particularly
impacting the integrity of the railway on the southwest side toward the bridge (see Figure 1c). These sinkholes are
attributed to the dissolution of gypsum veins within the marl layer. Consequently, a cement‐based grout was
injected at a depth of 20 m in the soil to reinforce the structure in 2018. Five auger drilling tests with depths up to
20 m were conducted in December 2022 with the aim of detecting potential eventual cavities, as depicted in
Figure 1c. These tests did not reveal cavities, and facilitated a visual characterization of the various layers of the
near‐surface (see Figure 1d). An approximately 10 m‐thick layer of alluvium, consisting of a mixture of sand and
gravel, appears to overlay a denser layer of gray clays and a highly compacted marl layer. Additionally, a sandy
gravely clay layer was found between depths of 5 and 10 m, at one of the five drillings (see Figure 1d). This
observations align coherently with the expected geological composition of the top of middle and lower
Muschelkalk cover layer.

The studied subsurface aquifer is located above the gray clay aquitard formation, within the alluvium and sandy
gravely clay layers, which are hydraulically connected (see Figure 1d). However, information on its connectivity
with the LTS aquifer is not available, therefore, is not considered here.

To effectively address and mitigate the risks posed by sinkholes, a continuous ground monitoring, through
passive‐MASW using seismic noise induced by trains (Bardainne, Cai, et al., 2023; Bardainne & Ronde-
leux, 2018; Bardainne, Tarnus, et al., 2023; Bardainne, Vivin, & Tarnus, 2023; Bardainne et al., 2022; Rebert,
Bardainne, Allemand, et al., 2024; Rebert, Bardainne, Cai, et al., 2024; Rebert et al., 2023; Tarnus et al., 2022a,
2022b), and combined with two piezometers has been established as the best approach in late 2020. Following the
installation of the piezometers in late 2022, this study covers a 9‐month period, from 30 December 2022, to 3
September 2023, encompassing the aquifer's response under both low and high water period conditions.
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2.2. Passive‐MASW

The seismic dispersion data was originally acquired and processed by Bardainne and Rondeleux (2018). Daily
DCs were measured using a passive‐MASW approach (Bardainne, Cai, et al., 2023; Bardainne, Vivin, & Tar-
nus, 2023; Cheng et al., 2015, 2016; Czarny et al., 2023; Mi et al., 2022; Park & Miller, 2008; Quiros et al., 2016;
Rezaeifar et al., 2023; Tarnus et al., 2022b; You et al., 2023), which combines seismic interferometry (Bensen
et al., 2007) with traditional MASW (Bergamo et al., 2012; Bohlen et al., 2004; L. Socco & Strobbia, 2004; L. V.
Socco et al., 2010; Pasquet & Bodet, 2017).

Since September 2020, seismic noise induced by train passages, has been continuously recorded using five
uniform linear arrays of vertical component geophones (L1 to L5 on Figure 1c). Each linear array has a length of
123 m and is equipped with 42 3‐m spaced geophones. The geophones were strategically positioned along the rail
track, either on the cess (i.e., the track side) for linear arrays L1 and L5, or on the ballast for L2, L3, and L4. Note
that our experience has shown that the ballast does not significantly affect the quality of the data.

For each day, passage events were automatically detected by taking advantage of their high signal‐to‐noise ratio.
Then, based on the assumption that trains act as permanent and well‐localized moving sources (Bardainne
et al., 2022; Rebert, Bardainne, Allemand, et al., 2024; Rebert, Bardainne, Cai, et al., 2024; Rebert et al., 2023),

Figure 1. (a and b) Location map of the site, and close hydraulic networks. (c) Experimental design of the study site showing
the five lines (L1 to L5) of 42 vertical component geophones (yellow dots), planted parallel to the railway tracks, and the track
numbers (T1 and T2). x and y correspond to the distance parallel and perpendicular to the railway tracks, respectively, and point
(x = 0; y = 0) is at geophone 1 of array line 1 (L1 − P1) . Data points used for training and testing the MLP are colored in red
around piezometer PZ3, and green close to piezometer PZ5, respectively. DR1, DR2, and DR4 correspond to auger drilling
locations without piezometers. (d) Lithographic log at the 5 drillings. The lithology at the site consists of an 10 m thick alluvial
layer, composed of sand and gravel, overlying a denser section of gray clays and a highly compacted marl layer with gypsum
veins. However, at PZ3, a distinct layer of sandy gravely clays is present between depths of 5 and 10 m. The studied aquifer is
located within the alluvial, and sandy gravely clay layers, above the impermeable gray clay layer. The piezometer at PZ3 was
screened between depths of 1–8 m, while piezometer PZ5 was screened between 1 and 11 m. Both piezometers were sealed at
the top and bottom with bentonite to ensure proper isolation.
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specific time intervals were selected. These intervals correspond to moments when the train is outside the seismic
array but still within a range that maintains sufficient seismic energy, and the induced waves propagate in
alignment with all the geophones along the geophone lines. In the literature, various techniques have been used as
automatic segment selection tools. These include Frequency‐Wavenumber (FK)‐based data selection (Cheng
et al., 2018), data selection in the Tau‐p domain (Cheng et al., 2019), beamforming techniques (Ning et al., 2022),
and covariance matrix methods for train localization in time and space (Rezaeifar et al., 2023). However, the
specific selection method used by Bardainne and Rondeleux (2018) is not known to the authors.

