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Abstract This paper explores two condensed-space interior-point methods
to efficiently solve large-scale nonlinear programs on graphics processing units
(GPUs). The interior-point method solves a sequence of symmetric indefinite
linear systems, or Karush-Kuhn-Tucker (KKT) systems, which become in-
creasingly ill-conditioned as we approach the solution. Solving a KKT system
with traditional sparse factorization methods involve numerical pivoting, mak-
ing parallelization difficult. A solution is to condense the KKT system into a
symmetric positive-definite matrix and solve it with a Cholesky factorization,
stable without pivoting. Although condensed KKT systems are more prone to
ill-conditioning than the original ones, they exhibit structured ill-conditioning
that mitigates the loss of accuracy. This paper compares the benefits of two
recent condensed-space interior-point methods, HyKKT and LiftedKKT. We
implement the two methods on GPUs using MadNLP.jl, an optimization solver
interfaced with the NVIDIA sparse linear solver cuDSS and with the GPU-
accelerated modeler ExaModels.jl. Our experiments on the PGLIB and the
COPS benchmarks reveal that GPUs can attain up to a tenfold speed increase
compared to CPUs when solving large-scale instances.

1 Introduction

Graphics processing units (GPUs) are driving the advancement of scientific
computing, their most remarkable success being the capabilities to train and
utilize large artificial intelligence (AI) models. GPUs offer two practical ad-
vantages: (1) massive parallel computing capability for applications that can
exploit coarse-grain parallelism and high-memory bandwidth and (2) power ef-
ficiency due to requiring fewer transistors to process multiple tasks in parallel
utilizing “single instruction, multiple data” (SIMD) parallelism.
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While GPUs have made significant strides in enhancing machine learn-
ing applications, their adoption in the mathematical programming community
has been relatively limited. This limitation stems primarily from the fact that
most second-order optimization methods for constrained optimization solve a
form of Newton’s method using direct linear algebra as finding good iterative
solvers for the Newton direction has proved elusive. Additionally, the utiliza-
tion of GPUs has been impeded by the challenges associated with sparse matrix
factorization routines, which are inherently difficult to parallelize on SIMD ar-
chitectures. Nevertheless, recent years have witnessed notable advancements
that are reshaping this landscape.

1. Improved sparse matrix operations: The performance of sparse matrix
operations has seen substantial improvements in the CUDA library, largely
attributed to the integration of novel tensor cores in recent GPUs [24].

2. Interest in batch optimization: There is a growing interest in solving
parametric optimization problems in batch mode, for problems sharing the
same structure but with different parameters [2,33].

3. Advancements in automatic differentiation: GPUs offer unparalleled
performance for automatic differentiation, benefiting both machine learn-
ing [7] and scientific computing applications [30]. Engineering problems of-
ten exhibit recurring patterns throughout the model. Once these patterns
are identified, they can be evaluated in parallel within a SIMD framework,
enabling near speed-of-light performance [37].

4. Role in exascale computing: With the emergence of new exascale su-
percomputers (e.g., Frontier and Aurora), the capabilities to run on GPUs
have become central for supercomputing.

1.1 Solving optimization problems on GPU: current state-of-the-art

For all the reasons listed before, there is an increased interest for solving
optimization problems on GPUs. We now summarize the previous work on
solving classical—large-scale, sparse, constrained—mathematical programs on
GPUs.

GPU for mathematical programming. The factorization of sparse matrices en-
countered within second-order optimization algorithms has been considered
to be challenging on GPUs. For this reason, practitioners often have resorted
to using first-order methods on GPUs, leveraging level-1 and level-2 BLAS
operations that are more amenable to parallel computations. First-order al-
gorithms depend mostly on (sparse) matrix-vector operations that run very
efficiently on modern GPUs. Hence, we can counterbalance the relative inaccu-
racy of the first-order method by running more iterations of the algorithm. A
recent breakthrough [22,23] based on the primal-dual hybrid gradient method
has demonstrated that a first-order algorithm can surpass the performance
of Gurobi, a commercial solver, in tackling large-scale linear programs. This
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performance gain is made possible by executing the first-order iterations solely
on the GPU through an optimized codebase.

GPU for batched optimization solvers. The machine learning community has
been a strong advocate for porting mathematical optimization on the GPU.
One of the most promising applications is embedding mathematical programs
inside neural networks, a task that requires batching the solution of the opti-
mization model for the training algorithm to be efficient [2,33]. This has led to
the development of prototype code solving thousands of (small) optimization
problems in parallel on the GPU. Furthermore, batched optimization solvers
can be leveraged in decomposition algorithms, when the subproblems share
the same structure [21]. However, it is not trivial to adapt such code to solve
large-scale optimization problems, as the previous prototypes are reliant on
dense linear solvers to compute the descent directions.

GPU for nonlinear programming. The success of first-order algorithms in clas-
sical mathematical programming relies on the convexity of the problem. Thus,
this approach is nontrivial to replicate in general nonlinear programming: Most
engineering problems encode complex physical equations that are likely to
break any convex structure in the problem. Previous experiments on the al-
ternating current (AC) optimal power flow (OPF) problem have shown that
even a simple algorithm as the alternating direction method of multipliers
(ADMM) has trouble converging as soon as the convergence tolerance is set
below 10−3 [21].

Thus, second-order methods remain a competitive option, particularly for
scenarios that demand higher levels of accuracy and robust convergence. Second-
order algorithms solve a Newton step at each iteration, an operation relying
on non-trivial sparse linear algebra operations. The previous generation of
GPU-accelerated sparse linear solvers were lagging behind their CPU equiva-
lents, as illustrated in subsequent surveys [39,40]. Fortunately, sparse solvers
on GPUs are becoming increasingly better: NVIDIA has released in November
2023 the cuDSS sparse direct solver that implements different sparse factoriza-
tion routines with remarkably improved performance. Our benchmark results
indicate that cuDSS is significantly faster than the previous sparse solvers us-
ing NVIDIA GPUs (e.g., published in [37]). Furthermore, variants of interior
point methods have been proposed that do not depend on numerical pivot-
ing in the linear solves, opening the door to parallelized sparse solvers. Cou-
pled with a GPU-accelerated automatic differentiation library and a sparse
Cholesky solver, these nonlinear programming solvers can solve optimal power
flow (OPF) problems 10x faster than state-of-the-art methods [37].

There exist a few alternatives to sparse linear solvers for solving the KKT
systems on the GPU. On the one hand, iterative and Krylov methods depend
only on matrix-vector products to solve linear systems. They often require
non-trivial reformulation or specialized preconditioning of the KKT systems
to mitigate the inherent ill-conditioning of the KKT matrices, which has lim-
ited their use within the interior-point methods [10,35]. New results are giving
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promising outlooks for convex problems [17], but nonconvex problems often
need an Augmented Lagrangian reformulation to be tractable [8,34]. In partic-
ular, [34] presents an interesting use of the Golub and Greif hybrid method [18]
to solve the KKT systems arising in the interior-point methods, with promis-
ing results on the GPU. On the other hand, null-space methods (also known
as reduced Hessian methods) reduce the KKT system down to a dense matrix,
a setting also favorable for GPUs. Our previous research has shown that the
approach is suitable for interior-point methods if the number of degrees of
freedom in the problem remains relatively small [32].

1.2 Contributions

In this article, we assess the current capabilities of modern GPUs to solve
large-scale nonconvex nonlinear programs to optimality. We focus on the two
condensed-space methods introduced respectively in [34,37]. We re-use classi-
cal results from [43] to show that for both methods, the condensed matrix ex-
hibits structured ill-conditioning that limits the loss of accuracy in the descent
direction (provided the interior-point algorithm satisfies some standard as-
sumptions). We implement both algorithms inside the GPU-accelerated solver
MadNLP, and leverage the GPU-accelerated automatic differentiation backend
ExaModels [37]. The interior-point algorithm runs entirely on the GPU, from
the evaluation of the model (using ExaModels) to the solution of the KKT sys-
tem (using a condensed-space method running on the GPU). We use CUDSS.jl
[26], a Julia interface to the NVIDIA library cuDSS, to solve the condensed
KKT systems. We evaluate the strengths and weaknesses of both methods, in
terms of accuracy and runtime. Extending beyond the classical OPF instances
examined in our previous work, we incorporate large-scale problems sourced
from the COPS nonlinear benchmark [13]. Our assessment involves comparing
the performance achieved on the GPU with that of a state-of-the-art method
executed on the CPU. The findings reveal that the condensed-space IPM en-
ables a remarkable ten-time acceleration in solving large-scale OPF instances
when utilizing the GPU. However, performance outcomes on the COPS bench-
mark exhibit more variability.

1.3 Notations

By default, the norm ∥ · ∥ refers to the 2-norm. We define the conditioning of
a matrix A as κ2(A) = ∥A∥∥A−1∥. For any real number x, we denote by x̂
its floating point representation. We denote u as the smallest positive number
such that x̂ ≤ (1 + τ)x for |τ | < u. In double precision, u = 1.1 × 10−16. We
use the following notations to proceed with our error analysis. For p ∈ N and
a positive variable h:

– We write x = O(hp) if there exists a constant b > 0 such that ∥x∥ ≤ bhp;
– We write x = Ω(hp) if there exists a constant a > 0 such that ∥x∥ ≥ ahp;
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– We write x = Θ(hp) if there exists two constants 0 < a < b such that
ahp ≤ ∥x∥ ≤ bhp.

