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Abstract—Parallelism is now a standard from the hardware
standpoint considering the multicore nature of current processors
and their vector processing feature. Beside somehow following
Moore’s Law and/or running faster, the design of multicore
processors was also driven by energy concern. With an increasing
number of cores per chip and wider SIMD capabilities, the
question of how the corresponding parallelism is related to power
consumption is important for energy-aware parallel implemen-
tation. The goal of this work is to provide from experimentation
some basic insights on the power consumption pattern related to
the aforementioned levels of parallelism including accelerated-
computing with GPUs.

Index Terms—Energy-Aware Computing, benchmarking,
power consumption, parallel computing, multicore processors

I. INTRODUCTION

The rapid evolution of processor architectures has opened
in a new era of innovation in high-performance computing
(HPC). This era, often referred to as the HPC “Cambrian”
explosion [1], has led to a diverse range of processor and
micro-architecture designs, each offering specific capabili-
ties for parallel computing. Considering traditional multicore
CPUs with vectorized SIMD units and massively parallel
GPUs, modern computing systems now can handle the major
parallel computing paradigms [2]. This dynamic can be seen
from the standpoint of both opportunities and challenges.
In fact, while these modern architectures promise impressive
computational performance, they also make it more complex to
select the optimal configuration for heterogeneous workloads,
particularly for large-scale supercomputing facilities.

As computational workloads continue to grow in charge, the
demand for energy-efficient computing has become a critical
concern [3]. Power consumption in computing systems is now
a primary factor in determining the overall efficiency and
sustainability of HPC solutions. Considering the increasing
about energy and sustainability together with the noteworthy
consumption of high-class data centers, reducing the energy
consumption of computing systems is crucial for both for
operational/maintenance budget and environmental concerns.
IEA estimates that by 2026, data centers could use up to 1,050
TWh of electricity, which is equivalent to the total electricity
demand of a country like Sweden or Germany [4]. In 2020,
ICT activities accounted for approximately 1.8% to 2.8% of
greenhouse gas (GHG) emission, which is more than the
emissions from the aviation sector [5]. Nowadays, researchers

and engineers seriously seek balanced design/implementation
approaches that address both computational performance and
power efficiency.

Serious advances have been made in the field of parallel
computing at all levels. However, traditional benchmarking
approaches still mainly focus on execution time, thus without
an explicit consideration of energy consumption. Seeking such
twofold efficiency in modern HPC systems requires a holistic
approach that accounts for both time/space performance and
energy. This shift in focus is essential as energy consumption
has become a limiting factor in scaling on supercomputers
[6], and minimizing power usage without compromising per-
formance is crucial for future developments in HPC [7].

The goal of this work is to investigate the energy effi-
ciency related to the main shared-memory parallel computing
paradigms: SIMD vectorization, multicore/multithreaded, and
GPU-based parallelism. Each of these paradigms presents
some specific characteristics in terms of how they leverage
parallelism and utilize system resources.

About the vector processing (also referred as SIMD), the
energy associated with activating wide vector lanes and the
power drawn by using vector units might be substantial.
Regarding multicore architectures, they offer the ability to
concurrently run multiple tasks across several cores, but the
overhead of synchronization and contention on shared re-
sources can affect both time performance and power efficiency.
GPUs, with their thousands of lightweight cores, excel at tasks
that require massive (data) parallelism, but their high power
consumption raises challenges for energy-aware computing.
These complexities necessitate a thorough examination of how
each of these paradigms behaves under different workloads
and specific settings, not only about time performance but also
about energy consumption.

To perform our energy efficiency evaluation, we consider
a set of kernel benchmarks designed to stress the aspects of
parallelism we want to investigate w.r.t energy. Memory access
patterns, in particular, are known to have a critical impact on
both performance and power consumption [8].

The contributions of this work are:
• A comprehensive experimental evaluation of power con-

sumption across three parallel computing paradigms.
• A set of benchmarking kernels to investigate the power

consumption model of different hardware aspects.



• Insights about the trade-offs between time performance
and power consumption.

The remainder of this paper is organized as follows. In sec-
tion II, a technical background on parallel models and related
work about power consumption analysis. The description of
our experimental methodology with measurement approach
in provided in section III. Experimental power consumption
measurements and related analyses are provided for CPU in
section IV and for GPU in section V. Section VI concludes
the paper.

