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Abstract
Photovoltaic (PV) energy grows rapidly and is crucial for the decarbonization of electric systems. However, cen-
tralized registries recording the technical characteristifs of rooftop PV systems are often missing, making it difficult
to accurately monitor this growth. The lack of monitoring could threaten the integration of PV energy into the grid.
To avoid this situation, the remote sensing of rooftop PV systems using deep learning emerged as a promising solu-
tion. However, existing techniques are not reliable enough to be used by public authorities or transmission system
operators (TSOs) to construct up-to-date statistics on the rooftop PV fleet. The lack of reliability comes from the
fact that deep learning models are sensitive to distribution shifts. This work proposes a comprehensive evaluation
of the effects of distribution shifts on the classification accuracy of deep learning models trained to detect rooftop
PV panels on overhead imagery. We construct a benchmark to isolate the sources of distribution shift and intro-
duce a novel methodology that leverages explainable artificial intelligence (XAI) and decomposition of the input
image and model’s decision in terms of scales to understand how distribution shifts affect deep learning models.
Finally, based on our analysis, we introduce a data augmentation technique meant to improve the robustness of
deep learning classifiers to varying acquisition conditions. We show that our proposed approach outperforms com-
peting methods. We discuss some practical recommendations for mapping PV systems using overhead imagery
and deep learning models.

Impact Statement
This paper analyzes the effects of distribution shifts on deep learning models trained to detect rooftop pho-
tovoltaic (PV) systems on aerial imagery by combining explainable artificial intelligence methods. It then
proposes practical solutions grounded in this analysis to improve the robustness of these models, thus improv-
ing their reliability and facilitating the use of remote sensing techniques to improve insertion of rooftop PV
systems into the grid.

1. Introduction
Photovoltaic (PV) energy grows rapidly and is crucial for the decarbonization of electric systems
(Haegel et al., 2017). The rapid growth of rooftop PV makes the estimation of the global PV installed
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capacity challenging as centralized data is often lacking (Hu et al., 2022; Kasmi et al., 2022). Remote
sensing of rooftop PV on orthoimagery with deep learning models is a blooming solution for mapping
rooftop PV installations. Deep learning-based pipelines became the standard method for remote sens-
ing PV systems as works such as DeepSolar (Yu et al., 2018) paved the way for country-wide mapping
of PV systems using deep learning and overhead imagery. Recently, methods for mapping rooftop PV
systems in many regions, especially in Europe, have been proposed (Frimane et al., 2023; Kasmi et al.,
2022; Kausika et al., 2021; Lindahl et al., 2023; Mayer et al., 2020; Rausch et al., 2020; Zech & Ranalli,
2020). Some of these works (Kasmi et al., 2022; Mayer et al., 2022) introduced methods to estimate the
technical characteristics of the PV systems (individual localization, orientation, PV installed capacity).

However, current approaches are sensitive to so-called distribution shifts (De Jong et al., 2020), i.e.,
differences between the training and testing data (Koh et al., 2021). This sensitivity limits their ability
to generalize to new images without incurring significant accuracy drops, thus limiting their practical
usability (Hu et al., 2022) as the generated data lacks reliability (De Jong et al., 2020). Steps towards
improving the reliability of the deep learning-based registries of rooftop PV systems have been taken,
with Hu et al., 2022 and Kasmi et al., 2022 discussing the practical evaluation of the mapping algorithms
or Li et al., 2021 defining the minimum resolution to detect rooftop PV systems from overhead images.
However, to date, only Wang et al., 2017 studied the poor generalizability of PV mapping algorithms,
but their evaluation framework was limited to the case study of two cities and one image dataset.
Therefore, a comprehensive evaluation of the causes and consequences of distribution shifts on PV
panel detectors and potential remedies to improve their robustness is missing despite its importance for
improving their reliability in practice.

This work sets up an empirical benchmark using the training dataset BDAPPV1 (Kasmi et al., 2023b)
to disentangle the effects of distribution shifts on rooftop PV detectors. We then combine explainable
artificial intelligence (XAI) methods to understand how these shifts affect the deep learning models.
Based on our findings, we propose simple solutions that can be implemented to improve the robustness
to distribution shifts of deep learning models trained to detect PV panels on overhead imagery. By
improving the reliability and robustness of deep learning models for rooftop PV mapping, we aim to
facilitate the mapping and, thus, the integration into the electric grid of rooftop PV. Code for replicating
the results of this paper can be found at https://github.com/gabrielkasmi/robust_pv_mapping and model
weights can be found at https://zenodo.org/records/12179554.

2. Related works
2.1. Remote sensing of rooftop photovoltaic installations
The remote sensing of rooftop PV systems is now a well-established field with early works dating back
to Golovko et al., 2018; Malof et al., 2015, 2016; Yuan et al., 2016. The DeepSolar project (Yu et al.,
2018) marked a significant milestone by mapping distributed and utility-scale installations over the con-
tinental United States using state-of-the-art deep learning models. Many works built on DeepSolar to
map regions or countries, especially in Europe, covering areas such as North-Rhine Westphalia (Mayer
et al., 2020), Switzerland (Casanova et al., 2021), Oldenburg in Germany (Zech & Ranalli, 2020), parts
of Sweden (Frimane et al., 2023; Lindahl et al., 2023), Northern Italy (Arnaudo et al., 2023), the Nether-
lands (Kausika et al., 2021) or the surroundings of Berkeley in California (Parhar et al., 2021). Several
works even included GIS data to construct registries of PV installations (Kasmi et al., 2022; Kausika
et al., 2021; Mayer et al., 2022; Rausch et al., 2020). In the current context of rapid rooftop PV growth
(Haegel et al., 2017; RTE France, 2022), remote sensing of rooftop PV installations using deep learn-
ing and orthoimagery offers the potential to address the lack of systematic registration of small-scale
PV installations (Kasmi et al., 2022; Kausika, 2022).