The selected time intervals were then divided into overlapping short segments of a few seconds each (usually
around 10 s), and cross‐correlation was applied on every geophone pair. This process forms a virtual shot‐gather
for each segment, illustrating the propagation of seismic waves from the first sensor (acting as the virtual source)
to the subsequent sensors. To improve the reliability of the data, virtual‐shot gathers resulting from all segments of
multiple trains passages (approximately 40 per day) were stacked together in the time‐domain. This stacking
process enhances the signal‐to‐noise ratio, as random noise tends to cancel out while the consistent seismic
signals reinforce each other. Our experience indicates that even a relatively small number of train passages can
provide sufficient data for effective analysis.

Finally, a MASW window of 21 m (over 8 geophones) with a moving step of 3 m (1 geophone interval) was used
to extract surface‐wave dispersion curves from the stacked virtual shot‐gathers along each geophone line. Within
the sliding MASW window shot‐gathers were transformed from the distance‐time (x, t) domain into dispersion
images in the frequency‐phase velocity (f ,VR) domain using a phase‐shift transform (Park et al., 1999), and the
fundamental propagation mode DC was automatically picked between 5 and 50 Hz (Tarnus et al., 2022b). Each
DC was then positioned at its associated MASW window center to construct the five VR profiles between 10.5 and
115.5 m.

In parallel, Spectral Analysis of Surface Waves (SASW, Nazarian et al., 1983) was also used to construct hor-
izontal maps of VR, for frequencies ranging from 5 to 50 Hz, between pairs of geophones. The resulting velocities
were combined with the velocities estimation from passive‐MASW to construct a complete VR cube, through an
Eikonal based tomography procedure, between 0 and 126 m. Finally, at each geophone line y‐position, DCs were
extracted from the data cube at each geophone location, and at the limits of the array. This results in a rectangular
configuration of 43 data points per geophone line, as they are alternatively shifted by one geophone (see
Figure 1c).

The daily DCs estimated at each array point, covering a frequency range from 5 to 50 Hz, were resampled in
wavelength λ = VR/ f , where f is the frequency, within the range of 4–15 m, and a step of 0.5 m. VR variation over
frequencies or wavelengths, seen in DCs, is linked to the medium's VS variation over depth. However, it's crucial
to note that this transformation is nonlinear. Yet, wavelength resampling offers a more accurate link to depth in
comparison to frequencies, enabling precise targeting of the first meters of the near‐surface. Typically, the
maximum sensitivity depth corresponds to approximately a half or one‐third of the wavelength (Foti et al., 2018).
Therefore, this resampling primarily targets depths ranging from 1.5 to 5 m, where the GWT is expected.

Figure 2 shows every estimated dailyDC, from30December 2022, to 3 September 2023, sampled over frequencies
and wavelengths, close toPZ3 at point 23 of geophone line 1 (L1‐P23), and close toPZ5 at point 33 of geophone line
5 (L5‐P33) (see Figure 1c). In Figure 3, examples of VR pseudo‐sections showcase the DCs sampled over wave-
lengths along the 5 linear arrays, on 1 April 2023, and 1 July 2023, at high and low water periods, respectively (see
Figures 4a and 4b). VR pseudo‐sections over frequencies version is shown in Figure A1 of Appendix A. Figures 2
and 3 reveal a spatial and temporal evolution ofVR that could be correlatedwithGWTgeometry and dynamics. This
indicates the potential utility of employing this method for the ongoing monitoring purposes.

2.3. Piezometers

Both piezometers were equipped on 30 December 2022, at two of the five drilling locations, separated by
approximately 40 m, and have been recording daily GWT depths over time (see PZ3 and PZ5 in Figure 1c). The
altitude of both piezometers is identical (252 m NGF), and the screened was applied over the studied subsurface
aquifer (see Figure 1d), within the alluvium and sandy gravely clay layers. PZ3 was screened between depths of
1–8 m, while piezometer PZ5 was screened between 1 and 11 m. The top and bottom of the piezometers were
sealed with bentonite.
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GWT depth data at PZ3 and PZ5 is presented in Figures 4a and 4b. The two piezometers display distinct hy-
drological responses. PZ3 recorded GWT fluctuations between 1.75 and 3 m, while PZ5 ranged from 2.5 to 3.5 m.
PZ3 demonstrated greater sensitivity and amplitude variations than PZ5. This disparity can be attributed to the
lithology heterogeneity and the aquifer geometry. The subsurface aquifer at the PZ3 location consists of both
alluvium and a less permeable sandy gravelly clay layer, whereas at PZ5, only alluvium is present (see Figure 1d).

2.4. Data Correlation

Figures 4c and 4d illustrate the temporal evolution of VR across all wavelengths at the piezometers locations. We
observe a correlation between the variation of the DCs and the observed GWT depth at array points near each
piezometer (see Figures 2c and 2d). An increase in GWT depth is associated with a general increase in VR, while a
decrease in GWT depth corresponds to a reduction in VR. This correlation is evident across all wavelengths at
varying amplitudes, as shown in Figures 4c and 4d, and becomes even more pronounced when focusing on
specific wavelengths in Figures 4e and 4f. The observed relationship between GWT depths and VR is indicative of
the influence of groundwater dynamics on the spatial distribution and temporal evolution of VR. Given the
observed correlation between DCs and GWT depths at these piezometers, it is plausible to hypothesize that this
correlation persists across all points along the seismic array. It is worth noting that the steep change in VR at
λ = 8 m observed in Figures 2c and 4c could correspond to the GWT depth at PZ3. However, conclusive
determination requires inversion of the DCs into VS over depth models.