II. PARALLEL MODELS AND POWER CONSUMPTION

Parallel computing models have evolved to address the
growing demand for HPC [9] and large-scale data processing.
These models, restricted to a single compute node, include
Single Instruction, Multiple Data (SIMD) vectorization, mul-
ticore/multithreaded architectures, and accelerator-based com-
puting (mainly with GPUs), and they offer different trade-offs
in terms of computational speed and power consumption. We
examine each of them from the energy perspective.

A. SIMD Vectorization

The SIMD model allows the same operation to be per-
formed on multiple data points simultaneously. It is commonly
implemented on modern processors through instruction sets
such as Intel’s AVX or ARM’s NEON [2]. While SIMD vec-
torization can significantly improve computational efficiency
by processing multiple data in a single instruction cycle, the
associated power consumption is likely to increase due to a
simultaneous utilization of multiple functional units within
the processor. However, since there a single instruction (no
explicit instruction dispatch), there is a potential power saving
compared to scalar execution [10]. SIMD power consumption
scales with the vector width and the complexity of instructions.
For example, using 256-bit or 512-bit wide SIMD instructions
may lead to higher power draw compared to narrower 128-
bit instructions [11]. Additionally, as idle lanes still consume
power, an under-utilized of the vector lanes (e.g., due to
data misalignment or irregular data sizes) reduces the overall
energy efficiency benefit.

B. Multicore Architectures

Multicore architectures, in which multiple CPU-cores are
integrated onto a single chip, coupled with multithreading,
where multiple threads are concurrently executed on the cores,
represent a more general-purpose form of shared-memory
parallelism. Each core or thread can handle independent tasks,
or work on different parts of the same problem in parallel,
which is highly advantageous for tasks with parallelizable
workloads such as scientific simulations, data analytics, and
machine learning training [12].

While this parallelism can improve overall performance,
there might be a power consumption increase due to the
overhead of the activity of additional cores. In fact, each active
core contributes to the total power consumption. However,
despite the higher power draw, multi-threading can improve

the overall energy efficiency because it reduces idle times
and allows tasks to complete faster, thereby lowering the total
energy following its correlation with the execution time [13].

C. GPU-Based Computing

GPU (Graphics Processing Units) is the major accelerator
unit tailored for massively parallel computation [14]. GPUs
are highly optimized for data-parallel tasks through a model
known as Single Instruction, Multiple Threads (SIMT), where
many threads execute the same instruction across different data
elements.

While GPUs are really faster on tasks with adequate
structure, energy efficiency is still a genuine concern. For
example, power consumption of Nvidia H100 is about 700W
(400W for A100) and servers like DGX-H100 have eight
H100 [15]. With this kind of systems, power consumption
is clearly a crucial aspect. Some studies analyze the energy
consumption and runtime performance of GPU libraries (like
TensorFlow and Pytorch) [16] and programming models (likes
OpenCL and CUDA) [17]. These studies conclude that tuning
for time performance generally improves energy efficiency,
specific optimizations are necessary to achieve optimal energy
efficiency. These insights are crucial for developers aiming to
optimize both performance and energy consumption in GPU-
accelerated HPC applications.

III. MEASUREMENT APPROACH AND TOOLS

The main performance metrics we have evaluated are
GFLOPS (for floating point operations) and GB/s (for memory
bandwidth). Regarding energy, CPU and GPU measurements
are recorded separately using an appropriate tool for each
platform following the testbed described in Table I.

For CPU (resp. GPU) benchmarking, we use C (resp.
Python) codes. Each experiment is repeated five times to
ensure consistency and to account for variability introduced
by the operating system (OS) activity, then the mean value is
calculated and considered.

A. Benchmarking selection

For benchmarking, we selected six common computing ker-
nels with different structure (compute-bound, memory-bound,
or mixed-bound operations).
Generalized Matrix Multiplication (GEMM): a classical linear
algebra kernel that is compute-bound, it is widely used in many
scientific/technical applications.
Sparse Matrix-Vector Multiplication (SPMV): also a linear
algebra kernel likely memory-bound because of its sparse
implementation (irregular memory access pattern).
Streaming Vector TRIAD (TRIAD): commonly used as memory
bandwidth benchmark to measure the memory throughput
through operations on large vectors, thus another memory-
bound kernel.
7-point 3D stencil computation (Stencil): a mixed kernel
that combines commonly used in the modeling of physical
phenomena like heat diffusion and fluid dynamics.