2 Primal-dual interior-point method

The interior-point method (IPM) is among the most popular algorithms to
solve nonlinear programs. The basis of the algorithm is to reformulate the
Karush-Kuhn-Tucker (KKT) conditions of the nonlinear program as a smooth
system of nonlinear equations using a homotopy method [31]. In a standard im-
plementation, the resulting system is solved iteratively with a Newton method
(used in conjunction with a line-search method for globalization). In Section
2.1, we give a brief description of a nonlinear program. We detail in Section
2.2 the Newton step computation within each IPM iteration.

2.1 Problem formulation and KKT conditions

We are interested in solving the following nonlinear program:

min
x∈Rn

f(x) subject to g(x) = 0 , h(x) ≤ 0 , (1)

with f : Rn → R a real-valued function encoding the objective, g : Rn → Rme

encoding the equality constraints, and h : Rn → Rmi encoding the inequality
constraints. In what follows, we suppose that the functions f, g, h are smooth
and twice differentiable.

We reformulate (1) using non-negative slack variables s ≥ 0 into the equiv-
alent formulation

min
x∈Rn, s∈Rmi

f(x) subject to

{
g(x) = 0 , h(x) + s = 0 ,

s ≥ 0 .
(2)

In (2), the inequality constraints are encoded inside the variable bounds on
the slack variables.

We denote by y ∈ Rme and z ∈ Rmi the multipliers associated resp. to
the equality constraints and the inequality constraints. Similarly, we denote
by v ∈ Rmi the multipliers associated to the bounds s ≥ 0. Using the dual
variable (y, z, v), we define the Lagrangian of (2) as

L(x, s, y, z, v) = f(x) + y⊤g(x) + z⊤
(
h(x) + s

)
− v⊤s . (3)

The KKT conditions of (2) are:

∇f(x) +∇g(x)⊤y +∇h(x)⊤z = 0 , (4a)

z − v = 0 , (4b)

g(x) = 0 , (4c)

h(x) + s = 0 , (4d)

0 ≤ s ⊥ v ≥ 0 . (4e)
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The notation s ⊥ v is a shorthand for the complementarity condition sivi = 0
(for all i = 1, · · · , n).

The set of active constraints at a point x is denoted by

B(x) := {i ∈ {1, · · · ,mi} | hi(x) = 0} . (5)

The inactive set is defined as the complement N (x) := {1, · · · ,mi}\B(x). We
note ma the number of active constraints. The active Jacobian is defined as

A(x) :=

[
∇g(x)
∇hB(x)

]
∈ R(me+ma)×n.

2.2 Solving the KKT conditions with the interior-point method

The interior-point method aims at finding a stationary point satisfying the
KKT conditions (4). The complementarity constraints (4e) render the KKT
conditions non-smooth, complicating the solution of the whole system (4).
IPM uses a homotopy continuation method to solve a simplified version of
(4), parameterized by a barrier parameter µ > 0 [31, Chapter 19]. For positive
(x, s, v) > 0, we solve the system

Fµ(x, s, y, z, v) =


∇f(x) +∇g(x)⊤y +∇h(x)⊤z

z − v
g(x)

h(x) + s
Sv − µe

 = 0 . (6)

We introduce in (6) the diagonal matrices X = diag(x1, · · · , xn) and S =
diag(s1, · · · , smi

), along with the vector of ones e. As we drive the barrier
parameter µ to 0, the solution of the system Fµ(x, s, y, z, v) = 0 tends to the
solution of the KKT conditions (4).

We note that at a fixed parameter µ, the function Fµ(·) is smooth. Hence,
the system (6) can be solved iteratively using a regular Newton method. For
a primal-dual iterate wk := (xk, sk, yk, zk, vk), the next iterate is computed as
wk+1 = wk + αkdk, where dk is a descent direction computed by solving the
linear system

∇wFµ(wk)dk = −Fµ(wk) . (7)

The step αk is computed using a line-search algorithm, in a way that ensures
that the bounded variables remain positive at the next primal-dual iterate:
(xk+1, sk+1, vk+1) > 0. Once the iterates are sufficiently close to the central
path, the IPM decreases the barrier parameter µ to find a solution closer to
the original KKT conditions (4).

In IPM, the bulk of the workload is the computation of the Newton step
(7), which involves assembling the Jacobian ∇wFµ(wk) and solving the linear
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system to compute the descent direction dk. By writing out all the blocks, the
system in (7) expands as the 6× 6 unreduced KKT system:

Wk 0 G⊤
k H⊤

k 0
0 0 0 I −I
Gk 0 0 0 0
Hk I 0 0 0
0 Vk 0 0 Sk



dx
ds
dy
dz
dv

 = −


∇xL(wk)
zk − vk
g(xk)

h(xk) + sk
Skvk − µe

 , (K3)

where we have introduced the Hessian Wk = ∇2
xxL(wk) and the two Jacobians

Gk = ∇g(xk), Hk = ∇h(xk). In addition, we define Xk, Sk, Uk and Vk the
diagonal matrices built respectively from the vectors xk, sk, uk and vk. Note
that (K3) can be symmetrized by performing simple block row and column
operations. In what follows, we will omit the index k to simplify the notations.

Augmented KKT system. It is usual to remove in (K3) the blocks associated
to the bound multipliers v and solve instead the regularized 4× 4 symmetric
system, called the augmented KKT system:

W + δwI 0 G⊤ H⊤

0 Ds + δwI 0 I
G 0 −δcI 0
H I 0 −δcI



dx
ds
dy
dz

 = −


r1
r2
r3
r4

 , (K2)

with the diagonal matrix Ds := S−1V . The vectors forming the right-hand-
sides are given respectively by r1 := ∇f(x) + ∇g(x)⊤y + ∇h(x)⊤z, r2 :=
z − µS−1e, r3 := g(x), r4 := h(x) + s. Once (K2) is solved, we recover the
updates on bound multipliers with dv = −S−1(V ds − µe)− v.

Note that we have added additional regularization terms δw ≥ 0 and δc ≥ 0
in (K2), to ensure the matrix is invertible. Without the regularization terms in
(K2), the augmented KKT system is non-singular if and only if the Jacobian

J =

[
G 0
H I

]
is full row-rank and the matrix

[
W 0
0 Ds

]
projected onto the null-

space of the Jacobian J is definite [4]. The condition is satisfied if the inertia
(defined as the respective numbers of positive, negative and zero eigenvalues) of
the matrix (K2) is (n+mi,mi+me, 0). We use the inertia-controlling method
introduced in [41] to regularize the augmented matrix by adding multiple of the
identity on the diagonal of (K2) if the inertia is not equal to (n+mi,me+mi, 0).

As a consequence, the system (K2) is usually factorized using an inertia-
revealing LBLT factorization [15]. Krylov methods are often not competitive
when solving (K2), as the block diagonal terms Ds are getting increasingly
ill-conditioned near the solution. Their use in IPM has been limited to linear
and convex quadratic programming [19] (when paired with a suitable precondi-
tioner). We also refer to [8] for an efficient implementation of a preconditioned
conjugate gradient on GPU, for solving the Newton step arising in an aug-
mented Lagrangian interior-point approach.
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Condensed KKT system. The 4× 4 KKT system (K2) can be further reduced
down to a 2 × 2 system by eliminating the two blocks (ds, dz) associated to
the inequality constraints. The resulting system is called the condensed KKT
system: [

K G⊤

G −δcI

] [
dx
dy

]
= −

[
r1 +H⊤(DHr4 − Cr2)

r3

]
=:

[
r̄1
r̄2

]
, (K1)

where we have introduced the condensed matrix K := W + δwI + H⊤DHH
and the two diagonal matrices

C :=
(
I + δc(Ds + δwI)

)−1
, DH := (Ds + δwI)C . (8)

Using the solution of the system (K1), we recover the updates on the slacks
and inequality multipliers with dz = −Cr2 +DH(Hdx + r4) and ds = −(Ds +
δwI)

−1(r2 + dz). Using Sylvester’s law of inertia, we can prove that

inertia(K2) = (n+mi,me +mi, 0) ⇐⇒ inertia(K1) = (n,me, 0) . (9)

Iterative refinement. Compared to (K3), the diagonal matrixDs introduces an
additional ill-conditioning in (K2), amplified in the condensed form (K1): the
elements in the diagonal tend to infinity if a variable converges to its bound,
and to 0 if the variable is inactive. To address the numerical error arising from
such ill-conditioning, most of the implementations of IPM employ Richardson
iterations on the original system (K3) to refine the solution returned by the
direct sparse linear solver (see [41, Section 3.10]).

2.3 Discussion

We have obtained three different formulations of the KKT systems appearing
at each IPM iteration. The original formulation (K3) has a better conditioning
than the two alternatives (K2) and (K1) but has a much larger size. The second
formulation (K2) is used by default in state-of-the-art nonlinear solvers [41,
42]. The system (K2) is usually factorized using a LBLT factorization: for
sparse matrices, the Duff and Reid multifrontal algorithm [15] is the favored
method (as implemented in the HSL linear solvers MA27 and MA57 [14]). The
condensed KKT system (K1) is often discarded, as its conditioning is worse
than (K2) (implying less accurate solutions). Additionally, condensation may
result in increased fill-in within the condensed system (K1) [31, Section 19.3,
p.571]. In the worst cases (K1) itself may become fully dense if an inequality
row is completely dense (fortunately, a case rarer than in the normal equations
commonly encountered in linear programming). Consequently, condensation
methods are not commonly utilized in practical optimization settings. To the
best of our knowledge, Artelys Knitro [42] is the only solver that supports
computing the descent direction with (K1).
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3 Solving KKT systems on the GPU

The GPU has emerged as a new prominent computing hardware not only
for graphics-related but also for general-purpose computing. GPUs employ a
SIMD formalism that yields excellent throughput for parallelizing small-scale
operations. However, their utility remains limited when computational algo-
rithms require global communication. Sparse factorization algorithms, which
heavily rely on numerical pivoting, pose significant challenges for implemen-
tation on GPUs. Previous research has demonstrated that GPU-based linear
solvers significantly lag behind their CPU counterparts [39,40]. One emerging
strategy is to utilize sparse factorization techniques that do not necessitate
numerical pivoting [34,37] by leveraging the structure of the condensed KKT
system (K1). We present two alternative methods to solve (K1). On the one
hand, HyKKT is introduced in §3.1 and uses the hybrid strategy of Golub &
Greif [18,34]. On the other hand, LiftedKKT [37] uses an equality relaxation
strategy and is presented in §3.2.