1BDAPPV: Base de données d’apprentissage profond pour les installations photovoltaiques (Database for deep learning
applied to PV systems).

https://github.com/gabrielkasmi/robust_pv_mapping
https://zenodo.org/records/12179554
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However, current methods cannot be transposed from one region to another without incurring accu-
racy drops, thus limiting their practical usability (Hu et al., 2022). Unpredictable accuracy drops cast
doubt on the reliability of the generated data (De Jong et al., 2020). Recently, Kasmi et al., 2022
introduced a method aiming at indirectly assessing the accuracy of the detections by automatically com-
paring the registry generated with deep learning algorithms to reference data, which is often aggregated
at the scale of the city. While this work enabled the quantification of the drop in accuracy encountered
during deployment, no cues as to why the accuracy varied during deployment were discussed. In this
work, we propose to study and mitigate the impact of these distribution shifts.

2.2. Sensitivity to distribution shifts
Sensitivity to distribution shifts in remote sensing. Distribution shifts, i.e., the sensitivity to the fact that
"the training distribution differs from the test distribution" (Koh et al., 2021) are ubiquitous in machine
learning (Torralba & Efros, 2011). The sensitivity to distribution shifts causes unpredictable perfor-
mance drops, which can have dire consequences as models are deployed in safety-critical settings such
as autonomous driving (Sun et al., 2022b) or medical diagnoses (Pooch et al., 2020).

In remote sensing applications, Tuia et al., 2016 identified two primary sources of shifts in the input
data models are sensitive to: variations in the geographical scenery, and the varying acquisition condi-
tions. Following Murray et al., 2019, we can add the ground sampling distance (GSD). The acquisition
conditions encompass the conversion of a scene into a digital image and include all sources of variabil-
ity in the input images caused by different sensors, exposure, attitude and altitude during acquisition,
and atmospherical conditions. The ground sampling distance is the upper bound to the image resolu-
tion. The lower the ground sampling distance, the more detailed the image. In practice, the resolution is
limited by the GSD and the image quality (noise, optical transfer function, intrinsic geometric consis-
tency, etc). So far, the only work that investigated the poor reliability of deep learning systems applied
to the remote sensing of PV panels is Wang et al., 2017. The authors argued that the generalization
ability from one city to another depending on how "hard" to recognize the PV panels are. However, no
proper definition of the "hardness" to recognize PV panels or a proper disentanglement the effect of
each source of variability was carried out, and there was no prescription regarding model training or
data preprocessing.

Mitigating the sensitivity to distribution shifts. Numerous approaches have been introduced to mitigate
the sensitivity to distribution shifts. We refer the reader to surveys such as Csurka, 2017; Csurka et
al., 2021; Guan and Liu, 2022; Tuia et al., 2016; Zhou et al., 2023 for reviews of these methods in
various settings. One simple yet effective approach is to leverage data augmentations during training to
incentivize the model to learn a given invariance during training. The aim is that the model is no longer
sensitive to a given set of perturbations of the input images. Popular data augmentation methods consist
in defining a method to generate as many perturbed samples as possible while preserving the semantic
content of the image. To this end, AugMix (Hendrycks et al., 2020) applies a random sequence with
random weights of perturbations to the input image. Similarly, Hendrycks et al., 2022 augment an input
image with fractal patterns, and Sun et al., 2022a perturb the Fourier spectrum of the input image.

However, improving the robustness against distribution shifts is a long-tailed problem, meaning
that unseen situations eventually arise, and all situations cannot be accounted for (Recht et al., 2019;
Torralba & Efros, 2011). Therefore, we should first understand how distribution shifts affect a model’s
performance before implementing a mitigation method. To this end, we propose to leverage explainable
artificial intelligence (XAI) methods.
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2.3. Explainable artificial intelligence (XAI)
Modern deep learning algorithms are often qualified as black boxes, meaning it is hard to fully grasp
their inner workings. This black-box nature limits the applicability of machine learning in safety-
critical settings (Achtibat et al., 2022). We can distinguish two main approaches for machine learning
explainability: by-design interpretable models and post-hoc explainability (Parekh, 2023)2. By-design
interpretability aims at constructing models that are transparent and self-explanatory (Sudjianto &
Zhang, 2021), e.g., the decision boundaries of a decision tree. On the other hand, post-hoc explainabil-
ity seeks to explain a model’s decision by highlighting important features contributing to this decision,
without explicitly stating how these features affected the model. Methods such as class activation maps
(CAMs, Zhang et al., 2017), which plot a heatmap of the important image regions for the classification
of this image, fall into this category.

XAI methods for model debugging. One of the main motivations for XAI is to inspect the decision of
models to assess whether they relied on relevant factors to make predictions. Several works highlighted
biases in the decision process, such as the reliance on spurious features. Lapuschkin et al., 2019 lever-
aged the GradCAM (Selvaraju et al., 2017) to show how classifiers could rely on watermarks rather than
relevant areas of the input image for horses classification, thus highlighting a so-called "Clever Hans"
(Pfungst, 1911) effect3. CAMs (Zhang et al., 2017) have also been used to understand the behavior of
convolutional neural networks (CNNs) in medical imagery classification by Zhang et al., 2021. Another
example of usage of XAI tools to understand and debug a model was proposed by Dardouillet et al.,
2023, who leveraged SHapley Additive exPlanations (SHAP, Lundberg and Lee, 2017) to understand a
model deployed for oil slick pollution detection on the sea surface. In this work, we go one step further
and show how combining post-hoc and by-design interpretable XAI methods can help understand and
mitigate the sensitivity to distribution shifts of CNNs deployed for mapping PV systems from overhead
imagery.

3. Data
We consider the crowdsourced training dataset BDAPPV4 (Kasmi et al., 2023b). This dataset contains
annotated images of 28,000 PV panels in France and neighboring countries. This dataset also proposes
annotations of images that depict the same PV panels, but from two different image providers: images
coming from the Google Earth Engine (hereafter referred to as "Google," Gorelick et al., 2017) and
from the IGN (IGN, 2024), the French public operator for geographic information. We have double
annotations for 7,686 PV systems. It allows us to assess the impact of the acquisition conditions as
the only change factor between two images is the varying acquisition condition: the semantic content
(the PV panel and its surroundings) remains (almost) unchanged. The native ground sampling distance
(GSD) of Google images is 10 cm/pixel and 20 cm/pixel for IGN images. We define the acquisition
conditions as the properties of the technical infrastructure (airborne or spaceborne, camera type, image
quantization, and postprocessing) and the atmospheric and meteorological conditions the day the image
was taken. Figure 1 plots examples of images coming from BDAPPV. These images depict the same
scene for both providers (although potentially at different dates).