Monte Carlo Pi Estimation (Monte Carlo): also a compute-
bound kernel that is widely used in stochastic simulations and
financial modeling.
Generalized Euclidean Distance from Origin (DIST): a mixed
workload that combines vectorized memory access and
floating-point operations, widely used in AI for clustering and
k-nearest neighbors algorithms.

B. CPU Benchmarking and Instrumentation

For CPU-based parallel benchmarking, we used the LIKWID
tool suite [18] for code instrumentation and performance
profiling. LIKWID offers a comprehensive set of features
for monitoring performance counters, memory traffic, and
energy consumption in modern processors, making it an ideal
choice for benchmarking SIMD and multithreaded programs.
Its MakerAPI feature allows to profile a specific section of
the input program, thereby enabling fine-grained collection of
energy-related data.

With a given code, we analyse three versions:

• Scalar (Sequential): Baseline version, scalar and single-
threaded.

• Multithreaded (OpenMP): Multi-threaded version de-
rived from the baseline using OpenMP (mainly on loops).

• Vectorized (SIMD): SIMD version implemented from
the baseline using SSE and AVX intrinsics.

We use gcc compiler with -O0 flag so as to prevent any
optimization that would hinder our observations. We use the
likwid-perfctr module to capture performance counters
and energy consumption at runtime. For memory traffic and
cache behavior, we rely on event groups such as MEM_SP
(on Intel) and MEM1, MEM2 (on AMD). Energy consumption
is recorded via the ENERGY group, providing detailed power
metrics for the CPU cores. Thread affinity is controlled using
likwid-pin, ensuring that threads are properly pinned to
the CPU-cores in a one-to-one binding.

C. GPU Benchmarking with EA2P

For GPU benchmarking we used Python-based implementa-
tions of the same kernels plus two additional kernels (3D sten-
cil and Monte Carlo pi estimation). For energy measurement,
we used EA2P (Energy-Aware Application Profiler) [19], an
energy profiler tool that can handle GPU-accelerated appli-
cations (unlike likwid). Considering Python codes allow to
leverage popular GPU-accelerated frameworks such as CuPy,
JAX, TensorFlow, and PyTorch.

EA2P is used to gather both energy and running time
of GPU code blocks at desired granularity. We compute
performance metrics like GFLOPS and GB/s by dividing the
data size and the FLOPs by the measured running time (we
roughly assume that each data is accessed once).

By leveraging the advanced capabilities of LIKWID for
CPU instrumentation and EA2P for GPU profiling, we ensure
that our methodology captures both performance and energy
consumption with a good accuracy.

TABLE I
PLATFORM CHARACTERISTICS (TAKEN FROM [20] AND [21])

Name Chirop Chuc
CPU model Intel Platinum 8358 AMD EPYC 7513
Clock speed 2.6 GHz 2.6 GHz
Turbo Speed Up to 3.4 GHz Up to 3.65 GHz
Physical Cores 32 (Threads: 64) 32 (Threads: 64)
L1 iCache 1,024KB 8-way set 1,024KB 8-way set
L1 dCache 1,536KB 12-way set 1,024KB 8-way set
L2 Cache 40MB 20-way set 16MB 8-way set
L3 Cache 48MB 12-way set 128MB 16-way set
DRAM Memory 512GB DDR4-3200 512GB DDR4-3200
CPU TDP 250W 200W
GPU Model / Nvidia A100 SXM4
GPU TDP / 400W
GPU Memory / 40GB HBM2
Data precision Single Single
SIMD extensions SSE, AVX, AVX512 SSE, AVX
Operating System Linux Debian 5.10.209 Linux Debian 5.10.209

IV. BASIC ANALYSIS FOR X86 CPU ARCHITECTURES

For all the findings in this section, “acc.” means accel-
eration, “tot.” is total (i.e. values gathered via hardware
counters), “app.” is the effective value of the metric (i.e.
without the background overhead), and “PKG” is the CPU
package domain.

A. Power consumption in idle state

The baseline energy consumption of the system (i.e., when
no program is running except the OS) is expected to be
proportional to time (i.e. constant power) because of several
factors including thermal ones in addition to OS activity. We
used a sleep program (written in C). The objective is to
check the stability of the system in the idle mode so as to
consider that energy overhead in our measurements. If the
linear relation of the energy in idle mode holds, then we will
consider the formulas in equation (1).

