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GPU-accelerated dynamic nonlinear optimization with ExaModels and
MadNLP

François Pacaud and Sungho Shin

Abstract— We investigate the potential of Graphics Process-
ing Units (GPUs) to solve large-scale nonlinear programs with
a dynamic structure. Using ExaModels, a GPU-accelerated
automatic differentiation tool, and the interior-point solver
MadNLP, we significantly reduce the time to solve dynamic
nonlinear optimization problems. The sparse linear systems
formulated in the interior-point method is solved on the GPU
using a hybrid solver combining an iterative method with a
sparse Cholesky factorization, which harness the newly released
NVIDIA cuDSS solver. Our results on the classical distillation
column instance show that despite a significant pre-processing
time, the hybrid solver allows to reduce the time per iteration
by a factor of 25 for the largest instance.

I. INTRODUCTION

There is a strong interest in using high-performance com-
puting for accelerating the solution of dynamic nonlinear
programs, as this is critical for Nonlinear Model Predictive
Control (NMPC) and optimal control applications [1], [2].
It is well known that for problems with a dynamic struc-
ture, the Newton step is equivalent to a linear-quadratic
problem, solvable using dynamic programming or Riccati
recursions [3]. By doing so, the method exploits the dy-
namic structure explicitly. Alternatively, one can leverage the
structure implicitly inside a sparse direct solver, in charge
of finding an appropriate ordering to reduce the fill-in in
the sparse factorization [4]. That kind of many-degrees-
of-freedom approaches are known to scale better with the
problem’s size.

A. Related works

When solving generic large-scale nonlinear programs, the
two bottlenecks are the computation of the Newton step
and the evaluation of the derivatives. On the one hand,
the solution of the Newton step can be accelerated either
by exploiting the structure explicitly or by using efficient
sparse linear algebra routines [5], [6], [7]. On the other
hand, efficient automatic differentiation routines have been
introduced, which now evaluate the first and second-order
derivatives in a vectorized fashion for performance [8]. As
a result, the dynamic optimization problem can be solved
with near real-time performance [9] when coupled with an
optimization solver [10], [11], [12].

With their focus on embedded applications, the solvers
listed in the previous paragraph have been heavily optimized
on CPU architectures, going as far as using dedicated linear
algebra routines [13]. Aside, NVIDIA has recently released
the NVIDIA Jetson GPU, developed primarily for embedded
applications. Hence, solving MPC problems on GPU/SIMD

architectures is gaining more traction [14], with new appli-
cations in robotics and autonomous vehicles [15], [16], [17].

B. Contributions

In this article, we investigate the capability of the modeler
ExaModels and the interior-point solver MadNLP [18] —
both leveraging GPU acceleration — to solve nonlinear
programs with dynamic structure. MadNLP implements a
filter line-search interior-point method [19], which results
in solving a sequence of sparse indefinite linear systems
with a saddle-point structure [20]. The linear systems are in-
creasingly ill-conditioned as we are approaching the solution,
preventing a solution with Krylov-based solvers. The alterna-
tive is to use an inertia-revealing sparse direct solver, gener-
ally implementing the Duff-Reid factorization [21]. Unfortu-
nately, it is well known that such factorization is not practical
on the GPU, as they rely on expensive numerical pivoting
operations for stability [22], [23]. The usual workaround is
to densify the solution of the linear systems using a null-
space method, as was investigated in our previous work [24],
[25]. Instead, we propose to solve the linear systems with a
hybrid sparse linear solver mixing a sparse Cholesky routine
with an iterative method. We present two alternative methods
for the hybrid solver. On the one hand, Lifted-KKT [18]
uses an equality relaxation strategy to reduce the indefinite
linear system down to a sparse positive definite matrix,
factorizable using Cholesky factorization. On the other hand,
HyKKT [26] uses the Golub and Greif method [27] (itself
akin to an Augmented Lagrangian method) to solve the linear
system with an inner direct solve used in conjunction with a
conjugate gradient. Both methods are fully implementable on
the GPU and rely only on basic linear algebra routines. We
show on the classical distillation column instance [7] that
despite a significant pre-processing time, both Lifted-KKT
and HyKKT reduce the time per IPM iteration by a factor
of 25 and 18 respectively, compared to the HSL solvers.

