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Abstract

Advancing our understanding of tissue organization and its disruptions in dis-
ease remains a key focus in biomedical research. Histological slides stained
with Hematoxylin and Eosin (H&E) provide an abundant source of morpholog-
ical information, while Spatial Transcriptomics (ST) enables detailed, spatially-
resolved gene expression (GE) analysis, though at a high cost and with limited
clinical accessibility. Predicting GE directly from H&E images using ST as a ref-
erence has thus become an attractive objective; however, current patch-based
approaches lack single-cell resolution. Here, we present sCellST, a multiple-
instance learning model that predicts GE by leveraging cell morphology alone,
achieving remarkable predictive accuracy. When tested on a pancreatic duc-
tal adenocarcinoma dataset, sCellST outperformed traditional methods, under-
scoring the value of basing predictions on single-cell images rather than tissue
patches. Additionally, we demonstrate that sCellST can detect subtle morpho-
logical differences among cell types by utilizing marker genes in ovarian cancer
samples. Our findings suggest that this approach could enable single-cell level
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GE predictions across large cohorts of H&E-stained slides, providing an inno-
vative means to valorize this abundant resource in biomedical research.

1 Introduction

Tissue spatial organization is a fundamental feature of multicellular organisms,
essential for proper development, homeostasis, and tissue repair. It depends
on the precise arrangement of different cell types and their states, allowing tis-
sues and organs to perform their biological functions efficiently. Disruptions or
perturbations in this organization can lead to pathological conditions, such as
cancer, where tissue structure and function become compromised.

The most widely used technique to study tissue architecture and its disease
related alterations involves Hematoxylin and Eosin (H&E)-stained tissue slides
which are routinely produced in clinical practice and examined by pathologists
to evaluate disease states and inform treatment decisions. With the advent of
machine learning for pathological slides, algorithms have been developed to ad-
dress tasks such as molecular phenotyping and biomarker discovery[1]. H&E
slides offer a detailed view of tissue, capturing both individual cellular pheno-
types and overall architecture.

A fundamental step in tissue analysis is the identification of distinct cell
types within the tissue. Broad categories, such as epithelial cells, fibroblasts or
lymphocytes can be readily identified through manual inspection, due to their
characteristic nuclear size, morphology and colour. However, more subtle cell
types often require molecular staining, such as Immunohistochemistry (IHC)
or Immunofluorescence (IMF), as differential transcriptional programs do not
always leave visible morphological fingerprints. In some cases, cell type specific
morphological cues may simply remain undiscovered.

More recently, spatial transcriptomic (ST) technologies have emerged as a
powerful tool to study gene expression (GE) in the spatial context [2] [3]. These
technologies offer complementary analyses to H&E staining by providing insights
into the molecular landscape of tissues that are neither accessible through con-
ventional histology nor through IHC or IMF technologies, which are limited in
the number of molecular markers. ST technologies can be broadly divided into
two main categories. Image-based ST such as MERFISH, COSMIX and Xenium
[4] rely on fluorescent imaging and enable the capture of hundreds of different
RNA species with highly precise spatial resolution, down to sub-cellular level.
However, these methods do not measure the full transcriptome. Furthermore,
segmenting cells can be challenging, potentially leading to errors in cell type call-
ing [5]. On the other hand, sequencing-based methods such as Visium, Slide-seq
or Stereo-seq use spatial barcodes to retain spatial information at specific loca-
tions called spots. Then, next generation sequencing is used to profile mRNA
species and reconstruct a spot-gene expression matrix. The downside of these
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approaches is that spots usually contain several cells, around 10 to 20 in the
case of Visium. Deconvolution algorithms [6] [7] are then required to estimate
cell type proportions within each spot, with very few of these approaches going
back to true single cell level [8, 6]. In addition, both technologies share the
downside of being very expensive, which also prevent them from being used in
larger cohorts, unlike H&E slides.

Recent studies have demonstrated that H&E-stained slides contain valuable
information that can be leveraged to predict GE using machine learning algo-
rithms. One pioneering method in this field is HE2RNA[9], a deep learning
model designed to predict GE from bulk RNA sequencing data by aggregat-
ing predictions from small patches extracted from corresponding H&E images.
Despite the inherent challenges posed by weak and noisy signals, HE2RNA effec-
tively identifies immune cell-enriched regions, suggesting that the link between
morphology and GE is sufficiently strong for this kind of approaches. With
the advent of ST technologies, particularly Visium, which provides both H&E
slides and transcriptomic spot data from the same tissue section, these models
have gained even greater predictive power. Two types of approaches have been
recently developed: super-resolution models and GE predictors. The former
takes image features and spot GE as input to produce super-resolved expression
maps [10]. While these models thus virtually increase the resolution inside and
between the spots, they still require ST as inputs. The latter refers to mod-
els trained to predict GE based on the image centered at each spot locations
[11, 12, 13, 14, 15, 16, 17, 18]. Other methods [19], [20] predict GE at finer
spatial resolutions using a weakly supervised learning approach. Weak super-
vision corresponds to a scenario, where the ground truth is not available for
each input instance, but only for groups of instances. While these approaches
enhance spatial resolution, they still fail to provide estimations of single-cell GE.