{
Eidle(t) = α+ β × t

Eapplication = Emeasured − Eidle(tapplication)
(1)

Where
• Emeasured is the measured energy,
• Eapplication is the effective energy consumed by the

application,
• α and β are the linear regression coefficients (they are

platform-dependent),
• tapplication is the elapsed time of the application.
Our results as displayed in Table II shows that power is con-

stant in the idle mode, with a little overhead at the beginning
(first second) due to the loading of the sleep program itself.
The Intel Ice Lake SP CPU consumes approximately 50W on
average in idle state, which represents 20% of its theoretical
TDP (250W). The AMD Zen 3 CPU consumes around 56W,
which is about 28% of its TDP (200W). Additionally, the
RAM package on the Intel system draws a significant amount
of power in idle state, about 9-10W. Note that this RAM power
consumption is associated with approximately 2.5GB/512GB



(1.59GB/504GB on AMD) of memory usage by the system in
idle state.

Using a linear regression on our measurements in idle state
(see table II), we get the relations shown in equation 2 ).
As previously explained, we obtain the effective energy by
subtracting this overhead to the measured values (See Tables
IV, V, VI and VII).

Eidle−CPU−Intel(t) = 4.44 + 47.95× t

Eidle−RAM−Intel(t) = 0.63 + 9.41× t

Eidle−CPU−AMD(t) = 1.88 + 56.14× t

(2)

With RMSE = 6.36 and R² = 1.00 for Intel CPU model;
RMSE = 0.49 and R² = 1.00 for Intel RAM; and RMSE =
8.65 and R² = 0.9999 for AMD model

TABLE II
POWER-ENERGY OF SLEEP TEST FOR IDLE POWER CONSUMPTION FOR

SINGLE CORE USAGE

runtime [s] 1 2 4 8 16 32 64

AMD
power PKG [W] 57.73 55.60 55.47 55.62 56.52 56.78 56.02
energy PKG [J] 57.74 111.22 221.89 444.98 904.45 1817.08 3585.92
Intel
power PKG [W] 52.22 49.11 49.68 49.07 48.48 47.64 48.10
energy PKG [J] 52.22 98.22 198.71 392.56 775.74 1524.49 3078.67
power RAM [W] 9.97 9.69 9.64 9.60 9.41 9.42 9.43
energy RAM [J] 9.97 19.38 38.55 76.78 150.53 301.36 603.49

We now consider the same sleep test on multiple cores
(using OpenMP) in order to assess the effectiveness of power-
saving features. We assume that CPU cores are disabled or
in the power-saving mode when no workload is running. This
test aims to validate the potential power variation caused by
the creation of multiple processes pinned to CPU hardware
cores, even if they are not handling any workload.

Table III shows the results of our measurements on a
multicore context as previously explained. The increase in
consumed energy is not strictly linear with respect to the
number of active cores with shorter runtimes. However, the
average power is more stable as the running time increases,
and the overall multi-threaded power consumption becomes
closer to that of single-thread power consumption on both
Intel and AMD. Applying the linear regression on the data
from Table III yields equation 3) and indicates that the linear
model holds in this case as well.


Eidle−CPU−Intel(t) = 3.87 + 48.36× t

Eidle−RAM−Intel(t) = −0.0003 + 9.67× t

Eidle−CPU−AMD(t) = 1.67 + 56.50× t

(3)

With RMSE = 6.23 and R² = 0.9977 for Intel CPU model;
RMSE = 0.5599 and R² = 0.9995 for Intel RAM; and RMSE
= 3.75 and R² = 0.9994 for AMD model

For our multicore measurements and analyses, we will
proceed similarly with using the formulas of equation (2) to
get the effective consumption of our parallel benchmarks.