3.1 Golub & Greif strategy: HyKKT

The Golub & Greif [18] strategy reformulates the KKT system using an Aug-
mented Lagrangian formulation. It has been recently revisited in [34] to solve
the condensed KKT system (K1) on the GPU. For a dual regularization δc = 0,
the trick is to reformulate the condensed KKT system (K1) in an equivalent
form [

Kγ G⊤

G 0

] [
dx
dy

]
=

[
r̄1 + γG⊤r̄2

r̄2

]
, (10)

where we have introduced the regularized matrix Kγ := K + γG⊤G. We note
by Z a basis of the null-space of the Jacobian G. Using a classical result
from [11], if G is full row-rank then there exists a threshold value γ such that

for all γ > γ, the reduced Hessian Z⊤KZ is positive definite if and only if
Kγ is positive definite. Using the Sylvester’s law of inertia stated in (9), we
deduce that for γ > γ, if inertia(K2) = (n+mi,me+mi, 0) then Kγ is positive
definite.

The linear solver HyKKT [34] leverages the positive definiteness of Kγ to
solve (10) using a hybrid direct-iterative method that uses the following steps:

1. Assemble Kγ and factorize it using sparse Cholesky ;
2. Solve the Schur complement of (10) using a conjugate gradient (Cg) algo-

rithm to recover the dual descent direction:

(GK−1
γ G⊤)dy = GK−1

γ (r̄1 + γG⊤r̄2)− r̄2 . (11)

3. Solve the system Kγdx = r̄1+γG⊤r̄2−G⊤dy to recover the primal descent
direction.
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The method uses a sparse Cholesky factorization along with the conjugate
gradient (Cg) algorithm [20]. The sparse Cholesky factorization has the ad-
vantage of being stable without numerical pivoting, rendering the algorithm
tractable on a GPU. Each Cg iteration requires the application of sparse tri-
angular solves with the factors of Kγ . For that reason, HyKKT is efficient
only if the Cg solver converges in a small number of iterations. Fortunately,
the eigenvalues of the Schur-complement Sγ := GK−1

γ G⊤ all converge to 1
γ

as we increase the regularization parameter γ [34, Theorem 4], implying that
limγ→∞ κ2(Sγ) = 1. Because the convergence of the Cg method depends on
the number of distinct eigenvalues of Sγ , the larger the γ, the faster the conver-
gence of the Cg algorithm in (11). Cr [20] and cAr [29] can also be used as an
alternative to Cg. Although we observe similar performance, these methods
ensure a monotonic decrease in the residual norm of (11) at each iteration.

3.2 Equality relaxation strategy: LiftedKKT

For a small relaxation parameter τ > 0 (chosen based on the numerical tol-
erance of the optimization solver εtol), the equality relaxation strategy [37]
approximates the equalities with lifted inequalities:

min
x∈Rn

f(x) subject to − τ ≤ g(x) ≤ τ , h(x) ≤ 0 . (12)

The problem (12) has only inequality constraints. After introducing slack vari-
ables, the condensed KKT system (K1) reduces to

Kτ dx = −r1 −H⊤
τ (DHr4 − Cr2) , (13)

withHτ =
(
G⊤ H⊤)⊤ andKτ := W+δwI+H⊤

τ DHHτ . Using the relation (9),
the matrix Kτ is guaranteed to be positive definite if the primal regularization
parameter δw is adequately large. As such, the parameter δw is chosen dynam-
ically using the inertia information of the system in (K1). Therefore, Kτ can
be factorized with a Cholesky decomposition, satisfying the key requirement
of stable pivoting for the implementation on the GPU. The relaxation causes
error in the final solution. Fortunately, the error is in the same order of the
solver tolerance, thus it does not significantly deteriorate the solution quality
for small εtol.

While this method can be implemented with small modification in the
optimization solver, the presence of tight inequality in (12) causes severe ill-
conditioning throughout the IPM iterations. Thus, using an accurate iterative
refinement algorithm is necessary to get a reliable convergence behavior.

3.3 Discussion

We have introduced two algorithms to solve KKT systems on the GPU. As
opposed to classical implementations, the two methods do not require comput-
ing a sparse LBLT factorization of the KKT system and use instead alternate
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reformulations based on the condensed KKT system (K1). Both strategies rely
on a Cholesky factorization: HyKKT factorizes a positive definite matrix Kγ

obtained with an Augmented Lagrangian strategy whereas Lifted KKT factor-
izes a positive definite matrix Kτ after using an equality relaxation strategy.
We will see in the next section that the ill-conditioned matrices Kγ and Kτ

have a specific structure that limits the loss of accuracy in IPM.

4 Conditioning of the condensed KKT system

The condensed matrix K appearing in (K1) is known to be increasingly ill-
conditioned as the primal-dual iterates approach to a local solution with active
inequalities. This behavior is amplified for the matricesKγ andKτ , as HyKKT
and LiftedKKT require the use of respectively large γ and small τ . In this
section, we analyze the numerical error associated with the solution of the
condensed KKT system and discuss how the structured ill-conditioning makes
the adverse effect of ill-conditioning relatively benign.

We first discuss the perturbation bound for a generic linear systemMx = b.
The relative error after perturbing the right-hand side by ∆b is bounded by:

∥∆x∥ ≤ ∥M−1∥∥∆b∥ ,
∥∆x∥
∥x∥

≤ κ2(M)
∥∆b∥
∥b∥

. (14a)

When the matrix is perturbed by ∆M , the perturbed solution x̂ satisfies ∆x =
x̂ − x = −(M + ∆M)−1∆Mx̂. If κ2(M) ≈ κ2(M + ∆M), we have M∆x ≈
−∆Mx (neglecting second-order terms), giving the bounds

∥∆x∥ ⪅ ∥M−1∥∥∆M∥∥x∥ ,
∥∆x∥
∥x∥

⪅ κ2(M)
∥∆M∥
∥M∥

. (14b)

The relative errors are bounded above by a term depending on the conditioning
κ2(M). Hence, it is legitimate to investigate the impact of the ill-conditioning
when solving the condensed system (K1) with LiftedKKT or with HyKKT.
We will see that we can tighten the bounds in (14) by exploiting the struc-
tured ill-conditioning of the condensed matrix K. We base our analysis on
[43], where the author has put a particular emphasis on the condensed KKT
system (K1) without equality constraints. We generalize their results to the
matrix Kγ , which incorporates both equality and inequality constraints. The
results extend directly to Kτ (by letting the number of equalities to be zero).

4.1 Centrality conditions

We start the discussion by recalling important results about the iterates of the
interior-point algorithm. For p := (x, s, y, z), we denote by (p, v) the current
primal-dual iterate, and (p⋆, v⋆) a solution of the KKT conditions (4). We
denote B = B(x⋆) the active-set at the optimal solution x⋆, and N = N (x⋆)
the inactive set. In this section, we are interested in the local convergence
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behavior of the primal-dual iterate, and we suppose (p, v) is close enough to
the solution (p⋆, v⋆).

Assumption 1 Let (p⋆, v⋆) be a primal-dual solution satisfying the KKT con-
ditions (4). Let the following hold:

– Continuity: The Hessian ∇2
xxL(·) is Lipschitz continuous near p⋆;

– Linear Independence Constraint Qualification (LICQ): the active Jacobian
A(x⋆) is full row-rank;

– Strict Complementarity (SCS): for every i ∈ B(x⋆), z⋆i > 0.
– Second-order sufficiency (SOSC): for every h ∈ Ker

(
A(x⋆)

)
, h⊤∇2

xxL(p
⋆)h >

0.

We denote δ(p, v) = ∥(p, v)−(p⋆, v⋆)∥ the Euclidean distance to the primal-
dual stationary point (p⋆, v⋆). From [45, Theorem 2.2], if Assumption 1 holds
at p⋆ and v > 0,

δ(p, v) = Θ

(∥∥∥∥[∇pL(p, v)
min(v, s)

]∥∥∥∥) . (15)

For feasible iterate (s, v) > 0, we define the duality measure Ξ(s, v) as the
mapping

Ξ(s, v) = s⊤v/mi , (16)

where mi is the number of inequality constraints. The duality measure encodes
the current satisfaction of the complementarity constraints. For a solution
(p⋆, v⋆), we have Ξ(s⋆, v⋆) = 0. The duality measure can be used to define the
barrier parameter in IPM.

We suppose the iterates (p, v) satisfy the centrality conditions

∥∇pL(p, v)∥ ≤ C Ξ(s, v) , (17a)

(s, v) > 0 , sivi ≥ αΞ(s, v) ∀i = 1, · · · ,mi , (17b)

for some constants C > 0 and α ∈ (0, 1). Conditions (17b) ensure that the
products sivi are not too disparate in the diagonal term Ds. This condition is
satisfied (even if rather loosely) in the solver Ipopt (see [41, Equation (16)]).