II. PROBLEM FORMULATION

We formulate the dynamic nonlinear optimization problem
as a generic nonlinear program. Let n the number of vari-
ables. The objective is encoded by a function f : Rn → R,
the dynamic and algebraic constraints by a function g :
Rn → Rme and the remaining inequality constraints by a
function h : Rn → Rmi . By introducing slack variables
s ≥ 0, the problem writes:

min
x∈Rn,s∈Rmi

f(x)

s.t. g(x) = 0 , h(x) + s = 0 , s ≥ 0.
(1)



We note y ∈ Rme (resp. z ∈ Rmi ) the multiplier attached
to the equality constraints (resp. the inequality constraints).
The Lagrangian of (1) is defined as

L(x, s, y, z, ν) = f(x)+y⊤g(x)+z⊤(h(x)+s)−ν⊤s . (2)

A primal-dual variable w := (x, s, y, z, ν) is solution of
Problem (1) if it satisfies the Karush-Kuhn-Tucker (KKT)
equations 

∇xL(x, s, y, z, ν) = 0 ,

z − ν = 0

g(x) = 0 ,

h(x) + s = 0 ,

0 ≤ s ⊥ ν ≥ 0 ,

(3)

where we use the symbol ⊥ to denote the complementarity
constraints si × νi = 0 for i = 1, · · · ,mi.

We note the active set B(x) = {i = 1, · · · ,mi | hi(x) =
0}, and denote the active Jacobian as A(x) =[
∇xg(x)

⊤ ∇xhB(x)
⊤]⊤ with hB(x) := {hi(x)}i∈B(x). We

suppose the following assumption holds at a primal-dual
solution w⋆ := (x⋆, s⋆, y⋆, z⋆, ν⋆) of (1).

• Linear Independance Constraint Qualification (LICQ):
the active Jacobian A(x⋆) is full row-rank.

• Strict complementarity (SCS): for every i ∈ B(x⋆),
z⋆i > 0.

• Second-order sufficiency (SOSC): for every v ∈
null(A(x⋆)), v⊤(∇2

xxL(w
⋆))v > 0.

III. INTERIOR-POINT METHOD

The primal-dual interior-point method (IPM) reformulates
the non-smooth KKT conditions (3) using an homotopy
method [28, Chapter 19]. For a barrier parameter µ > 0, IPM
solves the smooth system of nonlinear equations Fµ(w) = 0
for (s, ν) > 0 and Fµ(·) defined as

Fµ(w) =


∇xL(x, s, y, z, ν)

g(x)
h(x) + s
Sν − µemi

 . (4)

We set S = diag(s), V = diag(ν), and emi
∈ Rmi a vector

filled with 1. As we drive µ → 0, we recover the original
KKT conditions (3).

A. Newton method

The system of nonlinear equations (4) is solved using
a Newton method. The primal-dual variable is updated as
wk+1 = wk + αdk, where dk is a descent direction solution
of the linear system

∇wFµ(wk)dk = −Fµ(wk) . (5)

The step α is computed using a fraction-to-boundary rule,
guaranteeing that (s, ν) > 0 throughout the iterations [28].

B. Augmented KKT system

We note the local sensitivities Wk = ∇2
xxL(wk) ∈ Rn×n,

Hk = ∇xh(xk) ∈ Rmi×n and Gk = ∇xg(xk) ∈ Rme×n.
The solution of the linear system (5) translates to the
augmented KKT system:

Kaug︷ ︸︸ ︷
Wk 0 G⊤

k H⊤
k

0 Ds 0 I
Gk 0 0 0
Hk I 0 0



dx
ds
dy
dz

 = −


r1
r2
r3
r4

 , (6)

with the diagonal matrix Ds = S−1
k Vk. The right-hand-sides

are given respectively by r1 = ∇f(xk) + ∇g(xk)
⊤yk +

∇h(xk)
⊤zk + µX−1e, r2 = zk + µS−1e, r3 = g(xk), r4 =

h(xk) + sk.
The system (6) is sparse, symmetric and exhibits a saddle-

point structure. Most nonlinear optimization solvers solve the
system (6) using a sparse LBL factorization [21]. Using [20,
Theorem 3.4], the system (6) is invertible if the Jacobian