Here, we introduce sCellST, a method to predict single-cell GE from cell
morphology, trained on paired ST and H&E slides. Our method is versatile and
can be applied across different tissues and cancer types, as demonstrated with
the diverse datasets used in this study. While designed to make cell-level rather
than spot-level predictions, we show that sCellST performs on par with state-of-
the-art spot-based predictors on a three-slide pancreatic ductal adenocarcinoma
dataset. Next, we validated sCellST’s ability to accurately predict cell types
by benchmarking against methods trained on manually annotated images and
found remarkable agreement. Finally, we demonstrate that sCellST can help
identifying morphological patterns in more subtle cell types by leveraging a list
of marker genes extracted from a scRNA-seq dataset.
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2 Results

2.1 sCellST overview

We present sCellST, a weakly supervised learning framework that learns a model
to predict GE from H&E images only. Our approach is composed of 3 main steps
(Fig.1).

First, a deep learning model is used to perform cell detection on the under-
lying H&E images from the spatial transcriptomic slide. For each cell detected
by the model, we extracted a squared crop images centered on the segmenta-
tion output masks. We used HoverNet [21] for our experiments but any other
detection algorithm for histopathology data (e.g. [22]) can be used.

The next step is to find a suitable representation of the cell image. For this,
we turned to Self-Supervised Learning (SSL), a state-of-the-art method to learn
powerful embeddings which can then be used for a large variety of tasks [23].
SSL relies on the definition of pretext tasks, i.e. tasks that are not directly re-
lated to the classification problem we want to solve, but for which large datasets
are available. It has shown great success on tissue patches and full slides [24],
[25] for GE predictions, tile classification or survival predictions. More recently
SSL has been used to represent single cell morphologies [26, 27] with great suc-
cess in distinguishing different cell types. Here, we trained MoCo v3 algorithm
[28] (methods).

Finally, we trained a GE predictor using cell images. Since ground-truth
GE is not available for individual cells, but rather for spots containing multiple
cells, we formulated the problem as a Multiple Instance Learning (MIL) prob-
lem [29]. Specifically, for each spot in a Visium slide, we predict a GE vector for
each cell within the spot. We then aggregated these predictions to generate a
spot-level prediction, which is compared with the measured expression to train
the algorithm (methods). The predicted cell-level scores can then be interpreted
as cell GE estimates.

After training, sCellST can be applied using only H&E slides to produce
single-cell and spatially resolved GE data.

2.2 sCellST predicts single cell level gene expression in
simulated data

As our datasets do not contain detailed groundtruth on single-cell GE, valida-
tion of sCellST at the cellular level is a challenging endeavour. We therefore
designed several levels of validation, the first of which is based on simulation
experiments using cell images from an ovarian cancer slide.

To establish a ground truth for single-cell GE, we utilized an annotated
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Figure 1: Overview of sCellST pipeline. 1. sCellST first uses a pretrained
cell detection algorithm to extract cell images from H&E images. 2. A feature
extractor is trained using contrastive learning on the cell images. 3. A Multiple
Instance Learning approach is used to learn a GE predictor. The model predicts
first GE score for each cell within a spot before aggregating the prediction to
produce a spot expression vector which is used for training.

scRNA-seq dataset as a reference. We matched cell images with GE profiles
from this scRNA-seq data according to several scenarios. In the random sce-
nario, GE vectors were randomly assigned to cell images, and there was thus
no relationship between morphology and GE, providing a random baseline. To
artificially introduce a relationship between cell morphology and GE, we first
clustered the cell image vectors. Each image cluster was then arbitrarily as-
signed to one scRNA-seq cluster. In the centroid scenario, we assigned to each
cell image the mean expression vector of its corresponding scRNA-seq cluster.
Finally, we explored a more challenging scenario where we matched cells from
the scRNA-seq and from the corresponding morphological cluster (cell scenario;
see Fig.2a). In this case, as we draw cells randomly from both matched clusters,
GE and morphological intra-cluster variation are independent by construction.
Once the cell images and GE vectors were matched, we simulated spot-level GE
by summing the GE of single cells assigned to each spot (methods).