2Flora et al., 2022 note that there is no consensus yet in the literature regarding the use of the terms explainability and
interpretability. Following Flora et al., 2022, we say that a model is interpretable if it is inhehirently or by design interpretable
and that a model is explainable if we can compute an post-hoc explanation of its decision.

3Clever Hans was a horse that appeared to perform arithmetic and other intellectual tasks but was actually responding to subtle
cues from his handler. In machine learning, it is used as an example of the reliance of deep learning models on spurious features
(e.g., background) rather than causal features (e.g., shape of an object) for tasks such as classification. See Lapuschkin et al.,
2019 for more details.

4The dataset is accessible here: https://zenodo.org/records/7358126.

https://zenodo.org/records/7358126
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Figure 1. Examples of images of the same PV panels but with different providers and acquisition dates
(Up Google, down: IGN).

4. Methods
We aim to explain why convolutional neural networks (CNNs) applied to detect PV panels on orthoim-
ages are sensitive to distribution shifts. We first construct a benchmark to isolate the effect of the three
main sources of distribution shifts on overhead images highlighted by Tuia et al., 2016 and Murray
et al., 2019. On our benchmark dataset, we then compare the behavior of a by-design interpretable
model, the Scattering transform (Bruna & Mallat, 2013), with the predictions of our CNN to under-
stand on which scales the CNN relies and how it is affected by a disruption of these scales. To verify
that our mechanism is correct, we leverage the wavelet scale attribution method (WCAM, Kasmi et al.,
2023a), which is a post-hoc explainability method, to isolate the important scales in the predictions of
our black-box CNN model. We chose the Scattering transform and the WCAM because these methods
rely on a decomposition of the input image in the space-scale (wavelet domain), which is particularly
well suited in the case of remote sensing images since the scales, expressed in pixels on images, are
indexed in meters and can thus point towards actual elements depicted on the images5. Finally, based
on our findings, we propose a data augmentation method to improve the robustness of CNNs and draw
some lessons regarding the choice of image data.

4.1. Disentangling the sources of distribution shifts on overhead images
BDAPPV features images of the same installations from two providers and records the approximate
location of the PV installations. Using this information, we can define three test cases to disentangle
the distribution shifts that occur with remote sensing data: the resolution, the acquisition conditions,
and the geographical variability. We train a ResNet-50 model (He et al., 2016) on Google images
downsampled at 20 cm/pixel of resolution and evaluate it on three datasets: a dataset with Google
images at their native 10 cm/pixel resolution ("Google 10 cm/pixel"), the IGN images with a native 20
cm/pixel resolution ("IGN") and Google images downsampled at 20 cm/pixel located outside of France
("Google OOD6"). We add the test set to record the test accuracy without distribution shift ("Google
baseline"). We only do random crops, rotations, and ImageNet normalizations during training.

Figure 2 plots examples of the different test images to disentangle the effects of distribution shifts.
The baseline and IGN images represent the same panel at the same spatial resolution. The Google 10

5In appendix A, we provide further evidence of the limitation of "traditional" feature attribution methods for explaining the
false detection of deep learning models in our use case.

6OOD: out-of-distribution.
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cm/pixel depicts the same scene but with the native resolution of Google images. Finally, the OOD test
set contains images located outside of France.

Google baseline Google 10 cm/pixel Google OOD IGN

Figure 2. Test images on which a model trained on Google images (downsampled to 20 cm/px of
GSD, "Google baseline") is evaluated. "Google 10 cm/pixel" corresponds to the source Google image,
before downsampling and evaluates the effect of varying ground sampling distances. "Google OOD"
corresponds to Google images taken outside of France. "IGN" corresponds to images depicting the
same installations as Google baseline but with a different provider.

4.2. Space-scale decomposition of a model’s decision process
4.2.1. Background: the wavelet transform of an image
Motivation and definition. We propose to analyze the decision process of an off-the-shelf CNN model
through the lenses of the space-scale or wavelet decomposition. Wavelets are a natural tool to decom-
pose an image into scales while maintaining local analysis in space: they provide a single space-scale
decomposition. As scales are indexed in terms of actual distances on the ground, we can directly identify
the important objects that contribute to a model’s decision by studying the important scales. Figure 3
illustrates the objects that can be found at different scales of an orthoimage.

Overall system on the roof 
Scale : approx. 100 px (10 m)

PV system 
Scale : approx. 8 – 16 px (2.5 m)

Group of PV modules
Scale : approx. 4 – 8 px (1 – 2 m)

Details in the module
Scale : approx. 1 - 2 px (0.1 – 0.2 m)

Individual PV module
Scale : approx. 2 - 4  px (< 1 m)

Figure 3. Decomposition of a PV panel into scales.

A wavelet is an integrable function 𝜓 ∈ 𝐿2 (R) with zero average, normalized and centered around 0.
Unlike a sinewave, a wavelet is localized in space and in the Fourier domain. It implies that dilatations of
this wavelet enable to scrutinize different scales while translations enable to scrutinize spatial location.
In other words, scales correspond to different spatial frequency ranges or spectral domains.
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To compute an image’s (continuous) wavelet transform (CWT), one first defines a filter bank D from
the original wavelet 𝜓 with the scale factor 𝑠 and the 2D translation in space 𝑢. We have

D =

{
𝜓𝑠,𝑢 (𝑥) =

1
√
𝑠
𝜓

( 𝑥 − 𝑢
𝑠

)}
𝑢∈R2 , 𝑠≥0

, (1)

where |D| = 𝐽, and 𝐽 denotes the number of levels. The computation of the wavelet transform of a
function 𝑓 ∈ 𝐿2 (R) at location 𝑥 and scale 𝑠 is given by

W( 𝑓 ) (𝑥, 𝑠) =
∫ +∞

−∞
𝑓 (𝑢) 1

√
𝑠
𝜓∗

( 𝑥 − 𝑢
𝑠

)
d𝑢, (2)

which can be rewritten as a convolution (Mallat, 1999). Computing the multi-level decomposition of
𝑓 requires applying Equation 2 𝐽 times with all dilated and translated wavelets of D. Mallat, 1989
showed that one could implement the multi-level dyadic decomposition of the discrete wavelet trans-
form (DWT) by applying a high-pass filter 𝐻 to the original signal 𝑓 and subsampling by a factor of
two to obtain the detail coefficients and applying a low-pass filter 𝐺 and subsampling by a factor of
two to obtain the approximation coefficients. Iterating on the approximation coefficients yields a multi-
level transform where the 𝑗 𝑡ℎ level extracts information at resolutions between 2 𝑗 and 2 𝑗−1 pixels. The
detail coefficients can be decomposed into various rotations (usually horizontal, vertical, and diagonal)
when dealing with 2D signals (e.g., images).