Jk =

[
Gk 0
Hk I

]
is full row-rank and

null
([

Wk 0
0 Ds

])
∩ null

([
Gk 0
Hk I

])
= {0} . (7)

To ensure (7) holds, the solver checks the inertia In(Kaug)
(the tuple (n+, n0, n−) encoding respectively the number of
positive, null and negative eigenvalues in Kaug). If

In(Kaug) = (n+mi, 0,mi +me) , (8)

then the system Kaug is invertible and the solution of the
system (6) is a descent direction. Otherwise, the solver
regularizes (6) using two parameters (δx, δc) > 0 and solves

Wk + δxI 0 G⊤
k H⊤

k

0 Ds + δxI 0 I
Gk 0 −δcI 0
Hk I 0 −δcI

 . (9)

The parameter (δx, δc) are computed so as the regular-
ized system satisfies (8). There exists inertia-free variants
for IPM [29], but experimentally, inertia-based method are
known to converge in fewer iterations.

C. IPM and optimal control

IPM is a standard method to solve MPC and optimal
control problems [6]. In particular, if (1) encodes a problem
with a dynamic structure, the Hessian Wk and the Jacobian
Hk are block diagonal, the Jacobian Gk playing the role of
the coupling matrix.

There exist interesting refinements of the IPM method for
problems with a dynamic structure [12]. Notably:

• The primal regularization δx can be computed recur-
sively using dynamic programming, in a way that keeps
the primal solution of the system (6) intact [30].

• Similarly, the dual regularization δc can be refined to
take into account the problem’s structure, implicitly
(inside the linear solver [31]) or explicitly (using exact
penalty [32]).



IV. CONDENSED KKT SYSTEM
Solving the augmented KKT system (6) is numerically

demanding, and is often the computational bottleneck in
IPM. Furthermore, the sparse LBL factorization is known
to be non trivial to parallelize, as it relies on extensive
numerical pivoting operations [23]. Fortunately, the KKT
system (6) can be reduced down to a positive definite matrix,
whose factorization can be computed efficiently using a
Cholesky factorization.

First, we exploit the structure of the system (6) using a
condensation step1. The system (6) is reduced by removing
the blocks associated to the slack ds and to the inequality
multiplier dz . We obtain the equivalent condensed KKT
system,

Kcond︷ ︸︸ ︷[
Kk G⊤

k

Gk 0

] [
dx
dy

]
= −

[
r1 +H⊤

k (Dsr4 − r2)
r3

]
, (10)

with the condensed matrix Kk := Wk + δx + H⊤
k DsHk.

Using the solution of the system (10), we recover the updates
on the slacks and inequality multipliers with ds = −r4 −
Hkdx and dz = −r2 − Dsds. We note that the condensed
matrix Kk retains the block structure of the Hessian Wk and
Jacobian Hk.

Using Haynsworth’s inertia additivity formula, we have
the equivalence

In(Kaug) = (n+mi, 0,mi +me) ⇐⇒
In(Kcond) = (n, 0,me) . (11)

Usually, the solver uses a sparse LBL factorization to solve
the KKT system Kaug or Kcond. Here, we move one step
further and reduce the condensed KKT system (10) down
to a (sparse) positive definite matrix, using either Lifted-
KKT [18] or HyKKT [26].

A. Solution 1: Lifted-KKT
We observe in (10) that without equality constraints, we

obtain a n × n system which is guaranteed to be positive
definite if the primal regularization parameter δx is chosen
appropriately. Hence, we relax the equality constraints in (1)
using a small relaxation parameter τ > 0, and solve the
relaxed problem

min
x∈Rn

f(x) s.t. − τ ≤ g(x) ≤ τ , h(x) ≤ 0 . (12)

The problem (12) has only inequality constraints. After
introducing slack variables, the condensed KKT system (10)
reduces to

Kkdx = −r1 −H⊤
k (Dsr4 − r2) . (13)

Using inertia correction method, the parameter δx is set to a
value high enough to render the matrix Kk positive definite.
As a result, it can be factorized efficiently using a sparse
Cholesky method.