Proposition 1 ([45], Lemma 3.2 and Theorem 3.3) Suppose p⋆ satisfies
Assumption 1. If the current primal-dual iterate (p, v) satisfies the centrality
conditions (17), then

i ∈ B =⇒ si = Θ(Ξ) , vi = Θ(1) , (18a)

i ∈ N =⇒ si = Θ(1) , vi = Θ(Ξ) . (18b)

and the distance to the solution δ(p, v) is bounded by the duality measure Ξ:

δ(p, v) = O(Ξ) . (18c)
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4.2 Structured ill-conditioning

The following subsection looks at the structure of the condensed matrix Kγ

in HyKKT. All the results apply directly to the matrix Kτ in LiftedKKT, by
setting the number of equality constraints to me = 0. First, we show that if
the iterates (p, v) satisfy the centrality conditions (17), then the condensed
matrix Kγ exhibits a structured ill-conditioning.

4.2.1 Invariant subspaces in Kγ

Without regularization we have that Kγ = W +H⊤DsH + γG⊤G, with the
diagonal Ds = S−1V . We note by ma the cardinality of the active set B,
HB the Jacobian of active inequality constraints, HN the Jacobian of inactive

inequality constraints and by A :=
[
H⊤

B G⊤]⊤ the active Jacobian. We define
the minimum and maximum active slack values as

smin = min
i∈B

si , smax = max
i∈B

si . (19)

We recall that me is the number of equality constraints, and define ℓ := me +
ma.

We express the structured ill-conditioning ofKγ by modifying the approach
outlined in [43, Theorem 3.2] to account for the additional term γG⊤G arising
from the equality constraints. We show that the matrix Kγ has two invariant
subspaces (in the sense defined in [38, Chapter 5]), associated respectively to
the range of the transposed active Jacobian (large space) and to the null space
of the active Jacobian (small space).

Theorem 2 (Properties of Kγ) Suppose the condensed matrix is evalu-
ated at a primal-dual point (p, ν) satisfying (17), for sufficiently small Ξ. Let
λ1, · · · , λn be the n eigenvalues of Kγ , ordered as |λ1| ≥ · · · ≥ |λn|. Let

[
Y Z

]
be an orthogonal matrix, where Z encodes the basis of the null-space of A. Let

σ := min
(

1
Ξ , γ

)
and σ := max

(
1

smin
, γ

)
. Then,

(i) The ℓ largest-magnitude eigenvalues of Kγ are positive, with λ1 = Θ(σ)
and λℓ = Ω(σ).

(ii) The n− ℓ smallest-magnitude eigenvalues of Kγ are Θ(1).
(iii) If 0 < ℓ < n, then κ2(Kγ) = Θ(σ).

(iv) There are orthonormal matrices Ỹ and Z̃ for simple invariant subspaces

of Kγ such that Y − Ỹ = O(σ−1) and Z − Z̃ = O(σ−1).

Proof We start the proof by setting apart the inactive constraints from the
active constraints in Kγ :

Kγ = W +H⊤
NS−1

N VNHN +A⊤DγA , with Dγ =

[
S−1
B VB 0
0 γI

]
. (20)
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Using Assumption 1, Lipschitz continuity implies that the Hessian and the
inactive Jacobian are bounded: W = O(1), HN = O(1). Proposition 1 implies
that sN = Θ(1) and vN = Θ(Ξ). We deduce:

H⊤
NS−1

N VNHN = O(Ξ) . (21)

Hence, for small enough Ξ, the condensed matrix Kγ is dominated by the
block of active constraints:

Kγ = A⊤DγA+O(1) . (22)

Sufficiently close to the optimum p⋆, the constraints qualification in Assump-
tion 1 implies that A = Θ(1) and has rank ℓ. The eigenvalues {ηi}i=1,··· ,n
of A⊤DγA satisfy ηi > 0 for i = 1, · · · , ℓ and ηi = 0 for i = ℓ + 1, · · · , n.
As sB = Θ(Ξ) and vB = Θ(1) (Proposition 1), the smallest diagonal element
in Dγ is Ω(min{ 1

Ξ , γ}) and the largest diagonal element is Θ(max{ 1
smin

, γ}).
Hence,

η1 = Θ(σ) , ηℓ = Ω(σ) . (23)

Using [43, Lemma 3.1], we deduce λ1 = Θ(σ) and λℓ = Ω(σ), proving the first
result (i).

Let Lγ := A⊤DγA. We have that[
Z⊤

Y ⊤

]
Lγ

[
Z Y

]
=

[
L1 0
0 L2

]
, (24)

with L1 = 0 and L2 = Y ⊤LγY . The smallest eigenvalue of L2 is Ω(σ) and
the matrix E := Kγ − Lγ is O(1). By applying [43, Theorem 3.1, (ii)], the
n − ℓ smallest eigenvalues in Kγ differ by Ω(σ−1) from those of the reduced
Hessian Z⊤KγZ. In addition, (21) implies that Z⊤KγZ − Z⊤WZ = O(Ξ).
Using SOSC, Z⊤WZ is positive definite for small enough Ξ, implying all its
eigenvalues are Θ(1). Using again [43, Lemma 3.1], we get that the n − ℓ
smallest eigenvalues in Kγ are Θ(1), proving (ii). The results in (iii) can be
obtained by combining (i) and (ii) (provided 0 < ℓ < n). Finally, point (iv)
directly follows from [43, Theorem 3.1 (i)].

Corollary 1 The condensed matrix Kγ can be decomposed as

Kγ = UΣU⊤ =
[
UL US

] [ΣL 0
0 ΣS

] [
U⊤
L

U⊤
S

]
, (25)

with ΣL = diag(σ1, · · · , σℓ) ∈ Rℓ×ℓ and ΣS = diag(σℓ+1, · · · , σn) ∈ R(n−ℓ)×(n−ℓ)

two diagonal matrices, and UL ∈ Rn×ℓ, US ∈ Rn×(n−ℓ) two orthogonal matri-
ces such that U⊤

L US = 0. The diagonal elements in ΣS and ΣL satisfy

σ1

σℓ
≪ σ1

σn
,

σℓ+1

σn
≪ σ1

σn
. (26)

For suitably chosen basis Y and Z, spanning respectively the row space and
the null space of the active Jacobian A, we get

UL − Y = O(σ−1) , US − Z = O(σ−1) . (27)
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Proof Using the spectral theorem, we obtain the decomposition as (25). Ac-
cording to Theorem 2, the ℓ largest eigenvalues of Kγ are large and well sep-
arated from the n − ℓ smallest eigenvalues, establishing (26). Using Theorem
2, part (iv), we obtain the result in (27).

Corollary 1 gives us a deeper insight into the structure of the condensed matrix
Kγ . Using equation (27), we observe we can assimilate the large space of Kγ

with range(A⊤) and the small space with Ker(A). The decomposition (25)
leads to the following relations

∥Kγ∥ = ∥ΣL∥ = Θ(σ) , Σ−1
L = O(σ−1) ,

∥K−1
γ ∥ = ∥Σ−1

S ∥ = Θ(1) , ΣS = Θ(1) .
(28)

The condition of ΣL depends on κ2(A) and the ratio smax

smin
= O(Ξσ). The

condition of ΣS reflects the condition of the reduced Hessian Z⊤WZ.
Three observations are due:

1. Theorem 2 (iii) tells us that κ2(Kγ) = Θ(σ), meaning that if γ ≥ 1
smin

,
then the conditioning κ2(Kγ) increases linearly with γ, hence recovering a
known result [34].

2. In early IPM iterations, the slacks are pushed away from the boundary and
the number of active inequality constraints is ma = 0. The ill-conditioning
in Kγ is caused only by γG⊤G and σ = σ = γ.

3. In late IPM iterations, the active slacks are converging to 0. We observe
that if 1

Ξ ≤ γ ≤ 1
smin

the parameter γ does not increase the ill-conditioning
of the condensed matrix Kγ .

4.2.2 Numerical accuracy of the condensed matrix Kγ

In floating-point arithmetic, the condensed matrix Kγ is evaluated as

K̂γ = W +∆W + (A+∆A)⊤(Dγ +∆Dγ)(A+∆A)

+ (HN +∆HN )⊤S−1
N VN (HN +∆HN ) ,

with ∆W = O(u), ∆HN = O(u), ∆A = Θ(u), ∆Dγ = O(uσ): most of the
errors arise because of the ill-conditioned diagonal terms in Dγ .

Proposition 2 In floating-point arithmetic, the perturbation of the condensed
matrix Kγ satisfies ∆Kγ := K̂γ −Kγ = O(uσ).

Proof As A = Θ(1), we have: A⊤DγA = Θ(σ) and A⊤∆DγA = O(uσ).
Neglecting second-order terms, we get

∆Kγ =

O(u)︷︸︸︷
∆W +

O(σu)︷ ︸︸ ︷
∆A⊤DγA+

O(σu)︷ ︸︸ ︷
A⊤Dγ∆A+

O(σu)︷ ︸︸ ︷
A⊤∆DγA

+∆HNS−1
N VNHN︸ ︷︷ ︸
O(u)

+HNS−1
N VN∆HN︸ ︷︷ ︸
O(u)

,
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where the terms in braces show the respective bounds on the errors. We de-
duce the error is dominated by the terms arising from the active Jacobian, all
bounded by O(σu), hence concluding the proof.