We first compared the three scenarios on the top 1000 highly variable genes
(HVGs). For both spot and cell-level predictions, genes predicted in the random
scenario produced correlations no higher than 0.1, centered around 0 (Fig.2b),
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a.

c.b.

e.d.

Figure 2: Simulation experiments. a. Simulation framework with cell image
- GE attribution with different scenario (cell scenario depicted here). Distribu-
tion of Pearson correlations in the test dataset for: b. all genes for the different
scenarios, c. different sets of genes, d. different learning frameworks and e.
different instance encodings.

as expected in the absence of links between GE and cellular morphology. In
contrast, the centroid scenario yielded correlations exceeding 0.8 for most genes,
demonstrating the effectiveness of the MIL approach.

The cell scenario also resulted in positive, non-random correlations. Notably,
the marker genes, which are supposed to have stronger links with morphological
properties, exhibited an increase in median correlation from 0.10 for HVGs to
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0.54 for marker genes (Fig.2c) at the spot level. This indicates that the model
can capture varying degrees of correlation between cell morphology and GE.

However, defining an upper bound for the evaluation metric is challenging, as
even a model with access to all information would not achieve a correlation of 1,
as by design of our simulation, GE is not entirely predictable from morphology.
To illustrate this, we trained a model under full supervision to predict the
matched GE vectors from the corresponding cell images. The performance of
the supervised model was higher than that of the MIL-trained model (Fig.2d),
yet still far from reaching perfect correlation (median of 0.18 and 0.68 for HVGs
and MG respectively).

Next, we investigated the effect of the tile encoding strategy by replacing
the SSL-embeddings by one-hot encoded vectors of the image clusters. These
one-hot-vectors represent and ideal noise-free embedding that perfectly repre-
sents the cell image clusters. We only observed a mild improvement (Fig.2e),
suggesting that the high dimension and intra-cluster variability have only a mi-
nor effect on prediction performance.

With these experiments, we demonstrated that a MIL approach can recover
GE vectors from cell images, even in challenging settings where ground truth
labels for all cell images are unavailable and the link between morphology and
GE is only partial.

2.3 sCellST performs better than other algorithms on spot
level predictions.

Next, we aimed to benchmark sCellST against state-of-the-art methods for GE
prediction from H&E data. As there is currently no method that specifically
targets single-cell GE prediction from Visium data, we performed spot-level
comparisons, even though this was not the primary objective of our method.
We used 3 pancreatic ductal adenocarcinoma (PDAC) Visium slides (Fig.3b)
from [30]. For each slide, we selected common HVGs across all slides which re-
sulted in 321 genes. We evaluated the predictions using Pearson and Spearman
correlation coefficients.

We compared our algorithm to two methods: HisToGene [18] and Istar [20].
HisToGene is based on a Vision Transformer neural network which takes the
image from each spot as input. Istar also utilizes weakly supervised training. It
processes small patches from the spot images and predicts GE for each patch,
which is then aggregated at the spot level. As shown in our experiments, sCellST
outperforms both methods (Fig.3c), which was unexpected given that sCellST
was not optimized for this task. To validate the performance difference, we
used a Wilcoxon signed-rank test to compare the distributions of results for the
HVGs. HisToGene performs poorly, likely due to the large number of model
parameters (∼ 300M) relative to the small size of the training dataset (∼ 2000
training spots) compared to Istar and sCellST (∼ 900K). sCellST significantly
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a.

b.

c.

Figure 3: Benchmark of sCellST a. Overview of the benchmarking approach.
Each slide is used for training and then the model is evaluated on the two re-
maining slides. b. H&E slides from the PDAC Visium dataset. c. Benchmark
results: each boxplot represents the distribution of Pearson / Spearman corre-
lation coefficient on all genes.
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outperforms Istar in 8 out of 12 experiments (Fig.3c).

We also compared different cell image representations within our model.
sCellST using SSL-embeddings are on par with models that utilized embeddings
from transfer learning with ImageNet pretraining and outperforms in most cases
those which relied solely on one-hot encoded cell type information (SupFig.3),
suggesting that more subtle information than what is reflected by the broad cell
type categories can be learned.

In most cases, sCellST successfully predicts GE with positive correlations
on a set of shared HVGs.

2.4 Cell level predictions are consistent with cell type pre-
dictions from Neural Networks trained on manual an-
notations

a.

b. d. f.

c. e.

Figure 4: sCellST comparison with HoverNet labels: Each row corre-
sponds to a Visium slide from cancer tissue: a, c, e: breast and b, d, f ovarian.
a,b. Visium slides used for the experiments. c,d: Top differentially expressed
genes when grouping cells by HoverNet labels. e,f: Distribution of known marker
genes grouped with HoverNet labels.