Interpreting the wavelet transform of an image. Figure 4 illustrates how to interpret the (two-level)
wavelet transform of an image. Reading is the same for any multi-level decomposition. The right image
plots the two-level dyadic decomposition of the original image depicted on the left. Following this
transform, the localization on the image highlighted by the red polygon can be decomposed into six
detail components (marked yellow and blue) and one approximation component (marked pink). The
yellow components correspond to the details at the 1-2 pixel scale, and the blue components to the
details at the 2-4 pixel scale. For each location, the wavelet transform summarizes the information
contained in the image at this scale and location.

Horizontal

DiagonalVertical

Figure 4. Image and associated two-level dyadic wavelet transform with indications to interpret the
wavelet transform of the image. "Horizontal," "diagonal," and "vertical" indicate the direction of the
detail coefficients. The direction is the same at all levels.
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4.2.2. By design interpretable XAI method: the Scattering transform
The Scattering transform (Bruna & Mallat, 2013) is a deterministic feature extractor. CNNs and the
Scattering transform share the same multi-level architecture, where the previous layer’s output is passed
onto the next after a nonlinearity is applied. The nonlinearities in a CNN are generally rectified linear
units (ReLU), whereas in the Scattering transform, it is a modulus operation. Unlike CNNs, whose
kernel coefficients are learned during training, the coefficients of the Scattering transform are fixed.
Bruna and Mallat, 2013 showed that the Scattering transform computes representations from an input
image that share the same properties of translational invariance as the representations computed with a
CNN. The advantage of the Scattering transform is that as filters are fixed, we can know precisely what
information they extract from the input image. Figure 5 summarizes the feature extraction process of
the Scattering transform.

The input image 𝑥 is downsampled, and a wavelet filter 𝜙 is applied in 𝐽 directions. The wavelet
coefficients at that scale are retrieved (black arrows), and the image is passed onto the next layer (blue
arrows). As the depth increases, the spatial extent covered by the filters decreases. At each spatial
location, one takes the modulus of the wavelet transform to compute a scale invariant representation
which indicates the amount of "energy" in the image at this scale and localization.

The Scattering transform is parameterized by the number 𝑚 of layers and the number 𝐽 of orienta-
tions. We have a total of 𝑚𝐽 +𝑚2𝐽 (𝐽 − 1)/2 coefficients. At the end of the decomposition, the features,
i.e., the scattering coefficients, are flattened into a single vector of size 𝑚𝐽 + 𝑚2𝐽 (𝐽 − 1)/2. We can
identify to which scale, location, and orientation on the input image this feature corresponds.

Figure 5. A scattering propagator 𝑈𝐽 applied to 𝑥 computes each 𝑈 [𝜆1]𝑥 = |𝑥 ★ 𝜓𝜆1 | and outputs
𝑆𝐽 [∅]𝑥 = 𝑥 ★ 𝜙2𝐽 (black arrow). Applying 𝑈𝐽 to each 𝑈 [𝜆1]𝑥 computes all 𝑈 [𝜆1, 𝜆2]𝑥 and outputs
𝑆𝐽 [𝜆1] = 𝑈 [𝜆1]★𝜙2𝐽 (black arrows). Applying𝑈𝐽 iteratively to each𝑈 [𝑝]𝑥 outputs 𝑆𝐽 [𝑝]𝑥 = 𝑈 [𝑝]𝑥★
𝜙2𝐽 (black arrows) and computes the next path layer. Figure borrowed from Bruna and Mallat, 2013.
Note: On the image, the input 𝑥 corresponds to 𝑓 and 𝜆 = 2 𝑗𝑟 is a frequency variable corresponding
the the 𝑗 th scale with 𝑟 rotations.

We implement three variants of the Scattering transform with depths𝑚 varying from one to three lev-
els. Bruna and Mallat, 2013 stated that first-order coefficients were insufficient to discriminate between
two very different images but that coefficients of order 𝑚 = 2 could. We consider 𝐽 = 8 orientations.
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We stack the scattering coefficients into a vector of dimension 𝑚𝐽 + 𝑚2𝐽 (𝐽 − 1)/2, akin to the penul-
timate layer of a CNN. We train a linear classifier on this feature vector. Our implementation of the
Scattering transform is based on the Python library Kymatio (Andreux et al., 2020).

4.2.3. Post-hoc XAI method: the Wavelet scale attribution method (WCAM)
Traditional feature attribution methods (Petsiuk et al., 2018; Selvaraju et al., 2020; Simonyan & Zisser-
man, 2015) highlight the important areas for the prediction of a classifier in the pixel (spatial) domain.
The WCAM (Kasmi et al., 2023a) generalizes attribution to the wavelet (space-scale domain). The
WCAM provides us with two pieces of information: where the model sees and what scale it sees at
this location. The decomposition of the prediction in terms of scales points towards actual elements on
the input image since on orthoimagery scales are indexed in meters. For example, on Google images,
details at the 1-2 pixel scale correspond to physical objects with a size between 0.1 and 0.2 m on the
ground. Thus, we know what the model sees as a panel; we can interpret it and assess whether it is sen-
sitive to varying acquisition conditions. We refer the reader to appendix B or to Kasmi et al., 2023a for
more details on the computation of the WCAM.

Reading a WCAM. Figure 6 presents an example of an explanation computed using the WCAM. On the
right panel, we can see the important areas in the model prediction highlighted in the wavelet domain.
On the left panel, we can see the spatial localization of the important components. We can see two
main spatial locations: the center of the image, which depicts the PV panel, and the bottom left, which
depicts a pool. Disentangling the scales, we can see that the PV panel’s importance spreads across three
scales (orange arrows), while the pool is only important at the 4-8 pixel scale. This underlines that the
model focuses on the PV panel because it sees details ranging from small details in the PV modules to
the cluster of modules.