If it is large enough, the unstructured perturbation ∆Kγ can impact the

structured ill-conditioning in the perturbed matrix K̂γ . We know that the
smallest eigenvalue ηℓ of A

⊤DγA is Ω(σ). As mentioned in [43, Section 3.4.2],

the perturbed matrix K̂γ keeps the p large eigenvalues bounded below by σ if
the perturbation is itself much smaller than the eigenvalue ηℓ:

∥∆Kγ∥ ≪ ηℓ = Ω(σ) . (29)

However, the bound given in Proposition 2 is too loose for (29) to hold without
any further assumption (we have only σ ≤ σ). We note that for some constant
C > 0, ∆Kγ ≤ Cuσ, implying ∆Kγ/σ ≤ Cuσ/σ. Hence, if we suppose in
addition the ratio σ/σ is close to 1, then ∥∆Kγ∥ = O(uσ) can instead be
replaced by ∥∆Kγ∥ = O(uσ), ensuring (29) holds.

4.2.3 Numerical solution of the condensed system

We are interested in estimating the relative error made when solving the system
Kγx = b in floating point arithmetic. We suppose Kγ is factorized using a
backward-stable Cholesky decomposition. The computed solution x̂ is solution
of a perturbed system K̃γ x̂ = b, with K̃γ = Kγ+∆sKγ and∆sKγ a symmetric
matrix satisfying

∥∆sKγ∥ ≤ uεn∥Kγ∥ , (30)

for εn a small constant depending on the dimension n. We need the following
additional assumptions to ensure (a) the Cholesky factorization runs to com-
pletion and (b) we can incorporate the backward-stable perturbation ∆sKγ

in the generic perturbation ∆Kγ introduced in Proposition 2.

Assumption 3 Let (p, v) be the current primal-dual iterate. We assume:

(a) (p, v) satisfies the centrality conditions (17).
(b) The parameter γ satisfies γ = Θ(Ξ−1).
(c) The duality measure is large enough relative to the precision u: u ≪ Ξ.
(d) The primal step x̂ is computed using a backward stable method satisfy-

ing (30) for a small constant εn.

Condition (a) implies that smin = Θ(Ξ) and smax = Θ(Ξ) (Proposition 1).
Condition (b) supposes in addition γ = Θ(Ξ−1), making the matrix ΣL well-
conditioned with σ = Θ(Ξ−1), σ = Θ(Ξ−1) and σ/σ = Θ(1). Condition (c)
ensures that κ2(Kγ) = Θ(σ) satisfies κ2(Kγ)u ≪ 1 (implying the Cholesky
factorization runs to completion). Condition (d) tells us that the perturbation
caused by the Cholesky factorization is ∆sKγ = O(u∥Kγ∥). As (28) implies
∥Kγ∥ = Θ(Ξ−1), we can incorporate ∆sKγ in the perturbation ∆Kγ given in
Proposition 2.
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We are now ready to analyze the perturbation bound for the condensed
system. We denote x the solution of the linear system Kγx = b in exact

arithmetic, and x̂ the solution of the perturbed system K̂γ x̂ = b̂ in floating-
point arithmetic. We are interested in bounding the error ∆x = x̂ − x. We
recall that every vector x ∈ Rn decomposes as

x = ULxL + USxS = Y xY + ZxZ . (31)

Impact of right-hand-side perturbation. Using (25), the inverse of Kγ satisfies

K−1
γ =

[
UL US

] [Σ−1
L 0
0 Σ−1

S

] [
U⊤
L

U⊤
S

]
. (32)

Hence, if we solve the system for b̂ := b+∆b, ∆x = K−1
γ ∆b decomposes as

[
∆xL

∆xS

]
=

[
Σ−1

L 0
0 Σ−1

S

] [
∆bL
∆bS

]
, (33)

which in turn implies the following bounds:

∥∆xL∥ ≤ ∥Σ−1
L ∥∥∆bL∥ , ∥∆xS∥ ≤ ∥Σ−1

S ∥∥∆bS∥ . (34)

As Σ−1
L = O(Ξ) and Σ−1

S = Θ(1), we deduce that the error ∆xL is smaller
by a factor of Ξ than the error ∆xS . The total error ∆x = UL∆xL + US∆xS

is bounded by

∥∆x∥ ≤ ∥Σ−1
L ∥∥∆bL∥+ ∥Σ−1

S ∥∥∆bS∥ = O(∥∆b∥) . (35)

Impact of matrix perturbation. As ∥∆Kγ∥ ≪ ∥Kγ∥, we have that

(Kγ +∆Kγ)
−1 = (I +K−1

γ ∆Kγ)
−1K−1

γ ,

= K−1
γ −K−1

γ ∆KγK
−1
γ +O(∥∆Kγ∥2) .

(36)

We decompose ∆Kγ in two matrices ΓL ∈ Rℓ×n and ΓS ∈ R(n−ℓ)×n such that

∆Kγ =

[
ΓL

ΓS

]
. Using (32) the first-order error is given by

K−1
γ ∆KγK

−1
γ = ULΣ

−1
L ΓLΣ

−1
L U⊤

L + USΣ
−1
S ΓSΣ

−1
S U⊤

S . (37)

Using (28) and (ΓL, ΓS) = O(Ξ−1u), we obtain Σ−1
L ΓLΣ

−1
L = O(Ξu) and

Σ−1
S ΓSΣ

−1
S = O(Ξ−1u). We deduce that the error made in the large space is

O(Ξu) whereas the error in the small space is O(Ξ−1u).
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4.3 Solution of the condensed KKT system

We use the relations (34) and (37) to bound the error made when solving the
condensed KKT system (K1) in floating-point arithmetic. In all this section,
we assume that the primal-dual iterate (p, v) satisfies Assumption 3. Using
[45, Corollary 3.3], the solution (dx, dy) of the condensed KKT system (K1)
in exact arithmetic satisfies (dx, dy) = O(Ξ). In (K1), the RHS r̄1 and r̄2
evaluate in floating-point arithmetic as{

r̄1 = −r̂1 + Ĥ⊤(D̂sr̂4 − r̂2
)
,

r̄2 = −r̂3 .
(38)

Using basic floating-point arithmetic, we get r̂1 = r1 +O(u), r̂3 = r3 +O(u),
r̂4 = r4 + O(u). The error in the right-hand-side r2 is impacted by the term
µS−1e: under Assumption 3, it impacts differently the active and inactive
components: r̂2,B = r2,B + O(u) and r̂2,N = r2,N + O(Ξu). Similarly, the

diagonal matrix D̂s retains full accuracy only w.r.t. the inactive components:
D̂s,B = Ds,B +O(Ξ−1u) and D̂s,N = Ds,N +O(Ξu).

4.3.1 Solution with HyKKT

We analyze the accuracy achieved when we solve the condensed system (K1)
using HyKKT, and show that the error remains reasonable even for large
values of the regularization parameter γ.

Initial right-hand-side. Let ŝγ := r̄1 + γĜ⊤r̄2. The initial right-hand side

in (11) is evaluated as r̂γ := ĜK̂−1
γ ŝγ − r̄2. The following proposition shows

that despite an expression involving the inverse of the ill-conditioned con-
densed matrix Kγ , the error made in rγ is bounded only by the machine
precision u.

Proposition 3 In floating point arithmetic, the error in the right-hand-side
∆r̂γ satisfies:

∆r̂γ = −∆r̄2 + ĜK̂−1
γ ∆sγ = O(u) . (39)

Proof Using (38), we have

r̄1 + γĜ⊤r̄2 = −r̂1 + γĜ⊤r̂3 + Ĥ⊤(D̂sr̂4 − r̂2
)

= − r̂1︸︷︷︸
O(u)

+ Ĥ⊤
N
(
D̂s,N r̂4,N − r̂2,N

)︸ ︷︷ ︸
O(Ξu)

+ Â⊤
[
D̂s,Br̂4,B − r̂2,B

γr̂3

]
︸ ︷︷ ︸

O(Ξ−1u)

.

The error decomposes as ∆sγ = Y ∆sY +Z∆sZ = UL∆sL+US∆sS . We have
∆sY = O(Ξ−1u) and ∆sZ = O(u). Using (27), we deduce ∆sL = U⊤

L ∆sγ =
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O(Ξ−1u) and ∆sS = U⊤
S ∆sγ = O(u). Using (28) and (32), the error in the

large space ∆sL annihilates in the backsolve:

K−1
γ ∆sγ = ULΣ

−1
L ∆sL + USΣ

−1
S ∆sS = O(u) . (40)

Finally, using (36), we get

ĜK̂−1
γ ∆sγ ≈ Ĝ(I −K−1

γ ∆Kγ)K
−1
γ ∆sγ . (41)

Using (40), the first term is ĜK−1
γ ∆sγ = O(u). We have in addition

GK−1
γ ∆Kγ(K

−1
γ ∆sγ) =

[
GULΣ

−1
L ΓL +GUSΣ

−1
S ΓS

]
(K−1

γ ∆sγ) . (42)

Using again (27): GUL = GY +O(Ξ) and GUS = O(Ξ). Hence GULΣ
−1
L ΓL =

O(1) and GUSΣ
−1
S ΓS = O(1). Using (35), we have K−1

γ ∆G⊤ = O(u), imply-
ing∆GK−1

γ ∆Kγ(K
−1
γ ∆sγ) = O(Ξ−1u2). Assumption 3 implies thatΞ−1u2 ≪

u, proving (39).

Schur-complement operator. The solution of the system (11) involves the Schur
complement Sγ = GK−1

γ G⊤. We show that the Schur complement has a spe-
cific structure that limits the loss of accuracy in the conjugate gradient algo-
rithm.

Proposition 4 Suppose the current primal-dual iterate (p, v) satisfies As-
sumption 3. In exact arithmetic,

Sγ = GY Σ−1
L Y ⊤G⊤ +O(Ξ2) . (43)

Proof Using (32), we have

GK−1
γ G⊤ = GULΣ

−1
L U⊤

L G⊤ +GUSΣ
−1
S U⊤

S G⊤ . (44)

Using (27), we have GUL = GY +O(Ξ), and G = O(1), implying

GULΣ
−1
L U⊤

L G⊤ = GY Σ−1
L Y ⊤G⊤ +O(Ξ2) . (45)

Using again (27), we have GUS = O(Ξ). Hence, GUSΣ
−1
S U⊤

S G⊤ = O(Ξ2),
concluding the proof.