While our analyses showed that sCellST compares favourably to state-of-the-
art spot GE prediction methods, our primary objective was to predict single cell
GE. For this, we compared sCellST results with state-of-the-art cell type calling
methods trained on manually annotated nuclei. HoverNet [21] is a widely used
method for both segmentation and cell type classification, trained on more than
45000 manually annotated nuclei. The main cell types identified by HoverNet
are neoplastic epithelial, connective / soft-tissue cells (fibroblasts, muscle and
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a.

b.

Figure 5: Cell level predictions with sCellST Each subpanel corresponds
to a Visium slide from cancer tissue: a: breast and b: ovarian. For all slides,
the first row corresponds to the H&E image followed by Visium measurement
in spots for 3 genes, the second to cell types predicted by HoverNet and then
sCellST gene prediction for the same genes.

endothelial nuclei) and inflammatory (methods).

In our experiments, we used 2 slides (Fig.4a,b) of breast and ovarian cancer
tissue from the 10X Genomics website. For every slide, we applied the sCellST
pipeline, restricting the analysis to the top 1000 HVGs. We then grouped cells
based on their labels and compared the predicted GE scores between groups.
This approach allowed us to identify the top-expressed genes for each cell type
label. In Fig.4c,d, we present the top five genes in columns for the three Hover-
Net labels. Top differential genes were readily identifiable for the connective and
inflammatory cell groups. Regarding connective cells, they encompassed genes
involved in muscle contraction (MYLK) and extracellular matrix organization
(COL1A2, COL3A1, COL10A1, COL11A1, MMP2), which in turn represent
specific markers of stromal cells such as muscle cells and fibroblasts, respectively.
For inflammatory cells, we found classical markers of lymphocytes (PTPRC,
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IGHM), as well as other genes specific to the lymphocytic lineage (LCP1, LSP1,
SRGN, POU2AF1). Given the inter-patient transcriptomic heterogeneity of ep-
ithelial tumor cells, most differential genes are expected to be patient-specific
[31]. Nevertheless, the genes identified are plausible over-expressed genes of the
tumoral populations: aberrant over-expression of PTPN3 has been observed
in a variety of malignancies, including breast cancer [32], and over-expression
of WNT6 and FGF19 is documented in ovarian cancer and linked to several
oncogenic mechanisms ([33], [34]). To further validate the predicted GE, we
adopted a complementary approach by investigating the predicted expression
of established marker genes for each of the 3 HoverNet labels (Fig.4e,f). Clas-
sical markers for epithelial tumor cells like EPCAM and E-cadherin (CDH1)
showed higher levels in cells labelled as neoplastic, as did canonical inflamma-
tory myeloid cells (LYZ, CD68) and fibroblasts (COL1A2, INHBA).

Next, we visually examined the coherence of HoverNet and sCellST predic-
tions. For each of the 2 Visium slides, we show a crop of the H&E image, the
cell segmentation with cell types predicted by HoverNet, the spots with Vi-
sium measurements and the segmented cells coloured with sCellST predictions
(Fig.5). The single-cell GE predictions provide fine-grained information on the
cell-type, in line with HoverNet classification results, yet more detailed. In the
two crops shown, sCellST allowed us to detect the real pattern of organization of
immune cells, consisting of densely populated clusters at the edges of the tumor
mass. This pattern was impossible to detect with Visium resolution. In the
breast cancer slide, we observed a thin layer of connective cells encapsulating
the tumor that exhibited high predicted expression of INHBA. These fibrob-
lasts could correspond to the ECM-myoCAFs described by [35] or the INHBA+
CAFs described by [36]. In the ovarian cancer slide, the Visium spots showed
high expression of the myeloid marker CD68 in the tumor region; however, we
did not observe an accumulation of immune cells at the corresponding locations.
Conversely, sCellST allowed us to assign CD68 expression to the immune cells
found in the interstitial stromal regions outside of the tumor, a pattern usually
recognized as immune-excluded, with important implications in the clinic [37].

These analyses provide qualitative evidence of our model’s relevance by
showing that the distribution of predicted GE is consistent with established
biological knowledge.

2.5 sCellST can identify finer cell types in ovarian cancer

Broad cell type labels obtained with algorithms trained with cell type annota-
tions can be limiting, as multiple finer cell types may be grouped into a single
annotated category. In this study, we show how marker gene lists can be used
to identify the morphology of more specific cell types. We focused on a pub-
licly available human ovarian cancer slide from the 10X website. We trained
our model to predict a list of marker genes which were obtained from an an-
notated single-cell dataset of ovarian tissue available on the CellXGene website
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a.

b.

c.