We suggest training an artificial neural network with seismic and GWT depth data from PZ3, as it exhibits the
most pronounced responsiveness among the two piezometers. The objective is to translate the DCs into GWT
depths, enabling the estimation of GWT maps across the entire array.

Figure 2. Time‐series of raw dispersion curves over frequencies measured (a) at seismic array point L1‐P23, close to
piezometer PZ3, and (b) at seismic array point L5‐P33, close to piezometer PZ5. Resampled dispersion curves over
wavelengths, ranging from λ = 4 to λ = 15 m, (c) at seismic array point L1‐P23, close to piezometer PZ3, and (d) at seismic
array point L5‐P33, close to piezometer PZ5 (see Figure 1c).
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3. Methods
3.1. Multilayer Perceptron Architecture

In this study, an MLP is used as a regression tool for estimating a GWT depth from each DC, at several seismic
array points and times. The MLP is the most basic feedforward artificial neural network and consists of multiple
layers of fully connected neurons, comprising an input layer, one or more hidden layers, and an output layer
(Goodfellow et al., 2016; Murtagh, 1991; Rosenblatt, 1958). The use of an MLP allows for complex non‐linear
mappings between inputs and outputs, making it particularly well‐suited for capturing intricate relationships
within numerical data sets. It has been widely used in hydrogeology in numerous applications (Altunkaynak &
Strom, 2009; Boucher et al., 2020; Kawo et al., 2024; C. Zhang et al., 2022).

Figure 3. VR pseudo‐sections over wavelengths for the 5 linear geophone arrays (L1 to L5) (left) at a high water period on 1
April 2023, and (right) at a low water period on 1 July 2023. Positions of piezometers PZ3 and PZ5 are represented by the
blue triangles on pseudo‐sections L1 and L5, respectively.
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Given the relatively small size of our data set, we opted for a small MLP to mitigate the risk of overfitting. We
experimented with architectures ranging from two to three layers, with varying numbers of neurons per layer (8,
16, 32, and 64), and observed that increasing the depth beyond two layers did not significantly improve validation
performance and often led to overfitting, while reducing the number of neurons resulted in underfitting. We
selected an MLP architecture with two hidden layers and 32 neurons per layer (see Figure 5), which provides a
good trade‐off between model complexity and generalization ability, as evidenced by its performance on the
validation set (see Table 1).

The input and output layer sizes correspond to the number of features of the input and output data. For each
estimation, a unique DC of VR resampled over wavelengths ranging from 4 to 15 m and with a wavelength step of
0.5 m, is used as input, which can be seen a vector x of size n = 23. The output corresponds to a unique scalar y of
an estimated GWT depth.

For each layer l, let w(l) be a vector of weights, initially containing arbitrary values, and b(l) a vector of constants
called “bias.” At the first hidden layer, the weighted sum z(1) is computed for each neuron j over the k neurons of
the layer, as

z(1)j = b(1)j +∑
n

i=1
w(1)ij xi, (1)

Figure 4. (a and b) Recorded GWT depths between 30 December 2022, and 3 September 2023, at PZ3 and PZ5. (c and d) VR
over wavelengths evolution over the same time period at seismic array points L1‐P23, close to PZ3, and L5‐P33, close to PZ5.
(e and f) VR at wavelengths 5, 7, 9, and 11 m evolution over the same time period at seismic array points L1‐P23, close to PZ3,
and L5‐P33, close to PZ5.
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with each feature i over the n features of the input vector x. Then, the vector z(1) goes through a Rectified Linear
Unit (ReLu) function introducing non‐linearity to the model. The output h(1) of the ReLu function is given by

h(1)j = ReLu(z(1)j ) =
⎧⎨

⎩

z(1)j if z(1)j > 0,

0 otherwise,
(2)

for each neuron j over the k neurons of the first hidden layer.

At the second layer l = 2, the weighted sum z(2) is

z(2)j = b(2)j +∑
k

i=1
w(2)ij h(1)i , (3)

for each neuron j over the k neurons of the second layer, and with each neuron i over the k neurons of the previous
first hidden layer. Again, the vector z(2) goes through a Rectified Linear Unit function ReLu. The output h(2) of the
ReLu function is given by

h(2)j = ReLu(z(2)j ) =
⎧⎨

⎩

z(2)j if z(2)j > 0,

0 otherwise,
(4)

for each neuron j over the k neurons of the second hidden layer.

Finally, the output z(out) of the ReLu function is given by

z(out)1 = b(out)1 +∑
k

i=1
w(out)i1 h(2)i , (5)

for the unique neuron of the output layer, and with each neuron i over the k neurons of the previous second hidden
layer. Finally, z(out) goes through an Identity activation function linear, to obtain the estimated scalar value y:

y = linear( z(out)) = z(out). (6)

3.2. Data Preprocessing and Training

The MLP goes through a training phase to optimize its performance and enhance its ability to make accurate
estimations. The training data involved daily measured DCs at specific seismic array points surrounding PZ3
(L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) as inputs, and daily GWT depth observations at PZ3 as
expected outputs. Thus, for an unique daily GWT depth output, six different inputs are used, corresponding to the
closest six points around the piezometer. Thanks to the similarity of the DCs at these points, this allows for a better
spatial versatility of the model, and can be seen as data augmentation (Shorten & Khoshgoftaar, 2019). To
facilitate the training phase, DCs are normalized by 2000 (i.e., around twice the maximum observed VR) and GWT
depths are in absolute numbers. The data collection spanned from 30 December 2022, to 3 September 2023,
encompassing a total of 248 days. Days without data, due to technical issues, were excluded from the data set.