1Here, the condensation removes the blocks associated to the slacks and
the inequalities in the KKT system. As such, it has a different meaning than
the condensing procedure used in model predictive control, which eliminates
the state variables at all time except at 0 to obtain a dense KKT system [12].

B. Solution 2: HyKKT

A substitute method is to exploit directly the structure of
the condensed KKT system (10), without reformulating the
initial problem (1). To do so, we observe that if Kk were
positive definite, the solution of the system (10) can be evalu-
ated using the Schur complement GkK

−1
k G⊤

k . Unfortunately
the original problem (1) is nonconvex: we have to convexify
it using an Augmented Lagrangian technique. For γ > 0, we
note the KKT system (10) is equivalent to[

Kk + γG⊤
k Gk G⊤

k

Gk 0

] [
dx
dy

]
= −

[
rγ
r3

]
. (14)

with rγ := r1 +H⊤
k (Dsr4 − r2) + γG⊤

k r3.
We note Z a basis of the null-space of the Jacobian Gk.

We know that if Z⊤KkZ is positive definite and Gk is
full row-rank, then there exists a threshold value γ such
that for all γ ≥ γ, Kγ := Kk + γG⊤

k Gk is positive
definite [33]. This fact is exploited in the Golub and Greif
method [27], which has been recently revisited in [26]. If
Kγ is positive definite, we can solve the system (14) using
a Schur-complement method, by computing the dual descent
direction dy as solution of

(GkK
−1
γ G⊤

k )dy = r3 −GkK
−1
γ rγ . (15)

Then, we recover the primal descent direction as Kγdx =
rγ − G⊤

k dy . The method is tractable for two main reasons.
First, the matrix Kγ is positive definite, meaning it can be
factorized efficiently without numerical pivoting. Second, the
Schur complement system (15) can be solved using a conju-
gate gradient algorithm converging in only a few iterations.
In fact, the eigenvalues of Sγ := GkK

−1
γ G⊤

k converge to
1
γ as γ → +∞ [26], implying that the conditioning of Sγ

converges to 1 (a setting particularly favorable for iterative
methods).

However, the conditioning of Kγ increases with the pa-
rameter γ and the values in the diagonal matrix Ds. Fortu-
nately, the impact of the ill-conditioning remains limited in
IPM, and we can recover accurate solution when solving the
system (15) (see e.g. [34]).

V. IMPLEMENTATION

We have implemented the algorithm in the Julia language,
using the modeler ExaModels and the interior-point solver
MadNLP [18]. Except for a few exceptions, all the array
data is exclusively resident on the device memory, and the
algorithm has been designed to run fully on the GPU to avoid
expensive data transfers between the host and the device.

A. Evaluation of the model with ExaModels

Despite being nonlinear, the problem (1) usually has a
highly repetitive structure that eases its evaluation. CasADi
allows for fast evaluation of problems with dynamic struc-
tures [8] but is not compatible with GPU. Instead, we use
the modeler ExaModels [18], which detects the repeated
patterns inside a nonlinear program to evaluate them in
a vectorized fashion using SIMD parallelism. Using the
multiple dispatch feature of Julia, ExaModels generates



highly efficient derivative computation code, compiled for
each computational pattern found in the model. Derivative
evaluation is implemented via array and kernel programming
in the Julia Language, using the wrapper CUDA.jl to dispatch
the evaluation on the GPU.

B. Hybrid linear solver

The two KKT solvers introduced in §IV, Lifted-KKT
and HyKKT, both require a sparse Cholesky factoriza-
tion and an iterative routine. We use the sparse Cholesky
solver cuDSS [35], recently released by NVIDIA. The most
expensive operation in cuDSS is the computation of the
symbolic factorization. However, it is important to note
that the symbolic factorization can be only computed once
and refactorized efficiently if the matrix’s sparsity pattern
remains the same. This setting is particularly favorable for
IPM, as the sparsity pattern of the condensed matrix Kk

is fixed throughout the iterations. Furthermore, within MPC
framework, the symbolic factorization can be performed
offline, and thus, does not affect the online computation time.