We adapt the previous proposition to bound the error made when evaluating
Ŝγ in floating-point arithmetic.

Proposition 5 Suppose the current primal-dual iterate (p, v) satisfies As-
sumption 3. In floating-point arithmetic,

Ŝγ = Sγ +O(u) . (46)
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Proof We denote Ĝ = G+∆G (with ∆G = O(u)). Then

Ŝγ = ĜK̂−1
γ Ĝ⊤ ,

≈ (G+∆G)
(
K−1

γ −K−1
γ ∆KγK

−1
γ

)
(G+∆G)⊤ ,

≈ Sγ −G
(
K−1

γ ∆KγK
−1
γ

)
G⊤ +K−1

γ ∆G⊤ +∆GK−1
γ .

(47)

The second line is given by (36), the third by neglecting the second-order
errors. Using (35), we get K−1

γ ∆G⊤ = O(u) and ∆GK−1
γ = O(u). Using (37),

we have

G
(
K−1

γ ∆KγK
−1
γ

)
G⊤ = GULΣ

−1
L ΓLΣ

−1
L U⊤

L G⊤ +GUSΣ
−1
S ΓSΣ

−1
S U⊤

S G⊤ .

Using (27), we have GUS = O(Ξ). As Σ−1
S = Θ(1) and ΓS = O(Ξ−1u), we

get GUSΣ
−1
S ΓSΣ

−1
S U⊤

S G⊤ = O(Ξu). Finally, as Σ−1
L = Θ(Ξ) and GUL =

GY +O(Ξ), we have

GULΣ
−1
L ΓLΣ

−1
L U⊤

L G⊤ = GY Σ−1
L ΓLΣ

−1
L Y ⊤G⊤ +O(Ξ2u) . (48)

We conclude the proof by using GY Σ−1
L ΓLΣ

−1
L Y ⊤G⊤ = O(Ξu).

The two error bounds (39) and (46) ensure that we can solve (11) using a
conjugate gradient algorithm, as the errors remain limited in floating-point
arithmetic.

4.3.2 Solution with Lifted KKT system

The equality relaxation strategy used in LiftedKKT removes the equality con-
straints from the optimization problems, simplifying the solution of the con-
densed KKT system to (13). The active Jacobian A reduces to the active
inequalities A = HB, and we recover the original setting presented in [43].
Using the same arguments than in (4.3.1), the error in the right-hand-side is
bounded by O(Ξ−1u) and is in the range space of the active Jacobian A. Using

(32), we can show that the absolute error on d̂x is bounded by O(Ξu). That

implies the descent direction d̂x retains full relative precision close to optimal-
ity. In other words, we can refine the solution returned by the Cholesky solver
accurately using Richardson iterations.

4.3.3 Summary

Numerically, the primal-dual step (d̂x, d̂y) is computed only with an (absolute)
precision εK , greater than the machine precision u (for HyKKT, εK is the
absolute tolerance of the Cg algorithm, for LiftedKKT the absolute tolerance
of the iterative refinement algorithm).

The errors d̂x − dx = O(εK) and d̂y − dy = O(εK) propagate further in

(d̂s, d̂z). According to (K1), we have d̂s = −r̂4 − Ĥd̂x. By continuity, Ĥ =
H +O(u) and r̂4 = r4 +O(u), implying

d̂s = ds +O(εK) . (49)
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Eventually, we obtain d̂z = −r̂2 − D̂sd̂s, giving the following bounds for the
errors in the inactive and active components:

d̂z,B = −r̂2,B − D̂s,Bd̂s,B = dz,B +O(εKΞ−1) ,

d̂z,N = −r̂2,N − D̂s,N d̂s,N = dz,N +O(εKΞ) .
(50)

Most of the error arises in the active components d̂z,B. To limit the loss of
accuracy, the algorithm has to decrease the absolute precision εK as we are
approaching to a local optimum. The impact remains limited if we have only
few active inequality constraints.

5 Numerical results

We have implemented LiftedKKT and HyKKT on the GPU. First, we detail
in §5.1 our implementation and assess in §5.2 the performance on the GPU
of the two hybrid solvers Then, we present in §5.3 the results reported on the
PGLIB OPF benchmark, complemented in §5.4 by the COPS benchmark.

5.1 Implementation

All our implementation uses the Julia language [5]. We have used our local
workstation to generate the results on the CPU, here equipped with an AMD
EPYC 7443 processor (3.2GHz). For the results on the GPU, we have used
an NVIDIA A100 GPU (with CUDA 12.3) on the Polaris testbed at Argonne
National Laboratory 1.

IPM solver. We have implemented the two condensed-space methods in our
nonlinear IPM solver MadNLP [36]. This implementation utilizes the abstrac-
tion AbstractKKTSystem in MadNLP to represent the various formulations of
the KKT linear systems. MadNLP can push most of the IPM algorithm to
the GPU, except for basic IPM operations used for the coordination (e.g., the
filter line-search algorithm). In particular, any operation that involves the ma-
nipulation of array entries is performed by GPU kernels without transferring
data to host memory. We refer to [37] for a detailed description of the GPU
implementation in MadNLP.

Evaluation of the nonlinear models. We use the ExaModels.jl modeling tool [37]
to implement all the nonlinear programs utilized in our benchmark. ExaMod-
els.jl harnesses the sparsity structure and provides custom derivative kernels
for repetitive algebraic subexpressions of the constraints and objective func-
tions to compute first and second-order derivatives on the GPU in parallel [6,
30]. This approach caters to the SIMD architecture of the GPU by assigning
each expression to multiple threads responsible for computing derivatives for
different values.

1 https://www.alcf.anl.gov/polaris

https://www.alcf.anl.gov/polaris
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Linear solvers. We solve the KKT systems assembled within MadNLP us-
ing various sparse linear solvers, chosen based on the KKT formulation (K1,
K2, K3) and the device (CPU, GPU) being utilized. We utilize the following
solvers:

– HSL MA27/MA57: Implement the LBLT factorization on the CPU [15]. It
solves the augmented KKT system (K2). This solver serves as the reference
when running on the CPU.

– CHOLMOD: Implements the Cholesky and LDLT factorizations on the CPU
(using the AMD ordering [1] by default). It factorizes the condensed ma-
trices Kγ and Kτ appearing resp. in (10) and in (13). This solver is used
to assess the performance of the hybrid solvers when running on the CPU.

– cuDSS: Implement Cholesky, LDLT and LU decompositions on an NVIDIA
GPU. We use the LDLT factorization to factorize the ill-conditioned con-
densed matrices Kγ on GPU, as LDLT is more robust than the Cholesky
factorization.

– Krylov.jl: Contains the Cg method used in the Golub & Greif strategy
to solve (11) on both CPU and GPU architectures.

CHOLMOD [9] is shipped with Julia. For the HSL linear solvers, we utilize
libHSL [16] with the Julia interface HSL.jl [28]. HSL MA57 and CHOLMOD
are both compiled with OpenBLAS, a multithreaded version of BLAS and
LAPACK. The Julia package Krylov.jl [27] contains a collection of Krylov
methods with a polymorphic implementation that can be used on both CPU
and GPU architectures.

5.2 Performance analysis on a large-scale instance

We evaluate the performance of each KKT solver on a large-scale OPF in-
stance, taken from the PGLIB benchmark [3]: 78484epigrids. Our formula-
tion with ExaModels has a total of 674,562 variables, 661,017 equality con-
straints and 378,045 inequality constraints. Our previous work has pointed out
that as soon as the OPF model is evaluated on the GPU using ExaModels,
the KKT solver becomes the bottleneck in the numerical implementation [37].

5.2.1 Individual performance of the linear solvers

Subsequently, we evaluate the individual performance of the cuDSS solver
when factorizing the matrix Kγ at the first IPM iteration (here with γ = 107).
We compare the times to perform the symbolic analysis, the factorization and
the triangular solves with those reported in CHOLMOD.

The results are displayed in Table 1. We benchmark the three decom-
positions implemented in cuDSS (Cholesky, LDLT, LU), and assess the ab-
solve accuracy of the solution by computing the infinity norm of the residual
∥Kγx−b∥∞. We observe that the analysis phase is four times slower for cuDSS
compared to CHOLMOD. Fortunately, this operation needs to be computed



Condensed-space methods for nonlinear programming on GPUs 23

only once in IPM, meaning that its cost is amortized if we run many IPM it-
erations. The factorization is about twenty times faster in cuDSS, with a time
almost independent of the algorithm being used. The backward and forward
sweeps are ten times faster: the triangular solves are harder to parallelize on
a GPU. In terms of accuracy, the quality of the solution remains on par with
CHOLMOD, except for the LDLT decomposition which lags behind by at least
two orders of magnitude.

linear solver analysis (s) factorization (s) backsolve (s) abs. accuracy
CHOLMOD 1.18 8.57× 10−1 1.27× 10−1 3.60× 10−13

cuDSS-Cholesky 4.52 3.75× 10−2 1.32× 10−2 2.64× 10−13

cuDSS-LU 4.50 3.72× 10−2 1.49× 10−2 2.58× 10−13

cuDSS-LDLT 4.50 4.07× 10−2 1.55× 10−2 7.62× 10−11

Table 1 Comparing the performance of cuDSS with CHOLMOD. The matrix Kγ is sym-
metric positive definite, with a size n = 674, 562. The matrix is extremely sparse, with only
7, 342, 680 non-zero entries (0.002%).