During the training process, weights and biases are refined to minimize the difference between estimated outputs
and actual target values. The training begins with the presentation of the training data, with known input and
outputs, to the MLP. Subsequently, the calculated errors of the resulting estimations, in terms of root‐mean‐
square error (RMSE), are backpropagated through the network (Linnainmaa, 1976; Rosenblatt, 1958; Wer-
bos, 1982). This involves adjusting the weights and biases in the opposite direction of the error gradient. In this
study, the magnitude of these adjustments was determined by a stochastic gradient descent Adam optimization
algorithm with a learning rate of 10− 4 (Kingma & Ba, 2017). This iterative adjustment process was done until the
MLP converged to a state where further refinement did not significantly improve its estimation capabilities. The
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resulting trained MLP features optimized internal parameters, enabling it to generalize effectively to new, unseen
data and deliver accurate estimations across diverse scenarios.

A maximum of 1,000 training epochs (i.e., iterations) with 2 samples per batch were done. Additionally, DCs at
seismic array points surrounding PZ5 (L4‐P31, L4‐P32, L4‐P33, L5‐P32, L5‐P33, and L5‐P34), as well as GWT depths
at PZ5 were used as a validation data set for “early stopping,” limiting the number of epochs to 541, and avoiding
the overfitting of the model (Tripathy & Mishra, 2024; Ying, 2019).

4. Results
Figure 6 compares the GWT depths observed at PZ3 and PZ5 with the estimations at seismic array points L1‐P23
close to PZ3, and L5‐P33 close to PZ5, between 30 December 2022, and 3 September 2023. As anticipated, the
estimated and observed values at PZ3, which was used in the training process, show close proximity (see
Figures 6a and 6b), with an RMSE of 0.03 m and a coefficient of determination (R2) of 80% (see Appendix D for

definitions). Please note that this score could possibly be higher but is limited
to able a great generalization of the model. While the model successfully
captures the general patterns, it exhibits minor fluctuations that deviate from
the observed values. However, the overall agreement between estimated and
observed values underscores the model's capability to replicate the general
trends associated with PZ3.

The model also demonstrates its ability to accurately extrapolate and estimate
GWT depths at PZ5, a location not included in the training data set (see
Figures 6c and 6d). It is important to note that while the piezometers in this
study are relatively close to each other (around 40 m), they do not demonstrate
the exact same behavior and GWT depth ranges. Specifically, the training
data ranged between 1.75 and 3.10 m (see PZ3 on Figure 6), but the model
accurately inferred values around 3.5 m over the test data set (see PZ5 on
Figure 6). Overall, estimations for PZ5 yield an RMSE of 0.03 m and an R2 of
68%, suggesting a low level of estimation error and a high degree of accuracy.
However, GWT depths are slightly underestimated by 25 cm between May
and June 2023 and between August and September 2023. These errors could
possibly be corrected by extending the time span of GWT depth data used for
training, a limitation imposed by the time‐frame of this research.

Figure 5. Multilayer perceptron comprising an input layer, two hidden layers, and an output layer. A DC (VR over wavelength
λ) is used as input to predict a GWT depth. The input vector x has n = 23 features, each hidden layer l has k = 32 neurons,
and the output y is a scalar. w(l) is a weight or leaning coefficient vector and b(l) a vector of constants called “bias.” ReLu and
linear are the Rectified Linear Unit and Identity activation functions.

Table 1
Performance Comparison of MLP Architectures With Varying Number of
Layers and Neurons

Neurons per layer Epochs

Training data set
Validation
data set

RMSE R2 RMSE R2

(8, 8) 626 0.02 0.86 0.05 0.09

(16, 16) 504 0.02 0.86 0.03 0.43

(32, 32) 541 0.03 0.80 0.03 0.68

(64, 64) 617 0.02 0.88 0.06 − 0.02

(8, 8, 8) 603 0.03 0.81 0.03 0.59

(16, 16, 16) 564 0.02 0.86 0.05 0.09

(32, 32, 32) 605 0.02 0.89 0.06 − 0.13

(64, 64, 64) 543 0.02 0.87 0.10 − 0.76

Note. The bolded values represent the MLP architecture with the most
favorable results on the validation set.
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Figures 7b–7i show the inferred GWT maps, at the beginning of January, February, April, May, June, July,
August, and September 2023. GWT depth evolution over time at the five drilling locations are highlighted in
Figure 7a. The GWT maps exhibit a noticeable global variation, of approximately 1 m, between the high water
period (April 2023) and the low water period (July 2023) (see Figure 8). Nevertheless, a spatial heterogeneity over
x and y is evident, revealing zones with relatively shallow and deep GWT. The areas between x = 30 and
x = 60m, encompassing PZ3, and between x = 80 and x = 90 m, encompassing PZ5, demonstrate a shallow
GWT from January to May 2023. However, a noticeable depth increase is observed during the summer months
(June–August). In the central area of the map, a small high‐depth zone with minimal variation over time, enclosed
by a low‐depth zone, can be noticed. Areas between x = 20 and x = 30 m, and between x = 60 and x = 80 m,
exhibit relatively shallow GWT. Additionally, the zone between x = 90 and x = 126 m, which includes DR4,
displays a deeper GWT. For reference, this zone also registered the highest values of VR (see Figure 2).