Lifted-KKT factorizes the matrix Kk using cuDSS, and
uses the resulting factor to solve the linear system (13)
using a backsolve. The matrix Kk becomes increasingly ill-
conditioned as we approach the solution. Hence, it has to be
refined afterwards using an iterative refinement algorithm,
to increase the accuracy of the descent direction. We use
Richardson iterations in the iterative refinement, as in [19].
Lifted-KKT sets the relaxation parameter to τ = 10−6.

HyKKT also factorizes the matrix Kγ with cuDSS. The
resulting factor is used afterwards to evaluate the residual
rγ and solve the Schur complement system (15) using
a conjugate gradient algorithm (we only evaluate matrix-
vector products Sγx to avoid computing the full matrix Sγ).
HyKKT leverages the conjugate gradient algorithm imple-
mented in the GPU-accelerated library Krylov.jl [36] to solve
the system (15) entirely on the GPU. As the conditioning of
the Schur complement Sγ improves with the parameter γ, the
CG method converges in less than 10 iterations on average,
and does not require a preconditioner. In practice, we set
γ = 107.

C. GPU-accelerated interior-point solver

The two KKT solvers Lifted-KKT and HyKKT have
been implemented inside MadNLP [18], a nonlinear solver
implementing the filter line-search interior-point method [19]
in pure Julia. MadNLP builds upon the library CUDA.jl to
dispatch the operations seamlessly on the GPU, and leverages
the libraries cuSPARSE and cuBLAS for basic linear algebra
operations. The assembling of the two matrices Kk and Kγ

occurs entirely on the GPU, using a custom GPU kernel.

VI. NUMERICAL RESULTS

We assess the performance of Lifted-KKT and HyKKT
on the GPU, by comparing them with the performance we
obtain with the HSL solvers ma27 and ma57 on the CPU.

A. Optimization of a distillation column

As a test case, we use the classical distillation column
instance from [7], here implemented with ExaModels. The
size of the discretization grid is parameterized by N . The
distillation column has 32 trays. The vapor-liquid equilibrium
equations are encoded with algebraic equations, the evolu-
tion of the material balances on each tray with differential
equations. We note α = 1.6 the constant relative volatility,
Lt the liquid flow rate in the rectification section, St the
liquid flow rate in the stripping section, xn,t the liquid-phase
mole fraction at tray n and time t, yn,t the vapor-phase mole
fraction, ut the reflux ratio, D = 0.2 the constant distillate
flow rate, F = 0.4 the constant feed flow rate. The objective
weights are γ = 1000 and ρ = 1. The problem minimizes
the quadratic deviation from the setpoints (x̄1, ū):

min

N∑
t=1

(
γ(x1,t − x̄1)

2 + ρ(ut − ū)2
)

subject to, for all t = 1, · · · , N and for a fixed time-step
∆t := 10/N ,

Lt = utD , Vt = Lt +D , St = F + Lt ,

yn,t =
αxn,t

1 + (α− 1)xn,t
, ∀n ∈ {1, .., 32} ,

ẋ1,t =
1

M1
Vt(y2,t − x1,t)

ẋn,t =
1

Mn

(
Lt(xn−1,t − xn,t)− Vt(yn,t − yn+1,t)

)
∀n ∈ {2, .., 16} ,

ẋ17,t =
1

M17

(
Fxf + Ltx16,t − Stx17,t − Vt(y17,t − y18,t)

)
ẋn,t =

1

Mn

(
St(xn−1,t − xn,t)− Vt(yn,t − yn+1,t)

)
∀n ∈ {18, .., 31} ,

ẋ32,t =
1

M32

(
St(x31,t − (F −Dt)x32,t − Vty32,t

)
ẋn,t =

1

∆t

(
xn,t − xn,t−1

)
, ∀n ∈ {1, .., 32} ,

xn,0 = x̄n,0 , 1 ≤ ut ≤ 5 ,

B. Results

We use our local workstation, equipped with an AMD
Epyc 7443 (24-core, 3.1GHz) and a NVIDIA A30 (24GB of
local memory). 2

1) Performance of the cuDSS solver: We start by as-
sessing the performance of the sparse Cholesky solver
cuDSS [35]. We use MadNLP to generate the condensed
matrix Kk for the distillation column instance, for different
discretization sizes N . We benchmark individually (i) the
time to perform the symbolic analysis, (ii) the time to refac-
torize the matrix, (iii) the time to compute the backsolve.
The results are displayed in Table I. We note that for the
largest instance (N = 50, 000) we have more than 3.3M