5.2.2 Tuning the Golub & Greif strategy

In Figure 1 we depict the evolution of the number of Cg iterations and relative
accuracy as we increase the parameter γ from 104 to 108 in HyKKT.

On the algorithmic side, we observe that the higher the regularization γ,
the faster the Cg algorithm: we decrease the total number of iterations spent
inCg by a factor of 10. However, we have to pay a price in term of accuracy: for
γ > 108 the solution returned by the linear solver is not accurate enough and
the IPM algorithm has to proceed to additional primal-dual regularizations.

On the numerical side, the table in Figure 1 compares the time spent in
the IPM solver on the CPU (using CHOLMOD) and on the GPU (using the
solver cuDSS). Overall cuDSS is faster than CHOLMOD, leading to a 4x-8x
speed-up in the total IPM solution time. We note also that the assembly of
the condensed matrix Kγ parallelizes well on the GPU, with a reduction in
the assembly time from ≈ 8s on the CPU to ≈ 0.2s on the GPU.

5.2.3 Tuning the equality relaxation strategy

We now analyze the numerical performance of LiftedKKT (§3.2). The method
solves the KKT system (13) using a direct solver. The parameter τ used in the
equality relaxation (12) is set equal to the IPM tolerance εtol (in practice, it
does not make sense to set a parameter τ below IPM tolerance as the inequality
constraints are satisfied only up to a tolerance ±εtol in IPM).

We compare in Table 5.2.3 the performance obtained by LiftedKKT as we
decrease the IPM tolerance εtol. We display both the runtimes on the CPU
(using CHOLMOD-LDLT) and on the GPU (using cuDSS-LDLT). The slacks
associated with the relaxed equality constraints are converging to a value below
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CHOLMOD-LDLT (CPU) cuDSS-LDLT (CUDA)
γ # it cond. (s) Cg (s) linsol (s) IPM (s) # it cond. (s) Cg (s) linsol (s) IPM (s)

104 96 8.15 463.86 536.83 575.06 96 0.17 113.27 114.52 124.00
105 96 8.33 163.35 235.61 273.36 96 0.17 53.37 54.62 64.39
106 96 8.22 68.69 139.86 177.24 96 0.17 14.53 15.78 25.39
107 96 8.24 35.12 107.17 144.78 96 0.17 7.95 9.20 18.41
108 96 7.89 21.68 93.85 131.33 96 0.17 5.36 6.62 15.90
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Fig. 1 Above: Decomposition of IPM solution time across (a) condensation time (cond.),
(b) Cg time, (c) total time spent in the linear solver (linsol.) and (d) total time spent in
IPM solver (IPM). Below: Impact of γ on the total number of Cg iterations and the norm
of the relative residual at each IPM iteration. The peak observed in the norm of the relative
residual corresponds to the primal-dual regularization performed inside the IPM algorithm,
applied when the matrix Kγ is not positive definite.

2τ , leading to highly ill-conditioned terms in the diagonal matrices Ds. As a
consequence, the conditioning of the matrixKτ in (13) can increase above 1018,
leading to a nearly singular linear system. We observe cuDSS-LDLT is more
stable than CHOLMOD: the factorization succeeds, and the loss of accuracy
caused by the ill-conditioning is tamed by the multiple Richardson iterations
that reduces the relative accuracy in the residual down to an acceptable level.
As a result, cuDSS can solve the problem to optimality in ≈ 20s, a time
comparable with HyKKT (see Figure 1).

CHOLMOD-LDLT (CPU) cuDSS-LDLT (CUDA)
εtol #it time (s) #it time (s) accuracy
10−4 115 268.2 114 19.9 1.2× 10−2

10−5 210 777.8 113 30.4 1.2× 10−3

10−6 102 337.5 109 25.0 1.2× 10−4

10−7 108 352.9 104 20.1 1.2× 10−5

10−8 - - 105 20.3 1.2× 10−6

Table 2 Performance of the equality-relaxation strategy as we decrease the IPM tolerance
εtol. The table displays the wall time on the CPU (using CHOLMOD-LDLT) and on the
GPU (using cuDSS-LDLT).

5.2.4 Breakdown of the time spent in one IPM iteration

We decompose the time spent in a single IPM iteration for LiftedKKT and
HyKKT. As a reference running on the CPU, we show the time spent in the
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solver HSL MA27. We observe that HSL MA57 is slower than HSL MA27, as
the OPF instances are super-sparse. Hence, the block elimination algorithm
implemented in HSL MA57 is not beneficial there 2.

When solving the KKT system, the time can be decomposed into: (1)
assembling the KKT system, (2) factorizing the KKT system, and (3) com-
puting the descent direction with triangular solves. As depicted in Figure 2, we
observe that constructing the KKT system represents only a fraction of the
computation time, compared to the factorization and the triangular solves.
Using cuDSS-LDLT, we observe speedups of 30x and 15x in the factorization
compared to MA27 and CHOLMOD running on the CPU. Once the KKT sys-
tem is factorized, computing the descent direction with LiftedKKT is faster
than with HyKKT (0.04s compared to 0.13s) as HyKKT has to run a Cg
algorithm to solve the Schur complement system (11), leading to additional
backsolves in the linear solver.

build (s) factorize (s) backsolve (s) accuracy
HSL MA27 3.15× 10−2 1.22× 10−0 3.58× 10−1 5.52× 10−7

LiftedKKT (CPU) 8.71× 10−2 6.08× 10−1 2.32× 10−1 3.73× 10−9

HyKKT (CPU) 7.97× 10−2 6.02× 10−1 7.30× 10−1 3.38× 10−3

LiftedKKT (CUDA) 2.09× 10−3 4.37× 10−2 3.53× 10−2 4.86× 10−9

HyKKT (CUDA) 1.86× 10−3 3.38× 10−2 1.35× 10−1 3.91× 10−3
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LiftedKKT (CPU)
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Fig. 2 Breakdown of the time spent in one IPM iteration for different linear solvers, when
solving 78484epigrids

5.3 Benchmark on OPF instances

We run a benchmark on difficult OPF instances taken from the PGLIB bench-
mark [3]. We compare LiftedKKT and HyKKT with HSL MA27. The results
are displayed in Table 3, for an IPM tolerance set to 10−6. Regarding HyKKT,
we set γ = 107 following the analysis in §5.2.2. The table displays the time
spent in the initialization, the time spent in the linear solver and the total

2 Personal communication with Iain Duff.
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solving time. We complement the table with a Dolan & Moré performance
profile [12] displayed in Figure 3. Overall, the performance of HSL MA27 on
the CPU is consistent with what was reported in [3].

On the GPU, LiftedKKT+cuDSS is faster than HyKKT+cuDSS on small
and medium instances: indeed, the algorithm does not have to run a Cg al-
gorithm at each IPM iteration, limiting the number of triangular solves per-
formed at each iteration. Both LiftedKKT+cuDSS and HyKKT+cuDSS are
significantly faster than HSL MA27. HyKKT+cuDSS is slower when solv-
ing 8387 pegase, as on this particular instance the parameter γ is not set
high enough to reduce the total number of Cg iterations, leading to a 4x
slowdown compared to LiftedKKT+cuDSS. Nevertheless, the performance of
HyKKT+cuDSS is better on the largest instances, with almost an 8x speed-up
compared to the reference HSL MA27.

The benchmark presented in Table 3 has been generated using a NVIDIA
A100 GPUs (current selling price: $10k). We have also compared the per-
formance with cheaper GPUs: a NVIDIA A1000 (a laptop-based GPU, 4GB
memory) and a NVIDIA A30 (24GB memory, price: $5k). As a comparison,
the selling price of the AMD EPYC 7443 processor we used for the benchmark
on the CPU is $1.2k. The results are displayed in Figure 4. We observe that
the performance of the A30 and the A100 are relatively similar. The cheaper
A1000 GPU is already faster than HSL MA27 running on the CPU, but is not
able to solve the largest instance as it is running out of memory.