Figure 6: sCellST discovers cell type morphological features. a. Schema
of the approach. First sCellST is trained on a set of marker genes obtained
from prior knowledge. Then, a scoring function is used to produce cell type
scores for each cell. b. Distribution of scores for several cell types grouped by
HoverNet labels. c. Correlation heatmap of cell type scores. d. Image galleries
with highest score images for each cell type.

[38]. After training the model, we used single-cell GE predictions to define
cell type scores for each cell (methods). We computed cell type scores for five
cell types: fibroblasts, endothelial cells, lymphocytes, plasma cells, and fallop-
ian tube secretory epithelial cells. We then compared sCellST scores with the
broad categories provided by HoverNet. Cells labelled as connective showed
higher sCellST scores for fibroblasts and endothelial cells, while those labelled
as inflammatory had elevated lymphocyte scores in sCellST. Lastly, cells classi-
fied as neoplastic exhibited high scores for the epithelial type in sCellST.

To understand the model’s ability to distinguish finer cellular subtypes based
on morphology, we subsequently generated cell image galleries by plotting the
100 cells with the highest score for each cell type (Fig.6c). For connective tissue
cells, including fibroblasts and endothelial cells, distinct morphological charac-
teristics could be identified from the top-scoring cell images. Although both
fibroblasts and endothelial cells were spindle shaped, endothelial cells tended
to be less elongated and to line a vascular space, sometimes containing red
blood cells, further corroborating their identity. For inflammatory cells, the
lymphocyte image gallery revealed small round cells with dark nuclei and scant
cytoplasms. In contrast, plasma cells were larger and ovoid, with more abundant
cytoplasms and eccentric nuclei. Additionally, we noted potential misclassifica-
tion by HoverNet, as cells with high plasma cell scores—labelled by HoverNet
as either connective or neoplastic—exhibited morphological characteristics pre-
viously associated with plasma cells (SupFig.5). Of note, while the overall spot
performance of SSL- and ImageNet-encodings is similar, galleries obtained with
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ImageNet-encodings are less homogeneous for plasma cells and endothelial cells
(SupFig.4).

In conclusion, we have demonstrated that our model, when integrated with
cell type marker genes, can effectively identify cells displaying distinct morpho-
logical characteristics that are not captured by state-of-the-art cell type clas-
sification models. For instance, our analyses suggest that sCellST succeeds in
distinguishing fibroblasts and endothelial cells, while such subtle categorization
is currently not available with state-of-the-art cell type classification models.
Importantly, this analysis was conducted without reliance on manually anno-
tated labels, yet the model successfully identified known morphological patterns
solely using the predicted GE scores.

2.6 Discussion

We presented sCellST, a method for predicting single-cell and spatially resolved
GE from H&E images based on a weakly supervised learning framework. Unlike
other approaches, sCellST generates a detailed spatial map of cell-type-specific
expression patterns from H&E data, providing a more granular understanding
of GE at the single-cell level.

Although not originally designed for this purpose, we demonstrated that
sCellST achieves either superior or comparable performance to state-of-the-art
models for the spot level GE prediction task. Furthermore, we showed that
sCellST provides results in line with state-of-the-art methods trained on tens
of thousands of manually annotated nuclei on broad cell type categories. Im-
portantly and in contrast to such methods, sCellST can also identify more fine-
grained cell types relying on subtle morphological differences which would be
difficult or impossible to generate manually.

For these reasons, we believe sCellST has the potential to drive several im-
portant developments. First, it enables large-scale studies of the relationship
between nuclear morphologies and GE, facilitating the identification of cell type-
specific morphologies. Second, sCellST introduces a novel annotation strategy
for single-cell computational pathology (SCCP), which currently depends heav-
ily on extensive manual annotations. For example, Diao et al. trained cell classi-
fication models on 1.4 million manually annotated cells by certified pathologists
[39]. sCellST offers an efficient way to generate large-scale single-cell annota-
tions with minimal manual input, while also distinguishing more fine-grained
cell types. As such, sCellST could significantly impact SCCP. Finally, the abil-
ity to dissect cell types from H&E images opens up unprecedented opportunities
to reanalyse existing H&E cohorts for predicting outcomes and treatment re-
sponses. Although ST is a powerful technique, it is unlikely to be applied to
large retrospective cohorts in the near future due to its high cost and limited
tissue availability. sCellST offers the possibility to create high-resolution virtual
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ST. While virtual ST may not fully match the quality of direct measurements,
it is still expected to provide valuable and exciting insights.