2A script to reproduce the results is available at https:
//github.com/exanauts/nlp-on-gpu-paper/tree/main/
HybridKKT.jl/benchmarks/cdc.



variables n in the optimization problem, but only 0.0002%
of nonzeros in the sparse matrix Kk. We observe that cuDSS
spends most of its time in the symbolic analysis: once the
symbolic factorization is computed, the refactorization and
the backsolve are surprisingly fast (less than 0.5 seconds to
recompute the factorization of the largest instance). In other
words, the costs of the symbolic factorization is amortized as
soon as we use many refactorizations afterward. Furthermore,
during the online computation within control systems, the
symbolic factorization can simply be reused and does not
affect the online computation time.

TABLE I
PERFORMANCE OF THE LINEAR SOLVER CUDSS

N n nnz SYM (s) FAC (s) SOLVE (s)
100 6,767 83,835 0.058 0.003 0.001
500 33,567 418,635 0.209 0.011 0.004
1,000 67,067 837,135 0.381 0.019 0.006
5,000 335,067 4,185,135 2.185 0.072 0.022
10,000 670,067 8,370,135 4.396 0.115 0.037
20,000 1,340,067 16,740,135 9.057 0.220 0.072
50,000 3,350,067 33,450,135 20.187 0.432 0.165
∗SYM, FAC, and SOLVE are the time spent in the symbolic analysis,
refactorization, and backsolve, respectively (all displayed in seconds).

2) Performance of the MadNLP solver: We analyze
now the performance in the MadNLP solver, using both
the Lifted-KKT and HyKKT hybrid solvers together with
cuDSS. As a baseline, we give the time spent in the HSL
solvers ma27 and ma57. We set MadNLP tolerance to
tol=1e-6, and look at the time spent to achieve con-
vergence in IPM. The results are displayed in Table II.
We observe that MadNLP converges in the same number
of iterations with HSL ma27, HSL ma57 and HyKKT, as
these KKT solvers all solve the same KKT system (6). On
its end, Lifted-KKT solves the relaxed problem (12) and
requires twice as much iterations to achieve convergence.
In concordance with Table I, the pre-processing times (col-
umn init) are significant for Lifted-KKT and HyKKT.
Computing the symbolic factorization with cuDSS is the
bottleneck: in comparison, ma27 is approximately twice
as fast during the pre-processing. However, the time spent
in the symbolic factorization is amortized throughout the
IPM iterations: Lifted-KKT and HyKKT solve the problem
respectively 26x and 18x faster than HSL ma27 on the largest
instance (N = 50, 000).

We display the time per IPM iteration in Figure 1. We
observe that Lifted-KKT is slightly faster than HyKKT, as
the performance of the later method depends on the total
number of CG iterations required to solve the system (15)
at each IPM iteration. The solver HSL ma27 is consistently
better than ma57 on that particular instance, as the problem
is highly sparse.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we have presented two hybrid solvers to
solve the sparse KKT systems arising in IPM on the GPU:

Fig. 1. Time per IPM iteration (s), CPU versus GPU.

Lifted-KKT and HyKKT. We have implemented the two hy-
brid solvers within MadNLP, using the newly released cuDSS
linear solver to compute the sparse Cholesky factorization
on the GPU. Our results on the distillation column instance
show that once the symbolic factorization is computed, both
Lifted-KKT and HyKKT are significantly faster than HSL
running on the CPU, with a time per iteration reduced by a
factor of 25 on the largest instance. This setting is relevant
for NMPC, as the symbolic factorization can be computed
only once and reused when we solve the problem a second
time with updated data.

B. Future Works

In this article, the dynamic structure has not been exploited
explicitly. However, it is known that for dynamic nonlinear
programs, the condensed matrix Kk is block-banded and
can be factorized efficiently using a block-structured linear
solver. Indeed, we can interpret Kk as a matrix encoding
a linear-quadratic program and solve the resulting problem
in parallel using partitioned dynamic programming [5]. We
are planning to investigate this promising outlook in future
research.
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