Scale size (px): > 8 4-8 2-4 1-2

Figure 6. Decomposition in the wavelet domain of the important regions for a model’s prediction with
the WCAM.

4.3. Improving the robustness through data augmentations
Improving the robustness to noise and scale distorsions. Since we know that varying acquisition
conditions induce perturbations (Lone & Siddiqui, 2018), which primarily affects high-frequency com-
ponents (i.e., the finest scales), we introduce two data augmentation techniques that aim at reducing the
reliance on high-frequency components: Gaussian blurring ("Blurring") and Blurring + wavelet pertur-
bation (WP). Blurring consists of a fixed image blur, while the Blurring + WP also perturbs the wavelet
coefficients of the image at specific scales to force the model to learn potential distortions incurring
at these scales. We refer the reader to the appendix D.1 for more details on the data augmentation
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strategies and a review of the hyperparameters. Figure 10 in appendix D.2 illustrates the effect of the
different data augmentation techniques. We compare this approach with a baseline without augmenta-
tions (labeled "ERM" for empirical risk minimization, Vapnik, 1999) and existing data augmentation
techniques. We also include an "Oracle", i.e. an ERM trained on IGN images. The Oracle is a proxy for
the best possible performance on the domain of interest.

Comparisons with existing approaches. The literature on robustness to image corruptions (Hendrycks
& Dietterich, 2019) proposed numerous data augmentation methods to improve the robustness of clas-
sification models to image corruptions (Cubuk et al., 2019, 2020; Geirhos et al., 2019; Hendrycks et
al., 2020, 2022). We consider the AugMix method (Hendrycks et al., 2020) and the recently-proposed
RandAugment (Cubuk et al., 2020) and AutoAugment (Cubuk et al., 2019) methods. These methods
apply a random composition of perturbations to images during training to learn an invariance against
these perturbations. We do not consider the case of training from multiple sources as our setting is
that we wish to generalize to unseen images (either temporally or spatially, so we cannot incorporate
knowledge about these images). For comparison, we include an Oracle, a model trained on the target
dataset (i.e., a model trained on IGN images). The Oracle is a proxy for the best performance that can
be achieved on this dataset.

5. Results
5.1. Deep models are mostly sensitive to varying acquisition conditions, leading to an increase in the

number of false negatives
Table 1 shows the results of the decomposition of the effect of distribution shifts into three components:
resolution, acquisition conditions, and geographical shift. We can see that the F1 score drops the most
when the model faces new acquisition conditions. The second most significant impact comes from the
change in the ground sampling distance, but the performance drop remains relatively small compared
to the effect of the acquisition conditions (which can also be assimilated to variations in the image
quality). In our framework, there is no evidence of an effect of the geographical variability once we
isolate the effects of the acquisition conditions and ground sampling distance. This effect is probably
underestimated, as images of our dataset that are not in France are near France. However, the effect of
the acquisition conditions is sizeable enough to seek methods for addressing it.

Table 1. F1 Score and decomposition in true positives, true negatives, false positives, and false nega-
tives rates of the classification accuracy of a CNN model trained on Google images (Google baseline)
and tested on the three instances of distributions shifts: GSD (Google 10 cm/px), the geographical vari-
ability (Google OOD) and the acquisition conditions (IGN). Values highlighted in red indicate the worst
performance and values in orange the second-to-last worse performance.

Model F1 Score (↑) True positive rate (↑) True negative rate (↑) False positive rate (↓) False negative rate (↓)

Google baseline 0.98 0.99 0.98 0.02 0.01
Google 10 cm/px 0.89 0.81 1.00 0.00 0.19

Google OOD 0.98 0.99 0.98 0.02 0.01
IGN 0.46 0.32 0.95 0.03 0.68

5.2. The Scattering transform shows that clean, fine-scale features are transferable but poorly
discriminative

Discriminative and transferable features. In the following, we distinguish between two kinds of fea-
tures: the discriminative and the transferable features. Discriminative features enable the model to
discriminate well between PV and non-PV images. Relying on discriminative features ensures a low
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number of false positives. On the other hand, transferable features correspond to features that gener-
alize well across domains. If a model relies on transferable features, its performance should remain
even across domains. Ideally, we would like a model to rely on discriminative and transferable fea-
tures. Analysis of the errors of the CNN using the Scattering transform highlights a potential trade-off
between transferable and discriminative features.

Accuracy of the Scattering transform. Table 2 presents the accuracy results of the Scattering transform
and compares it with a random classifier and the ERM (which is the same model as the one evaluated
in Table 1). We can see that the performance on the source domain lags behind the performance of the
CNN, but the Scattering transform generalizes better to IGN than the CNN. However, this comes at the
cost of a high false positive rate. Table 5 in appendix E presents similar accuracy results for variants of
the Scattering transform model in the depth and number of features.

Table 2. F1 Score and decomposition in true positives, true negatives, false positives and false negative
rate of the classification accuracy of the Scattering Transform model trained on Google images and
deployed on IGN images. Best results are bolded, values in red highlight problematic cases.

Model Dataset F1 Score (↑) True positive rate (↑) True negative rate (↑) False positive rate (↓) False negative rate (↓)

Scattering transform
Google baseline 0.57 0,89 0,10 0,56 0,48

IGN 0.59 0,54 0,31 0,62 0,54

CNN (ERM)
Google baseline 0.98 0.99 0.98 0.02 0.01

IGN 0.46 0.32 0.95 0.03 0.68

Random classifier
Google baseline 0.47 0,5 0,50 0,55 0,45

IGN 0.47 0,50 0,50 0,56 0,44

Implications for the CNN. We know which features the Scattering transform relies on. It leverages
information at the two-pixel scale after downsampling the input image. In other words, the Scattering
transform makes predictions based on clean features at the two-pixel scale. Therefore, we can deduce
that these features are transferable, as the performance remains even across datasets, but not very
discriminative as the false positives rate is high (across both domains).