5. Discussion
5.1. Geologic Interpretation

Spatial and temporal variations in GWT depths observed in Figures 7 and 8 could be explained by differences in
lithology over the studied site, effectively captured by seismic data. Areas exhibiting a consistent shallow GWT
could be attributed to the presence of less permeable materials, such as clay, near to the surface. In such case, GW
is impeded from infiltrating into the subsurface, contributing to the observed shallow GWT depths. Conversely,
areas with a constant deep GWT may be associated with more permeable materials beneath alluvium.

Figure 9 shows the GWT cross‐section traversing through all five drilling points, for different months along the
year, with geological logs illustrating the nature of the encountered materials. As expected, the GWT is shallower
and exhibits greater variation above the shallow sandy gravelly clay layer observed at PZ3. BetweenDR2 and PZ3,
close to DR2, as well as between PZ3 and PZ5, there is a increase in the GWT depth, with a distinctive pinching
point. This could be explained by a transition from highly impermeable to more permeable materials. All this
suggests that zones x = 30 and x = 60 m, and between x = 80 and x = 90 m in a lesser degree, present a shallow
clay layer.

This study represents a first approach attempting to confirm that the DCs are sensitive to temporal variations in
GWT depths. However to further validate these permeability interpretations, it would be essential to conduct
laboratory permeability tests on the collected samples to further substantiate the influence of lithological prop-
erties on groundwater dynamics.

5.2. Concordance With Inverted VS Data

Pseudo‐sections of VR over wavelengths for the five geophone array lines, measured during the high water period
(1 April 2023) and the low water period (1 June 2023), and displayed in Figure 2, were inverted into sections of VS
over depth (see Figure 10 and Figure C1 in Appendix C).

Remarkably, for the five sections, the estimatedGWTdepths align perfectlywith a low‐velocity layer for x between
30 and 80 m (blue on Figure 10), characterized by a low VS between 200 and 250 m/s. Around x = 60 on L1, this
low‐velocity layer is positioned just above the observed clay layer at drilling point PZ3, and could correspond to
saturated alluvium. This alignment supports the credibility of the method, as the MLP successfully estimated the
depth of this layer despite the absence of direct depth information in the DCs used as input to the model.

Outside this area (x between 30 and 80 m), the relationship between a low VS anomaly and the GWT depth is less
evident. As expected, zones with higher VS show a deeper GWT that seems to follow the geometry of a deep
shallow low‐velocity layer with an unclear delimitation. This zones align with the absence of the sandy gravely
clay layer at 5 m depth, and could be explained by a deeper interface between alluvium and the impermeable
underlying gray clay layer.

5.3. Inference Limitations

Artifacts exhibiting very shallow GWT estimations (between 0 and 1 m) and very deep GWT estimations (around
6 m) can be observed at the border of the maps, along geophone line L5, between February and May 2023 (see
Figures 7c–7e). Additionally, the area between x = 0 and x = 15 m, comprising DR1, consistently exhibits
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shallow depths at around 2 m, with minimal variation over time. Even more, we observe an inferred GWT that
increased between the low and high water periods (around DR1 and at the end of L5 on Figures 7 and 8). These
artifacts and non expected GWT depth variations could be explained by lower quality on the input DC data. In fact,
it seems that mode contamination occurred during the picking process at certain position, where a higher mode was
mistakenly picked between 30 and 50 Hz (seeL5 − P39 to L5 − P43 on FigureA7). Additionally, the area enclosed
from L5 − P1 to L5 − P5 also shows poor quality, with DCs around April appearing to be underestimated (see
Figure A7).

As expected, the model appears to be sensitive to the quality of the input data, highlighting the critical importance
of the DC processing and quality control in accurately inferring GWT depths. Such issues (O’Neill & Mat-
suoka, 2005) cannot be yet perfectly addressed in an automatic processing workflow. However, the current study,
which has to be seen as a proof of concept, remains very encouraging and should provide better results as soon as
the automatic data processing workflow is improved.

Additionally, to assess the influence of the number of piezometers on the estimated GWT maps, a model was
trained using data points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22 and L2‐P23) and PZ5 (L4‐P31, L4‐P32,
L4‐P33, L5‐P32, L5‐P33 and L5‐P34). The results, presented in Appendix B (see Figures B1–B5), reveal an enhanced
estimation performance at both PZ3 (R2 of 88% and an RMSE of 0.01 m) and PZ5 (R2 of 72% and an RMSE of
0.01 m). Upon comparing the estimated GWT maps in Figure 7 (MLP trained with only PZ3) and Figure B2 (MLP
trained with bothPZ3 andPZ5), it is evident that extreme high and low GWT depths appear to have been smoothed
or flattened. Nevertheless, the general GWT depths and behavior remain highly consistent with the previous

Figure 6. MLP's GWT depth estimations, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24,
L2‐P21, L2‐P22, and L2‐P23) and observed GWT depths at PZ3 as training data. (a) GWT depth over time observed at PZ3 and
estimated at seismic array point L1‐P23. (b) GWT depths observed at PZ3 versus estimated at L1‐P23. (c) GWT depth over time
observed at PZ5 and estimated at seismic array point L5‐P33. (d) GWT depths observed at PZ5 versus estimated at point L5‐P33.
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Figure 7. MLP's GWT depth estimations, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24,
L2‐P21, L2‐P22, and L2‐P23) and observed GWT depths at PZ3 as training data. (a) Estimated GWT depths over time at the
five drilling and piezometers locations. (b–i) Estimated GWT maps at different dates, with geophone linear array (L),
piezometer (PZ) and drilling (DR) positions at the surface.
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estimations. This supports the robustness of using an unique piezometer for training. However, employing multiple
piezometers, installed in different lithologies, enhances the precision and stability of the method.