HSL MA27 LiftedKKT+cuDSS HyKKT+cuDSS
Case it init lin total it init lin total it init lin total
89 pegase 32 0.00 0.02 0.03 29 0.03 0.12 0.24 32 0.03 0.07 0.22
179 goc 45 0.00 0.03 0.05 39 0.03 0.19 0.35 45 0.03 0.07 0.25
500 goc 39 0.01 0.10 0.14 39 0.05 0.09 0.26 39 0.05 0.07 0.27
793 goc 35 0.01 0.12 0.18 57 0.06 0.27 0.52 35 0.05 0.10 0.30
1354 pegase 49 0.02 0.35 0.52 96 0.12 0.69 1.22 49 0.12 0.17 0.50
2000 goc 42 0.03 0.66 0.93 46 0.15 0.30 0.66 42 0.16 0.14 0.50
2312 goc 43 0.02 0.59 0.82 45 0.14 0.32 0.68 43 0.14 0.21 0.56
2742 goc 125 0.04 3.76 7.31 157 0.20 1.93 15.49 - - - -
2869 pegase 55 0.04 1.09 1.52 57 0.20 0.30 0.80 55 0.21 0.26 0.73
3022 goc 55 0.03 0.98 1.39 48 0.18 0.23 0.66 55 0.18 0.23 0.68
3970 goc 48 0.05 1.95 2.53 47 0.26 0.37 0.87 48 0.27 0.24 0.80
4020 goc 59 0.06 3.90 4.60 123 0.28 1.75 3.15 59 0.29 0.41 1.08
4601 goc 71 0.09 3.09 4.16 67 0.27 0.51 1.17 71 0.28 0.39 1.12
4619 goc 49 0.07 3.21 3.91 49 0.34 0.59 1.25 49 0.33 0.31 0.95
4837 goc 59 0.08 2.49 3.33 59 0.29 0.58 1.31 59 0.29 0.35 0.98
4917 goc 63 0.07 1.97 2.72 55 0.26 0.55 1.18 63 0.26 0.34 0.94
5658 epigrids 51 0.31 2.80 3.86 58 0.35 0.66 1.51 51 0.35 0.35 1.03
7336 epigrids 50 0.13 3.60 4.91 56 0.45 0.95 1.89 50 0.43 0.35 1.13
8387 pegase 74 0.14 5.31 7.62 82 0.59 0.79 2.30 75 0.58 7.66 8.84
9241 pegase 74 0.15 6.11 8.60 101 0.63 0.88 2.76 71 0.63 0.99 2.24
9591 goc 67 0.20 11.14 13.37 98 0.63 2.67 4.58 67 0.62 0.74 1.96
10000 goc 82 0.15 6.00 8.16 64 0.49 0.81 1.83 82 0.49 0.75 1.82
10192 epigrids 54 0.41 7.79 10.08 57 0.67 1.14 2.40 54 0.67 0.66 1.81
10480 goc 71 0.24 12.04 14.74 67 0.75 0.99 2.72 71 0.74 1.09 2.50
13659 pegase 63 0.45 7.21 10.14 75 0.83 1.05 2.96 62 0.84 0.93 2.47
19402 goc 69 0.63 31.71 36.92 73 1.42 2.28 5.38 69 1.44 1.93 4.31
20758 epigrids 51 0.63 14.27 18.21 53 1.34 1.05 3.57 51 1.35 1.55 3.51
30000 goc 183 0.65 63.02 75.95 - - - - 225 1.22 5.59 10.27
78484 epigrids 102 2.57 179.29 207.79 101 5.94 5.62 18.03 104 6.29 9.01 18.90

Table 3 OPF benchmark, solved with a tolerance tol=1e-6.
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Fig. 3 Performance profile for the PGLIB OPF benchmark, solved with a tolerance
tol=1e-6.
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Fig. 4 Comparing the performance obtained with various GPUs on three different OPF
instances. We have used HyKKT to generate the results.

5.4 Benchmark on COPS instances

We have observed in the previous section that both LiftedKKT and HyKKT
outperform HSL MA27 when running on the GPU. However, the OPF in-
stances are specific nonlinear instances. For that reason, we complement our
analysis by looking at the performance of LiftedKKT and HyKKT on large-
scale COPS instances [13]. We look at the performance we get on the COPS
instances used in the Mittelmann benchmark [25]. To illustrate the hetero-
geneity of the COPS instances, we display in Figure 5 the sparsity pattern of
the condensed matrices Kγ (10) for one OPF instance and for multiple COPS
instances. We observe that some instances (bearing) have a sparsity pattern
similar to the OPF instance on the left, whereas some are fully dense (elec).
On the opposite, the optimal control instances (marine, steering) are highly
sparse and can be reordered efficiently using AMD ordering [1].
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The results of the COPS benchmark are displayed in Table 4. HSL MA57
gives better results than HSL MA27 for the COPS benchmark, and for that
reason we have decided to replace HSL MA27 by HSL MA57. As expected,
the results are different than on the OPF benchmark. We observe that Lift-
edKKT+cuDSS and HyKKT+cuDSS outperform HSL MA57 on the dense
instance elec (20x speed-up) and bearing — an instance whose sparsity pat-
tern is similar to the OPF. In the other instances, LiftedKKT+cuDSS and
HyKKT+cuDSS on par with HSL MA57 and sometimes even slightly slower
(rocket and pinene).

Fig. 5 Sparsity patterns for one OPF instance and for various COPS problems. The first
row displays the sparsity pattern of Kγ , after AMD reordering. The second row displays the
sparsity pattern of Kγ after Metis reordering.

HSL MA57 LiftedKKT+cuDSS HyKKT+cuDSS
n m it init lin total it init lin total it init lin total

bearing 400 162k 2k 17 0.14 3.42 4.10 14 0.85 0.07 1.13 14 0.78 0.76 1.74
camshape 6400 6k 19k 38 0.02 0.18 0.29 35 0.05 0.03 0.19 38 0.05 0.04 0.23
elec 400 1k 0.4k 185 0.54 24.64 33.02 273 0.46 0.97 20.01 128 0.48 0.75 4.16
gasoil 3200 83k 83k 37 0.36 4.81 5.81 21 0.54 0.24 1.40 20 0.59 0.21 1.35
marine 1600 51k 51k 13 0.05 0.41 0.50 33 0.38 0.58 1.29 13 0.37 0.12 0.62
pinene 3200 160k 160k 12 0.11 1.32 1.60 21 0.87 0.16 1.52 11 0.90 0.84 2.02
robot 1600 14k 10k 34 0.04 0.33 0.45 35 0.20 0.07 0.76 34 0.21 0.08 0.80
rocket 12800 51k 38k 23 0.12 1.73 2.16 37 0.74 0.06 2.49 24 0.25 1.70 3.12
steering 12800 64k 51k 19 0.25 1.49 1.93 18 0.44 0.06 1.64 18 0.46 0.07 1.83
bearing 800 643k 3k 13 0.94 14.59 16.86 14 3.31 0.18 4.10 12 3.32 1.98 5.86
camshape 12800 13k 38k 34 0.02 0.34 0.54 33 0.05 0.02 0.16 34 0.06 0.03 0.19
elec 800 2k 0.8k 354 2.36 337.41 409.57 298 2.11 2.58 24.38 184 1.81 2.40 16.33
gasoil 12800 333k 333k 20 1.78 11.15 13.65 18 2.11 0.98 5.50 22 2.99 1.21 6.47
marine 12800 410k 410k 11 0.36 3.51 4.46 146 2.80 25.04 39.24 11 2.89 0.63 4.03
pinene 12800 640k 640k 10 0.48 7.15 8.45 21 4.50 0.99 7.44 11 4.65 3.54 9.25
robot 12800 115k 77k 35 0.54 4.63 5.91 33 1.13 0.30 4.29 35 1.15 0.27 4.58
rocket 51200 205k 154k 31 1.21 6.24 9.51 37 0.83 0.17 8.49 30 0.87 2.67 10.11
steering 51200 256k 205k 27 1.40 9.74 13.00 15 1.82 0.19 5.41 28 1.88 0.56 11.31

Table 4 COPS benchmark , solved with a tolerance tol=1e-6

6 Conclusion

This article moves one step further in the solution of generic nonlinear pro-
grams on GPU architectures. We have compared two approaches to solve the
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KKT systems arising at each interior-point iteration, both based on a con-
densation procedure. Despite the formation of an ill-conditioned matrix, our
theoretical analysis shows that the loss of accuracy is benign in floating-point
arithmetic, thanks to the specific properties of the interior-point method. Our
numerical results show that both methods are competitive to solve large-scale
nonlinear programs. Compared to the state-of-the-art HSL linear solvers, we
achieve a 10x speed-up on large-scale OPF instances and quasi-dense instances
(elec). While the results are more varied across the instances of the COPS
benchmark, our performance consistently remains competitive with HSL.

Looking ahead, our future plans involve enhancing the robustness of the
two condensed KKT methods, particularly focusing on stabilizing convergence
for small tolerances (below 10−8). It is worth noting that the sparse Cholesky
solver can be further customized to meet the specific requirements of the
interior-point method [44]. Enhancing the two methods on the GPU would
enable the resolution of large-scale problems that are currently intractable on
classical CPU architectures such as multiperiod and security-constrained OPF
problems.

7 Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, a
U.S. Department of Energy (DOE) Office of Science user facility at Argonne
National Laboratory and is based on research supported by the U.S. DOE
Office of Science-Advanced Scientific Computing Research Program, under
Contract No. DE-AC02-06CH11357.

References

1. Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: AMD, an approximate mini-
mum degree ordering algorithm. ACM Transactions on Mathematical Software (TOMS)
30(3), 381–388 (2004)

2. Amos, B., Kolter, J.Z.: Optnet: Differentiable optimization as a layer in neural networks.
In: International Conference on Machine Learning, pp. 136–145. PMLR (2017)

3. Babaeinejadsarookolaee, S., Birchfield, A., Christie, R.D., Coffrin, C., DeMarco, C.,
Diao, R., Ferris, M., Fliscounakis, S., Greene, S., Huang, R., et al.: The power
grid library for benchmarking AC optimal power flow algorithms. arXiv preprint
arXiv:1908.02788 (2019)

4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta
numerica 14, 1–137 (2005)

5. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to nu-
merical computing. SIAM Review 59(1), 65–98 (2017). DOI 10.1137/141000671

6. Bischof, C., Griewank, A., Juedes, D.: Exploiting parallelism in automatic differen-
tiation. In: Proceedings of the 5th international conference on Supercomputing, pp.
146–153 (1991)

7. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Nec-
ula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX: compos-
able transformations of Python+NumPy programs (2018). URL http://github.com/

google/jax

http://github.com/google/jax
http://github.com/google/jax


30 François Pacaud et al.

8. Cao, Y., Seth, A., Laird, C.D.: An augmented lagrangian interior-point approach for
large-scale NLP problems on graphics processing units. Computers & Chemical Engi-
neering 85, 76–83 (2016)

9. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD,
supernodal sparse cholesky factorization and update/downdate. ACM Transactions on
Mathematical Software (TOMS) 35(3), 1–14 (2008)

10. Curtis, F.E., Huber, J., Schenk, O., Wächter, A.: A note on the implementation of
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