On the other hand, the CNN should rely on discriminative features, which are located at coarser
scales than 8 pixels, and on noisy features. In section 5.3, we investigate how the distortion of the input
image’s coarse scales impacts the CNN’s decision process and the shift in its predicted probability. In
section 5.4.1, we discuss how noise in input images affects the generalization ability of the CNN.

5.3. CNNs are sensitive to the distorsion of coarse-scale discriminative features
Predicted probability shifts. The CNN outputs a predicted probability of a PV panel on the input image.
When evaluating the CNN on the same scene coming from two providers, we compute predicted prob-
ability shift Δ𝑝 = |𝑝𝑖𝑔𝑛 − 𝑝𝑔𝑜𝑜𝑔𝑙𝑒 | when the model trained on Google is evaluated on IGN images.
By construction, Δ𝑝 ∈ [0, 1]. If Δ𝑝 = 0, the predicted probability did not change when changing the
provider. On the other hand, if Δ𝑝 → 1, then it means that the model made a different prediction solely
because of the new acquisition condition.

Correlations between the probability shift and low-scale similarity of the images. For all images in our test
set (𝑛 = 4321), we compute the similarity between the approximation coefficients at the 3rd level (cor-
responding to details above 8 pixels) and the predicted probability shift of the model. We expect that
the greater the dissimilarity, the higher the shift in probability. We evaluate the dissimilarity between
the low-scale details using the Structural similarity index measure (SSIM, Wang et al., 2004) and the
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Euclidean distance between the images. The SSIM takes values between -1 and 1, where 1 indicates per-
fect similarity, 0 indicates no similarity, and -1 indicates perfect anti-correlation. On the other hand, the
Euclidean distance takes positive values; the greater the distance, the greater the dissimilarity between
the images.

As expected, we obtain a negative Pearson correlation coefficient equal to -0.41 (with a 𝑝-value
< 10−5) between the input images’ SSIMs and the predicted probability shift. Using the Euclidean
distance, we obtain a correlation coefficient of 0.250 (𝑝 < 10−5). These results back the idea that the
CNN is sensitive to low-scale perturbations of the input image, which results in a shift in the predicted
probability.

Visualization of the model’s response with the WCAM. The WCAM disentangles the important scales
in a model’s prediction. It enables us to see which scales were disrupted. On Figure 7, we present an
example of an image that was initially identified as a PV panel but turned out to be no longer recognized.

We can see that in both cases, the approximation details are important in the model’s prediction. The
model responds to distortions at this scale by no longer focusing on a single area. Indeed, the model
weights more components located at the 2-4 and 4-8 pixel scale (orange circles), which were not as
important at the beginning. At the level of the perturbed scales, we can also witness that the model is
disrupted by factors lying next to the PV panel (green circle). We supply more examples of such cases
in the appendix F and discuss quantitative analysis of this result in appendix C.

Figure 7. Analysis with the WCAM of the CNNs prediction on an image no longer recognized as a PV
panel.
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5.4. Pathways towards improving the robustness to acquisition conditions
5.4.1. Blurring and wavelet perturbation improve accuracy
Table 3 reports the results of our data augmentation techniques and compares them with existing meth-
ods. We can see that augmentations that explicitly discard small scales (high frequencies) information
perform the best. However, the blurring method sacrifices the recall (which drops to 0.6) to improve
the F1 score. On Table 3, this can be seen by the increase in false positives. Therefore, this method is
unreliable for improving the robustness to acquisition conditions.

On the other hand, adding wavelet perturbation (WP) improves the accuracy of the classification
model without sacrificing the precision or the recall. While the drop in accuracy is still sizeable com-
pared to the Oracle, the gain is consistent compared to other data augmentation techniques. Compared
to RandAugment, the best-benchmarked method, our Blurring + WP is closer to the targets regard-
ing true positives and true negatives and makes lower false negatives. This experiment shows that it
is possible to consistently and reliably improve the robustness of acquisition conditions using a data
augmentation technique, which does not leverage any information on the IGN dataset.

Table 3. F1 Score and decomposition in true positives, true negatives, false positives, and false negatives
rate for models trained on Google with different mitigation strategies. Evaluation on IGN images. The
oracle corresponds to a model trained on IGN images with standard augmentations. The best results are
bolded and second best underlined. Values in red highlight problematic cases.

Model F1 Score (↑) True positive rate (↑) True negative rate (↑) False positive rate (↓) False negative rate (↓)

Oracle 0.88 0.96 0.82 0.18 0.04

ERM 0.44 0.30 0.96 0.04 0.70
AutoAugment 0.46 0.31 0.96 0.04 0.69

AugMix 0.48 0.33 0.96 0.04 0.67
RandAugment 0.51 0.37 0.94 0.06 0.63

Blurring 0.74 0.98 0.49 0.51 0.02
Blurring + WP 0.58 0.47 0.87 0.13 0.53

5.4.2. On the role of the input data: towards some practical recommendations regarding the training data
Our results show that lowering the reliance on high-frequency content in the image improves general-
ization. This content is located on the 0.1-0.2 m scale and only appears on Google images. In Table 4,
we flip our experiment to study how a model trained on IGN images generalizes to Google images.
Results show that the model trained on IGN generalizes better to the downscaled Google images than
the opposite. This result further supports the idea that higher GSD is not necessarily better for good
robustness to acquisition conditions.

Table 4. F1 Score and true positives, true negatives, false positives, and false negatives rates. Evaluation
computed on the Google dataset. ERM was trained on Google and Oracle on IGN images.

Model F1 Score (↑) True positive rate (↑) True negative rate (↑) False positive rate (↓) False negative rate (↓)

ERM (Vapnik, 1999) 0.98 0,98 0.98 0,02 0,02
Oracle (ERM trained on IGN) 0.91 0,94 0,89 0,11 0,06



14 Kasmi et al.

6. Discussion
6.1. Conclusion
This work is a comprehensive evaluation of the effects of distribution shifts on the classification accu-
racy of deep learning models trained to detect rooftop PV panels on overhead imagery. We first set up
an experiment to disentangle the effects of the three primary shifts incurring in remote sensing (Mur-
ray et al., 2019; Tuia et al., 2016), namely geographical variability, varying acquisition conditions, and
varying ground sampling distance. We show that the varying acquisition conditions contribute signif-
icantly to the observed performance drop. To explain why this drop occurs, we leverage space-scale
analysis to disentangle the different scales from the input images. We combine two types of explainable
AI methods grounded in the wavelet decomposition of the input images to show that the CNN relies on
noisy features (at the finest scales) and features that are not very well transferable across domains (at the
coarsest scales). We then introduce a data augmentation technique to improve the model’s robustness to
distortions of the coarse-scale features and remove noise from the fine-scale features. We compare this
method against various popular data augmentation techniques and show that our approach outperforms
these baselines. We then discuss the practical takeaways of this work for the training or the choice of
the training data for the initial training of the deep learning model.