The proposed method is not free of limitations. First, sCellST relies on cell
segmentation, making it vulnerable to segmentation errors, which can become
more pronounced with differences in staining and scanning. These technical vari-
ations also affect the generalizability of the cell image embeddings, ultimately
limiting the broader use of our model without retraining. Future research could
address this by developing domain-robust cell image representations. Added to
this, ST data is still scarce and consequently, the small size of training datasets
negatively impacts predictive performance and generalisation. Some initiative
starts to collect massive amount of data such as [40, 41] but the availability
of FFPE Visium slides and access to the corresponding high-resolution images
remain limited. At the same time, spatial resolution of sequence-based ST is
increasing [42]. In Visium HD, bins are arranged on a 2 µm rectangular grid.
This higher resolution could enhance GE prediction but requires custom train-
ing techniques, as bins are typically grouped into 8 µm sizes and do not align
with individual cells.

Overall, we believe that our approach can serve as a pioneering method for
predicting GE from cell morphology in H&E images. With the scaling of ST
dataset sizes, it has the potential to predict GE on large cohorts of H&E images,
facilitating novel biological discoveries.

3 Online Methods

Notations

• S number of spots in a Visium slide

• G number of genes

• fθ a neural network parametrised by a set of weights θ

• x a cell image

• h a cell embedding vector

• y ∈ N
G a raw vector of gene expression and Y ∈ N

S×G the spot GE matrix

• yp ∈ R
G a preprocessed vector of GE and Y p ∈ R

S×G the preprocessed
spot gene expression matrix

• We used the notation ŷ to denote predictions, in this case of a raw GE
vector.

• pNB(.; a, b) density function of a negative binomial distribution parametrised
by the parameters a and b corresponding to either µ and θ used in [43] or
total counts and probability of success parametrisation.
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Spatial Transcriptomics datasets

We based our approach on Visium technology because it provides both a spa-
tially resolved transcriptomic profile and a corresponding H&E image. Visium
is part of the spot-based ST family, capturing mRNA using spatial barcodes
within defined spots that typically contain 10–20 cells. The captured mRNA
is then sequenced using next-generation sequencing (NGS) technology. A key
advantage of this method, compared to image-based ST, is its ability to capture
the entire transcriptome, though at a lower spatial resolution. In our study,
we utilized Formalin-Fixed Paraffin-Embedded (FFPE) ST datasets, as FFPE
preserves cellular morphology more effectively than fresh frozen tissue samples.
Additionally, we analysed H&E images at the highest available resolutions, rang-
ing from 0.2 to 0.5 µm per pixel, depending on the specific slide.

ST preprocessing

For each ST dataset, we filtered genes with less than 200 counts and those that
were detected in less than 10% of the training spots. Furthermore, we filtered
spots for which no cell was detected and those with less than 20 counts. These
filtering steps exclude genes with very low expression on the slide and therefore
unlikely to be predictable, as well as uninformative spots. In our experiments,
we used either custom gene lists (based on marker genes known to be informative
on cell types) or Highly Variable Genes (HVGs) selected on the training spots.
For the benchmarking studies, we used 2000 HVGs in order to have sufficient
overlap between the three slides. For other experiments, we used 1000 HVGs.

Cell segmentation from whole slide images

For the segmentation step, we utilized a publicly available pre-trained network
called HoverNet [21], which simultaneously performs cell segmentation and clas-
sification. We employed the implementation available on GitHub (https:
//github.com/vqdang/hover_net) and used pre-trained weights from the
PanNuke dataset, enabling classification into six main cell types For each seg-
mented nucleus, we extracted a 12µm × 12µm (typical cell size) image centered
on the cell’s segmentation center coordinates, which was resized to a 48 × 48
pixel images. Based on the spatial coordinates of the spots, cells, and the spot
radius, we linked each cell to its corresponding spot. This kind of models is
usually not applied to the whole slide for memory reasons but to tiles (small
patches) which cover the tissue. We replaced the mask algorithm from HoverNet
used to detect tissue with the one from https://github.com/trislaz/Democ

ratizing_WSI/blob/main/src/tile_slide.py since we find it to work better
for the slides we used. Briefly, it combines an Otsu algorithm with a morpholog-
ical opening to compute the mask. The algorithm used in this study, HoverNet,
predicts six distinct classes: neoplastic epithelial cells, connective/soft-tissue
cells (including fibroblasts, muscle, and endothelial nuclei), inflammatory cells,
non-neoplastic epithelial cells, dead cells, and unlabelled cells. In our analysis
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of the H&E slides, we observed that the majority of cells were classified into one
of the first three categories. Therefore, we restricted our analysis to these three
primary classes.