It is also important to note that this study only included 9 months of GWT data, which is relatively limited and
does not cover a full annual cycle. Monitoring over an entire year would provide a more comprehensive

Figure 8. Estimated GWT depth map variation between high water period (1 April 2023) and low water period (1 July 2023),
obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and observed
GWT depths at PZ3 as training data. Geophone, piezometer and drilling positions are displayed at surface.

Figure 9.. (top) Geophone array map and cross‐section line (in red) between drilling and piezometers. (bottom) Cross‐section
of estimated GWT depths at different dates, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24,
L2‐P21, L2‐P22, and L2‐P23) and observed GWT depths at PZ3 as training data, with geologic logs illustrating the nature of the
underground materials.
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understanding of seasonal variations in GWT depths, capturing the full range of hydrological conditions. To
further validate the model's accuracy and robustness, it would be beneficial to extend the study period to at least
two annual cycles. This would allow for the inclusion of a full cycle from both piezometers in the training process,
with the other cycle serving as the test data set for both piezometers.

While our current model is a relatively simple MLP with only two layers, we acknowledge that its ability to
reproduce precise temporal dynamics of the GWT is limited. This limitation can be attributed to the sensitivity of
the passive‐MASW method, as it may not be sensitive enough to detect subtle daily variations in the GWT.

Figure 10. Inverted VS sections over depth for the 5 linear geophone arrays (L1 to L5) at a high water period (1 April 2023) and at a low water period (1 July 2023). The
white mask indicates depths where the standard deviation, between the mean VS model and all other accepted models during inversion, is greater than 400 m/s.
Estimated GWT depths, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and observed GWT depths at PZ3 as
training data, and geologic logs, illustrating the nature of the underground materials at five drilling coordinates, are superposed for interpretation.
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Additionally, it could also be the consequence of training the MLP using time‐independent data. In fact, this study
focused on approximating the inversion function linking a DC with a GWT depth, without incorporating temporal
aspects. Consequently, the model does not explicitly learn the temporal dependencies between time consecutive
GWT depths, making it challenging to capture time‐series relationships effectively. To address this limitation,
Recurrent Neural Networks (RNNs), particularly Long Short‐Term Memory (LSTM) and Gated Recurrent Unit
(GRU) architectures, could replace our MLP. These architectures are specifically designed to handle sequential
numerical data and can learn temporal dependencies by retaining information from previous time steps when
making predictions. However, this approach could limit the model's ability to extrapolate outside the training data
set, as the GWT temporal behavior at the training location and at different array locations may not be identical.
Additionally, the model would be highly sensitive to data consistency, as missing data could compromise the
model's performance, and larger gaps in the data set would reduce the effectiveness of training. Adding rain data
to the inputs could also help capturing the time dynamic of the GWT. However, the small scale of our study site
limits us to a single data set for the entire array.

5.4. Future Applicability Directions

Our method benefits from the high spatial resolution provided by a dense array. However, it may also be
applicable to sparser arrays, though with potentially reduced accuracy. The length of the geophone lines, and
distance between geophones affect the maximum measurable wavelength in the DCs (L. Socco & Strobbia, 2004).
Therefore, it is essential to ensure that the GWT depth is sensitive to the wavelengths captured by the signal (see
Section 2.2). In sparser arrays, the captured wavelengths might not fully encompass the shallow GWT. However,
for deeper aquifers, a sparser array on a regional scale might be appropriate, as it would allow for the capture of
longer wavelengths that are sensitive to deeper structures. While this approach may result in lower spatial res-
olution, it could still effectively characterize broader valuable insights into GW dynamics at larger scales.

While our study primarily focused on seismic signals generated by passing trains, the method is not limited to this
specific source. It could also be adapted for use with other ambient noise sources, or even periodic active sources
like controlled mechanical vibrations. The critical requirement is that the chosen signals must generate detectable
surface waves and be recorded consistently enough to allow for reliable time analysis. Ambient noise, for
instance, is a ubiquitous and continuous source, making it a good candidate for long‐term monitoring applications.
However, an active source can generate higher frequencies compared to ambient noise, which is particularly
useful for characterizing shallow GWTs with high resolution.

Our study serves as a proof of concept for the capability of DL to approximate a complex function between depth‐
sensitive geophysical data and GWT depths. In fact, we believe that other types of geophysical data could
potentially replace DCs in the workflow. For example, electrical resistivity tomography (ERT), VS seismic to-
mography, Love‐wave dispersion analysis, and other depth‐sensitive geophysical methods could be used, or even
combined (when it is possible considering the very constraining railway context, as specified by Burzawa
et al. (2023) for instance). Multi‐modal DCs could also significantly improve the model's ability to constrain the
depth of the GWT.