Broader impact. Currently, transmission system operators (TSOs) lack quality data regarding rooftop
PV installations (Kasmi et al., 2022). The lack of information leads to imprecise estimations and fore-
casts of the overall PV power generation, which in a context of sustained growth of the PV installed
capacity could increase the uncertainty and threaten the grid’s stability (Pierro et al., 2022). On the
other hand, current methods for mapping rooftop PV installations lack reliability, owing to their poor
generalization abilities beyond their training dataset (De Jong et al., 2020). This work addresses this
gap and thus demonstrates that remote sensing of PV installations is a reliable way for TSOs to improve
their knowledge regarding small-scale PV installations and provides guidance on how to carry out the
initial training of the model and how to deal with registry updates on newly available images.

6.2. Limitations and future works
Further discussion of the geographical variability. Our training data was limited to a narrow area around
France. Therefore, we suspect the effect of the geographical variability to be underestimated. For
instance, Freitas et al., 2023 showed that fine-tuning a model with data that is not far from the target
area (e.g., France when the goal is to map PV systems in Portugal) enables accuracy gains compared
to directly transferring a model trained over the United States. It could be interesting to study how the
performance varies with the distance between the training data and the target mapping area once all
other factors (acquisition conditions, ground sampling distance) are accounted for.

Extensions to other models. Over the last couple of years, foundation models (Bommasani et al., 2022)
have been redefining the standards in deep learning. These very large models, trained on large data cor-
pora, have shown remarkable performance for many challenging tasks, especially for text (Brown et al.,
2020) and image (Rombach et al., 2022) generation. These models are used for more conventional and
specialized tasks such as image segmentation (Kirillov et al., 2023) and achieve superior performance
to conventional approaches while only requiring a few samples to learn their new task. Extending this
benchmark and evaluating the performance of foundation models fine-tuned for segmenting PV panels
such as Yang et al., 2024 under distribution shifts could be interesting.

A. Limitations of the GradCAM and related feature attribution methods for our use case
Figure 8 presents the explanations obtained using the GradCAM (Selvaraju et al., 2020). We can see
two different prediction patterns depending on whether the model predicts a positive (true or false) or
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a negative (true or false). In the case of a true positive prediction, the model will focus on a specific,
narrow region of the image, which indeed corresponds to a PV panel. However, for false positives, the
model also focuses on a narrow image region. Inspecting the samples of Figure 8 reveals that this region
of the image depicts items that resemble PV panels. On the image on the first row (second column) of
Figure 8, we can see that the model confuses a shadehouse that shares the same color and overall shape
of a PV panel with an actual panel. In the image on the second row, the verandas with groves fool the
model.

On the other hand, when the model does not see a PV panel, it does not focus on a specific image
region. This remains true for the false negatives, where we can see that the model does not see the
panels on any of the images.

However, we can also see that as the GradCAM only assesses where the model is looking, it is
challenging to understand why it focused on a given area that resembles a PV panel on false positives
and why it did not identify the PV panel on the false negatives. Achtibat et al., 2022 underlines the
necessity for reliable model evaluation to assess where models are looking at and what they are looking
at on input images. The choice of the WCAM as an attribution method and, more broadly, the space-
scale decomposition is an attempt to address this question by assessing the scales the models consider
when making their predictions.

True positive False positive True negative False negative

Figure 8. Model explanations using the GradCAM (Selvaraju et al., 2020) for some true positives, false
positives, true negatives and false negatives. The redder, the higher the contribution of an image region
to the predicted class (1 for true and false positives, 0 for true and false negatives).

B. Computation of the WCAM (from Kasmi et al., 2023a)
Figure 9 depicts the principle of the WCAM. The importance of the regions of the wavelet transform
of the input image is estimated by (1) generating masks from a Quasi-Monte Carlo sequence, (2) eval-
uating the model on perturbed images. We obtain these images by computing the discrete wavelet
transform (DWT) of the original image, applying the masks on the DWT to obtain perturbed DWT,7

and inverting the perturbed DWT to generate perturbed images. We generate 𝑁 (𝐾+2) perturbed images

7On an RGB image, we apply the DWT channel-wise and apply the same perturbation to each channel.
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for a single image. (3) We estimate the total Sobol indices of the perturbed regions of the wavelet trans-
form using the masks and the model’s outputs using Jansen’s estimator (Jansen, 1999). Fel et al., 2021
introduced this approach to estimate the importance of image regions in the pixel space. We generalize
it to the wavelet domain.

B
lack-box m

odel

0.7
0.4
…

…
0.9

Image DWT iDWT

Sobol indices…

M ∼ QMC

WCAM

Spatial WCAM

Figure 9. Flowchart of the wavelet scale attribution method (WCAM). Source: Kasmi et al., 2023a.

C. Quantitative relationship between the WCAM’s scale embeddings and the model’s response
to distribution shifts

Definition. A scale embedding is a vector 𝑧 = (𝑧1, . . . , 𝑧𝐿) ∈ R𝐿 where each component 𝑧𝑠 encodes
the importance of the 𝑙 th scale component in the prediction.

Scale embeddings compute the importance of each scale and each direction and summarize it into a
vector 𝑧 ∈ R𝐿 where 𝐿 indicates the number of levels. In our case, we have ten levels (1 corresponding
to the approximation coefficients and 𝐿 = 3 × 3 corresponding to the three scales of details coefficients
and their three respective orientations. Scale embeddings summarize the importance of each scale,
irrespective of the spatial localization of importance

Results. We computed the distance (measured by the Euclidean distance) between two images’ scale
embeddings and computed the correlation between this distance and the predicted probability shift. As
a baseline, we also computed the distance between the two WCAMs.