Image embedding

Given the limited amount of data available for training the GE predictor, we
employed strategies to obtain image embeddings independently from this pre-
diction task. Specifically, we explored two approaches: Transfer Learning from
ImageNet classification and Self-Supervised Learning (SSL). In both cases, we
used a ResNet-50 backbone as encoder. In both scenarios, NN are utilized to
map input images to generic representations. For transfer learning, these repre-
sentations are obtained by training the NN on entirely different data and entirely
different tasks (such as classification of natural images), while SSL is optimized
for the same type of data (in our case histopathology data), but is trained on
so-called pretext tasks, that do not require any annotation or external ground-
truth. Among the various available SSL methods, we opted to use MoCo v3,
a contrastive learning framework. Briefly, this approach generates two differ-
ent views of each input image (i.e., transformed using specific augmentations)
and is optimized to pull together the corresponding representations for views
originating from the same image, while pushing apart those that originate from
different images. Choosing the right augmentations for image transformation is
key to obtain good representations and can heavily influence the performances
of downstream tasks [44]. Since H&E images are very different from natural
images, we changed the augmentations and worked with different parameters
for colour jittering. We also added two other transformations: random erasing
and random rotations. For the latter, we extracted larger cell images as to avoid
rotation induced artifacts. To train the SSL network, we used all cells from the
training slide which might results in lower performance than expected in cross
validation experiments because of a relatively low number of images for SSL
training (≤ 300K) but it corresponds to best practice in the field to avoid data
leakage.

In two experimental settings, we used one-hot cell type encodings as cell
image representations. This corresponds to a vector that is one for the correct
cell type, and 0 otherwise.

Multiple Instance Learning (MIL) for spatial transcriptomics

Unlike the classical supervised learning framework, Multiple Instance Learning
is designed for learning in the case when a single label y ∈ Y is available for
a set of instances {x1, x2, ..., xk}, referred to as a bag. Although each instance
in the bag has an underlying label, these individual labels remain inaccessible
during training.
In the instance-level approach of MIL algorithms, the objective is to learn
an instance-level predictor fθ which assigns a score to each instance. These
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instance-level scores are then aggregated using a function g to generate a score
for the entire bag. As the order of instances in the bag is irrelevant, g must be
permutation invariant. Common choices for g include mean or max operations,
depending on the specific task.
As every operation presented above can be chosen differentiable, the instance-
level predictor fθ is often parametrised using neural networks, which has proven
effective, particularly when working with image data. Such approaches are fre-
quently applied to tasks in computational pathology in the general formulation
of MIL [45].

The instance-based MIL framework is particularly well-suited for spot-based
ST, as each spot s within a slide can be seen as a set of cells which represent the
instances. For each spot index s in 1, ..., S, we have a target GE vector ys ∈ R

G

and a set of images {x1, x2, ..., xks
} derived from the detection algorithm where

ks represents the number of cells in the spot s.

Cell embeddings {h1, h2, ..., hks
} are produced using a pretrained embedding

model fφ.
hi = fφ(xi), for i = 1, ..., ks

A feed-forward neural network, fθ, is then trained to predict a vector of GE
scores based on the cell embeddings. The goal was to develop an algorithm which
could predict biologically relevant GE scores at the single-cell level. In order
to ensure positiveness of the single cell GE scores, we used a softplus function
as final activation function. Finally, a mean aggregation function was applied
to simulate the measurement process and derive a GE estimate for comparison
with the measured spot-level GE.

ŷs =
1

S

∑

i=1,...,S

fθ(hi)

Model optimization

Two types of objective functions were considered for training the GE predictor.
The first utilized a mean squared error (MSE) loss with preprocessed GE

data. In this approach, GE values were normalized by library size and log-
transformed, following standard practices in spatial transcriptomic and single-
cell analyses:

y
p
j = ln(1 + s

yj∑
j yj

) for j = 1, ..., G

s is a normalisation constant set to 10000. In this case, the loss function
becomes:

Lmse(Ŷ , Y ) =
1

SG

S∑

i=1

G∑

j=1

(Ŷ p
ij − Y

p
ij)

2

To make sure that all genes contributes to the loss, we additionally scaled each
gene between 0 and 1.
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The second objective function was based on minimising the negative log-
likelihood on raw counts by modelling GE data using a negative binomial dis-
tribution. In this formulation, predictions were made for either the mean or
the total count parameter of the distribution. The other parameter αj , chosen
to be gene specific, is learned during the training. In both cases, the observed
library size li was used as a scaling factor to avoid capturing this information
in the single-cell scores. In this case the loss function becomes:

Lnll(Ŷ , Y ) = −
1

S

S∑

i=1

G∑

j=1

ln(pNB(Yij ; liŶij , αj))

Both approaches were evaluated through simulations; no significant advantage
was observed with the negative binomial formulation, as illustrated in the sim-
ulation experiments (SupFig.2). Thus, the MSE-based approach was retained
for subsequent analyses.