6. Conclusions
This study introduces a physics‐guided DL model combining 2D passive‐MASW with an MLP to estimate daily
GWT maps from a single piezometer, and offering an effective mean of monitoring GWTs with both spatial and
temporal precision. This hybrid approach exhibited notable generalization capabilities, with the ability to spatially
extrapolate GWT maps beyond the training piezometric data set. Analysis of GWT maps revealed spatial and
temporal variations, offering a nuanced understanding of GWT geometry and dynamics, and revealing valuable
hydrogeological insights. The model successfully captured variations associated with lithological changes,
demonstrating its efficacy in characterizing subsurface materials. In addition, the estimated GWT depths align
closely with low‐velocity layers, in terms of VS, indicative of saturated alluvium and shallow clay layers.
However, while the study demonstrates promising results, it is crucial to acknowledge its limitations. The model's
performance may be influenced by site‐specific conditions, and further validation across diverse geological
settings is needed. By leveraging geophysical data and DL, this study contributes to advancing our understanding
of subsurface dynamics and offers practical insights for effective GW management and risk mitigation strategies.
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This integrated approach can be applied to monitor aquifer resilience at different scales, contribute to informed
decision‐making in the context of water resource management, and assess potential hazards such as sinkholes.

Appendix A: Raw Data
Figure A1 shows the same VR pseudo‐sections presented in Figure 2, at a high water period on 1 April 2023, and at
a low water period on 1 July 2023, but with the original DCs sampled over frequencies ranging from 5 to 50 Hz.
Figure A2 illustrates the non‐linear relationship between GWT depths and Rayleigh‐wave phase velocities at

Figure A1. VR pseudo‐sections over frequencies for the 5 linear geophone arrays (L1 to L5) (left) at a high water period on 1 April 2023, and (right) at a low water period
on 1 July 2023. Positions of piezometers PZ3 and PZ5 are represented by the blue triangles on profiles L1 and L5, respectively.
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Figure A2. GWT depths in function of the Rayleigh‐wave phase velocity VR, for different wavelengths (represented by the colorbar), at both piezometers PZ3 and PZ5,
between 30 December 2022, and 3 September 2023.
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Figure A3. Dispersion curves along the geophone line L1, between 30 December 2022, and 3 September 2023.
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Figure A4. Dispersion curves along the geophone line L2, between 30 December 2022, and 3 September 2023.
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Figure A5. Dispersion curves along the geophone line L3, between 30 December 2022, and 3 September 2023.
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Figure A6. Dispersion curves along the geophone line L4, between 30 December 2022, and 3 September 2023.
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Figure A7. Dispersion curves along the geophone line L5, between 30 December 2022, and 3 September 2023.
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various wavelengths. Finally, Figures A3–A7 show the raw DCs along each geophone line, between 30 December
2022 and 3 September 2023.

Appendix B: Model Trained With Both Piezometers
In this section, we present the same study, but incorporating results from an MLP model trained using seismic and
GWT depth data from both piezometers. The expanded data set enhances the model's training with a more
comprehensive understanding of the subsurface dynamics at multiple locations. By integrating seismic and GWT
data from both piezometers, we aim to provide a more robust and nuanced analysis of the GWT variations and
their correlation with the subsurface characteristics. Results are similar to those obtained using a single
piezometer for training, and are discussed in Section 5.

Figure B1. MLP's GWT depth estimations, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and PZ5 (L4‐P31,
L4‐P32, L4‐P33, L5‐P32, L5‐P33, and L5‐P34), and observed GWT depths at PZ3 and PZ5 as training data. (a) GWT depth over time observed at PZ3 and estimated at
seismic array point L1‐P23. (b) GWT depths observed at PZ3 versus estimated at L1‐P23. (c) GWT depth over time observed at PZ5 and estimated at seismic array point
L5‐P33. (d) GWT depths observed at PZ5 versus estimated at point L5‐P33.
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Figure B2. MLP's GWT depth estimations, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and PZ5 (L4‐P31,
L4‐P32, L4‐P33, L5‐P32, L5‐P33, and L5‐P34), and observed GWT depths at PZ3 and PZ5 as training data. (a) Estimated GWT depths over time at the five drilling and
piezometers locations. (b–i) Estimated GWT maps at different dates, with geophone linear array (L), piezometer (PZ) and drilling (DR) positions at the surface.
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Figure B3. Estimated GWT map variation between high water period (1 April 2023) and low water period (1 July 2023),
obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and PZ5 (L4‐P31,
L4‐P32, L4‐P33, L5‐P32, L5‐P33, and L5‐P34), and observed GWT depths at PZ3 and PZ5 as training data. Geophone, piezometer
and drilling positions are displayed at surface.

Figure B4. (top) Geophone array map and cross‐section line (in red) between drilling and piezometers. (bottom) Cross‐section of estimated GWT depths at different
dates, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and PZ5 (L4‐P31, L4‐P32, L4‐P33, L5‐
L5‐P33, and L5‐P34), and observed GWT depths at PZ3 and PZ5 as training data, with geologic logs illustrating the nature of the underground materials.
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Figure B5. Inverted VS sections over depth for the 5 linear geophone arrays (L1 to L5) at a high water period (1 April 2023) and at a low water period (1 July 2023). The
white mask indicates depths where the standard deviation, between the mean VS model and all other accepted models during inversion, is greater than 400 m/s.
Estimated GWT depths, obtained using DCs at seismic array points around PZ3 (L1‐P22, L1‐P23, L1‐P24, L2‐P21, L2‐P22, and L2‐P23) and PZ5 (L4‐P31, L4‐P32, L4‐P33, L5‐
and L5‐P34), and observed GWT depths at PZ3 and PZ5 as training data., and geologic logs, illustrating the nature of the underground materials at five drilling coordinates,
are superposed for interpretation.
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Appendix C: Inversion
For each seismic linear array, VR over frequencies pseudo‐sections, corresponding to DCs along x (fundamental
mode M0), obtained by passive‐MASW, were inverted to generate a VS over depth sections. We use the open‐
source software package SWIP (https://github.com/spasquet/SWIP) implemented by Pasquet and
Bodet (2017), that is built upon the software DINVER (https://www.geopsy.org/wiki/index.php/Dinver:_dinverdc)
using a neighborhood algorithm developed by Sambridge (1999) and implemented by Wathelet (2008), to solve