We obtained correlation coefficients of 0.18 (𝑝 = 0.19) for the scale embedding and 0.17 (𝑝 = 0.19)
for the raw WCAM. Although weaker than the correlation between the distortion and the predicted
probability shift, this result highlights that the WCAM consistently captures the change in behavior of
the model resulting from the shift in acquisition conditions.

D. Data augmentation strategies
D.1. Description of the data augmentations
AugMix (Hendrycks et al., 2020). The data augmentation strategy "Augment-and-Mix" (AugMix) con-
sists of producing a high diversity of augmented images from an input sample. A set of operations
(perturbations) to be applied to the images are sampled, along with sampling weights. The image result-
ing 𝑥𝑎𝑢𝑔 is obtained through the composition 𝑥𝑎𝑢𝑔 = 𝜔1𝑜𝑝1 ◦ . . . 𝜔𝑛𝑜𝑝𝑛 (𝑥) where 𝑥 is the original
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image. Then, the augmented image is interpolated with the original image with a weight 𝑚 that is also
randomly sampled. We have 𝑥𝑎𝑢𝑔𝑚𝑖𝑥 = 𝑚𝑥 + (1 − 𝑚)𝑥𝑎𝑢𝑔.

AutoAugment (Cubuk et al., 2019). This strategy aims at finding the best data augmentation for a given
dataset. The authors determined the best augmentations strategy 𝑆 as the outcome of a reinforcement
learning problem: a controller predicts an augmentation policy from a search space. Then, the authors
train a model, and the controller updates its sampling strategy 𝑆 based on the train loss. The goal is for
the controller to generate better policies over time. The authors derive optimal augmentation strategies
for various datasets, including ImageNet (Russakovsky et al., 2015), and show that the optimal policy
for ImageNet generalizes well to other datasets.

RandAugment (Cubuk et al., 2020). This strategy’s primary goal is to remove the need for a com-
putationally expansive policy search before model training. Instead of searching for transformations,
random probabilities are assigned to the transformations. Then, each resulting policy (a weighted
sequence of 𝐾 transformations) is graded depending on its strength. The number of transformations
and the strength are passed as input when calling the transformation.

Blurring. We apply a nonrandom Gaussian blur to the image. The value is set by comparing visually
Google and IGN images and trying to remove details from Google images that are not visible on IGN
images. After a manual inspection, we set the blur level to discard the details at 0.1-0.2 m scale from
the image. It corresponds to a blurring value 𝜎 = 2. in the ImageFilter.GaussianBlur method
of the Python Imaging Library (PIL).

Blurring + Wavelet perturbation (WP). We first blur the image. Then, for each color channel, we com-
pute the dyadic wavelet transform of the image and randomly perturb the coefficients (we randomly
set some coefficients to 0) at targeted scales. The set of coefficients set to 0 is determined with uni-
form sampling. This results in a random perturbation that removes information for some precise scales
and locations. We then reconstruct the image from its perturbed wavelet coefficients. For each call,
20% of the coefficients are canceled. This value balances between the loss of information and the input
perturbation. We perturb each color channel independently. The wavelet perturbation aims to disrupt
information at specific scales, as it can happen with varying acquisition conditions.

D.2. Plots
Figure 10 plots examples of the different data augmentations implemented in this work. Along with
these augmentations, we apply random rotations, symmetries, and normalization to the input during
training. At test time, we only normalize the input images.
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Original image RandAugment RandAugment RandAugment RandAugment

Original image AutoAugment AutoAugment AutoAugment AutoAugment

Original image AugMix AugMix AugMix AugMix

Original image Blurring + WP Blurring + WP Blurring + WP Blurring + WP

Original image Blurring Blurring Blurring Blurring

Figure 10. Visualization of the different data augmentation techniques implemented in this work.

E. Accuracy results for variants of the Scattering transform
Table 5 presents the accuracy of the Scattering transform for two depth variants (labeled 𝑚 = 1 and
𝑚 = 2). We can see that the performance of the Scattering transform remains relatively poor regardless
of the depth of the scattering coefficients. Contrary to the claims of Bruna and Mallat, 2013, including
second-order coefficients does not seem enough to discriminate between images, as the number of false
positives remains high. This could be caused by the fact that our task, namely the detection of small
objects on overhead imagery, is more challenging than digit classifications.
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Table 5. F1 Score and decomposition in true positives, true negatives, false positives and false negative
rate of the classification accuracy of the Scattering Transform model trained on Google images and
deployed on IGN images.

Depth Dataset F1 Score (↑) True positive rate (↑) True negative rate (↑) False positive rate (↓) False negative rate (↓)

𝑚 = 1 Google baseline 0.57 0,84 0,09 0,57 0,57
IGN 0.57 0,71 0,40 0,52 0,36

𝑚 = 2 Google baseline 0.57 0,89 0,10 0,56 0,48
IGN 0.59 0,54 0,31 0,62 0,54

ERM
Google baseline 0.98 0.99 0.98 0.02 0.01

IGN 0.46 0.32 0.95 0.03 0.68

Random classifier
Google baseline 0.47 0,5 0,50 0,55 0,45

IGN 0.47 0,50 0,50 0,56 0,44

F. Additional figures
Figure 11 to Figure 13 present additional examples of qualitative assessment of the effects of distri-
bution shifts on the model’s prediction. On Figure 11, we can see that the model initially primarily
relied on the gridded pattern, particularly visible at the 4-8 pixel scale. The acquisition conditions dis-
carded this factor, thus explaining why the model could no longer recognize the PV panel. A similar
phenomenon occurs on Figure 12. Figure 13 presents an example of a prediction not affected by the
acquisition conditions. We can see that the important scales (especially at the 4-8 pixel scale) remain
the same.

Google - Prob : 1.00 IGN - p=1.00

WCAM WCAM

Figure 11. Analysis with the WCAM of the CNNs prediction on an image no longer recognized as a PV
panel.
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Google - Prob : 1.00 IGN - p=0.95

WCAM WCAM

Figure 12. Analysis with the WCAM of the CNNs prediction on an image no longer recognized as a PV
panel.

Google - Prob : 1.00 IGN - p=0.03

WCAM WCAM

Figure 13. Analysis with the WCAM of the CNNs prediction on an image that is insensitive to varying
acquisition conditions.
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