Simulations

We used a scRNA-seq dataset from CellXGene of ovarian cancer cells and an
H&E slide from a Visium slide to perform our simulation study. After training
the SSL model on cells extracted from the H&E, we clustered the image em-
beddings with a k-means algorithm (k=20) to identify distinct morphological
clusters from which we kept 6 clusters after visual inspections. We kept only
the closest 2000 cells to each cluster centroid in order to have strong morpho-
logical differences between clusters. To assign GE vectors to each cell image, we
matched the morphological clusters with annotated clusters from the single-cell
RNA-seq dataset. GE was then assigned to each cell image based on three sce-
narios to evaluate the model’s performance under different levels of association
between GE and cell morphology:

1. Centroid scenario - perfect link between cell morphology and GE: The
mean GE of the corresponding scRNA-seq cluster was assigned to each
cell image (SupFig.6.a)

2. Random scenario - no link between cell morphology and GE: Each cell
image was assigned a random GE vector from the scRNA-seq dataset
(SupFig.6.b)

3. Cell scenario - partial link between cell morphology and GE: Each cell
image was assigned the GE vector of a cell from the corresponding scRNA
cluster (SupFig.6.c)

For each scenario, we generated 5,000 spots, with each spot containing 20
cells for both training and testing sets. These numbers were chosen to reflect
the setting typically observed in Visium ST slides. The model was trained
using the top 1000 highly variable genes (HVGs) selected on the spots from
the cell scenario training set. To evaluate model performances, we computed
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the Pearson and Spearman correlations, at both the spot and cell levels, on
log-normalized GE vectors for models trained with mean squared error and on
normalized GE vectors for models trained with negative log likelihood.

We present comparisons with Pearson correlation coefficient in the main text
and with Spearman correlation coefficient in SupFig.1.

Cell prediction downstream analysis

Following cell GE prediction using a trained sCellST model, we utilized stan-
dard tools in Scanpy [46] for downstream analysis. Specifically, we performed
differential expression analysis using the ”rank genes groups” function of Scanpy
with a t-test to rank genes after grouping cells based on HoverNet labels. For
the cell type analysis with marker genes, we first identified cell type marker
genes with a reference single-cell dataset [47] from CellXGene. We selected only
cells originating from the left and right ovary. We applied a t-test to identify 20
marker genes per annotated cell type cluster. B and T cells were merged to form
a lymphocyte group, and we excluded mast cells, monocytes, and dendritic cells
from the analysis because of the difficulty to unambiguously recognize them in
H&E images and thus to validate the morphology galleries produced by our
method. From the scRNAseq dataset, we identified 98 marker genes (see Sup.
Table 1), of which 93 remained after filtering (see above). We subsequently used
the ”score genes” function of Scanpy to compute signature scores for cell type
marker genes. For each cell i, the scoring process involved two lists: a marker
gene list Gm and a control gene list Gc. First, we normalized the predicted GE
values, then the score of a cell for the marker gene list Gm was calculated as
follows:

sm =
1

Gm

∑

i∈Gm

ŷi −
1

Gc

∑

j∈Gc

ŷj

GE predictors

We compared our approach to two other state-of-the-art methods for GE predic-
tion from H&E data. We made some modifications in the original code to adapt
them to the training data presented in this study and to make fair comparisons.

• HisToGene: HisToGene is based on a Visual Transformer architecture
which take as input images of spots alongside binned spatial coordinates.
As it has been originally implemented for Spatial Transcriptomics data
(previous version of Visium) which contain fewer and larger spots per
slide, we increased the number of positional encodings from 64 to 128 to
enable error-free model training.

• Istar: Istar is a weakly supervised approach that trains five neural net-
works and aggregates their predictions to obtain the final output, a tech-
nique known as ensembling in machine learning and statistics. For this
study, we reduced the number of trained models from five to one to ensure
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fair comparison with HisToGene and sCellST. Indeed, ensembling can be
applied to every method and usually enhances performance.

4 Data Availability

The data are publicly available and links to download raw data are provided
below:

spatial transcriptomic slides:

• ovarian cancer: https://www.10xgenomics.com/datasets/human-ova

rian-cancer-11-mm-capture-area-ffpe-2-standard

• breast cancer: https://www.10xgenomics.com/datasets/human-breas
t-cancer-ductal-carcinoma-in-situ-invasive-carcinoma-ffpe-1

-standard-1-3-0

• pancreatic ductal carcinoma dataset: https://www.ncbi.nlm.nih.gov

/geo/query/acc.cgi?acc=GSE211895

single cell RNA dataset: https://cellxgene.cziscience.com/e/b252b01
5-b488-4d5c-b16e-968c13e48a2c.cxg/

5 Code Availability

The code for this manuscript will be publicly available on GitHub at https:

//github.com/loicchadoutaud/sCellST.
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