the inverse problem in a juxtaposed 1D setup. The inversion was parameterized with five layers, including an half‐
space, in accordance with the drilling data (see PZ3 in Figure 1). This method involves a stochastic exploration of
a parameter space in order to search for a minimum misfit between measured and simulated DCs. The chosen

parameter space, as outlined in Table C1, encompasses various key param-
eters including layer thicknesses, pressure‐wave velocity (VP) , shear‐wave
velocity (VS), density (ρ), and Poisson's ratio (ν). The deliberate selection of a
large parameter space stems from the limited a priori information about the
mechanical properties of the geological layers. This approach ensures that the
inversion process remains explorative, unbiased, and is capable of capturing a
wide range of geological scenarios that may influence the seismic response in
the study area. For each DC along the seismic linear arrays, out of a total
200,400 simulated models, only the models with DCs within the error‐bars
are accepted and averaged to generate final average smooth velocity
models. The DCs' uncertainty δc( f ) represented by error‐bars was calculated
in accordance with Pasquet and Bodet (2017):

Table C1
Inversion Parameter Space

Layer () Thickness (m) VP(m/s) VS(m/s) ρ(kg/m3) ν

1 1–10 100–1,000 50–500 2,000–2,500 0.1–0.5

2 1–10 100–1,000 50–500 2,000–2,500 0.1–0.5

3 1–10 100–1,000 50–500 2,000–2,500 0.1–0.5

4 1–20 200–2,000 100–1,000 2,000–2,500 0.1–0.5

½‐space ∞ 400–4,000 200–2,000 2,000–2,500 0.1–0.5

Note. VP, P‐wave velocity; VS, S‐wave velocity; ρ, density; ν, Poisson's ratio.

Figure C1. Inversion results at seismic array points (top) L1‐P23, close to PZ3, and (bottom) L5‐P33, close to PZ5, on (left) on 1 April 2023, and 1 July 2023. (a, c, e, and
g) shows the modeled DCs, with error‐bars, for the fundamental mode. (b, d, f, and h) represent the modeled velocity models. Each DC and velocity model is represented
with a color depending on the misfit value between the modeled and experimental DCs (black crosses and error‐bars). The models inside the error‐bars, in terms of DCs,
are plotted in color, and the rest are plotted in a gray scale. Plotted from the inversion software SWIP.
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⃒
⃒
⃒
⃒
⃒
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, (C1)

with a being the logarithmic reduction factor, usually 0.5, Nx the number of geophones in the MASW window,
and Δx the space interval between geophones.

As examples, we present the inversion results at PZ3 and PZ5 positions on 1 April 2023, and 1 July 2023.
Figure C1 shows the velocity models and corresponding DCs simulated during the inversion on 1 April 2023, and
1 July 2023, respectively. The running parameters used in SWIP are outlined in Table C2. Each DC and velocity
model is represented with a color depending on the misfit value (MF) between the experimental data (black
crosses and error‐bars) and the simulated dispersion defined as:

MF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

Nf

i=1

(Vsimi
− Vexpi )

2

Nf σ2
i

√
√
√
√ , (C2)

with Vsimi
and Vexpi being the simulated and experimental phase velocities at each frequency fi, Nf the number of

frequency samples, and σi the phase‐velocity measurement uncertainty (error‐bars) at each frequency fi.

Appendix D: Error Computation
The root mean squared error (RMSE) corresponds to the expected value of the squared error or loss. If ŷi is the
predicted value of the i‐th samples, and yi is the corresponding true value, then the RMSE estimated over nsamples is
defined as:

RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nsamples

∑

nsamples

i=1
(yi − ŷi)

2

√
√
√

. (D1)

The coefficient of determination, usually denoted R2, represents the proportion of variance that has been
explained by the independent variables in the model. It provides an indication of goodness of fit and therefore a
measure of how well unseen samples are likely to be predicted by the model, through the proportion of explained
variance. If ŷi is the predicted value of the i‐th samples, and yi is the corresponding true value, then the R2 score
over nsamples is defined as:

R2 (y, ŷ) = 1 −
∑nsamples

i=1 ( yi − ŷi)
2

∑nsamples
i=1 ( yi − ỹi)

2 , (D2)

where ỹ = 1
nsamples∑

nsamples
i=1 yi is the arithmetic mean value of y.

Table C2
Inversion Running Parameters in SWIP

Parameter Value Description

nrun 4 Number of runs

itmax 250 Number of iterations per run

ns0 100 Number of starting models

ns 200 Number of modes created at each iteration

nr 100 Number of previous models to build new sub‐parameter space
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Data Availability Statement
All authors approved the final version of this article. Input data files and software scripts used for the GWT depth
estimations are publicly available in Cunha Teixeira (2024).
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