TABLE III
IDLE POWER CONSUMPTION WITH MULTIPLE CORES

Sleep[s] #threads
AMD Intel

Energy Power Energy Power Energy Power
PKG [J] PKG [W] PKG [J] PKG [W] DRAM [J] DRAM [W]

1

seq 57.74 57.73 52.22 52.22 9.97 9.97
2 56.21 56.20 53.27 53.26 9.71 9.71
4 59.24 59.23 49.41 49.41 9.78 9.78
8 60.94 60.92 49.71 49.71 9.38 9.38

16 59.25 59.24 50.98 50.97 9.63 9.63
32 62.55 62.54 57.17 57.16 9.72 9.72

2

seq 111.22 55.60 98.22 49.11 19.38 9.69
2 113.62 56.80 100.36 50.18 19.24 9.62
4 111.83 55.90 93.00 46.50 18.87 9.43
8 112.10 56.05 99.75 49.87 19.11 9.55

16 116.76 58.37 103.62 51.81 19.32 9.66
32 118.36 59.17 101.09 50.54 19.51 9.75

4

seq 221.89 55.47 198.71 49.68 38.55 9.64
2 228.46 57.11 190.24 47.56 38.13 9.53
4 224.67 56.17 195.04 48.76 38.64 9.66
8 227.36 56.84 198.30 49.57 37.73 9.43

16 225.97 56.49 195.69 48.92 39.09 9.77
32 231.96 57.98 218.63 54.66 40.70 10.18

8

seq 444.98 55.62 392.56 49.07 76.78 9.60
2 452.97 56.62 376.29 47.03 76.84 9.60
4 451.19 56.39 392.11 49.01 77.48 9.68
8 461.09 57.63 387.63 48.45 77.23 9.65

16 461.28 57.65 392.26 49.03 78.31 9.79
32 453.65 56.70 399.56 49.94 77.45 9.68

B. Mono-core time-energy measurements and analysis

The results in Tables V and IV show that time and energy
(including CPU and DRAM for Intel) are highly correlated
on both platforms. Considering this correlation between time
and energy, energy efficiency improves when the vectorization
effectively reduces the execution time without a substantial
increase in power consumption, which seems to be what
we observed. However, applications that heavily use SIMD
computing units are more sensitive to power consumption
increases on AMD Zen 3 compared to Intel Ice Lake SP. This
is more visible with DIST time-energy acceleration gap (2.03
time speedup vs 1.79 energy speedup). This behaviour might
depend on the CPU architecture, as it was not observed on
Intel, even with DIST.

TABLE IV
TIME AND ENERGY MEASUREMENTS OF SIMD ON AMD

Code Time acc. Energy Energy acc. acc.
version [s] (time) PKG[J] Eapp PKG Eapp

SPMV_COO
seq 14.26 1.00 1108.50 328.50 1.00 1.00
sse 15.22 0.94 1157.10 307.77 0.96 1.07
avx 11.32 1.26 897.72 259.14 1.23 1.27

TRIAD
seq 7.17 1.00 547.18 144.32 1.00 1.00
sse 5.84 1.23 433.66 106.94 1.26 1.35
avx 3.19 2.25 251.31 71.77 2.18 2.01

GEMM
seq 124.83 1.00 9160.88 2201.11 1.00 1.00
sse 46.95 2.66 3469.80 841.02 2.64 2.62
avx 29.02 4.30 2151.76 518.80 4.26 4.24

DIST
seq 3.44 1.00 289.16 92.74 1.00 1.00
sse 2.96 1.16 268.70 100.46 1.08 0.92
avx 1.70 2.03 161.99 64.63 1.79 1.43



TABLE V
TIME AND ENERGY MEASUREMENTS OF SIMD ON INTEL

code time energy CPU [J] CPU acc. energy RAM [J] RAM acc.
ver. [s] acc. PKG app. PKG app. tot. app. tot. app.

SPMV_COO
seq 9.91 1.00 991.37 476.01 1.00 1.00 164.17 70.02 1.00 1.00
sse 10.74 0.92 1070.30 511.83 0.93 0.93 175.74 73.72 0.93 0.95
avx 9.17 1.08 920.92 443.84 1.08 1.08 153.05 65.89 1.07 1.06

DIST
seq 6.45 1.00 663.17 340.64 1.00 1.00 94.83 33.55 1.00 1.00
sse 4.52 1.43 453.75 227.94 1.46 1.49 66.98 24.08 1.42 1.39
avx 2.49 2.59 253.93 129.32 2.61 2.63 38.16 14.49 2.48 2.32

GEMM
seq 116.56 1.00 11943.84 6116.03 1.00 1.00 1606.94 499.66 1.00 1.00
sse 56.08 2.08 5662.58 2858.58 2.11 2.14 774.71 241.95 2.07 2.07
avx 29.14 4.00 2920.22 1463.07 4.09 4.18 401.29 124.44 4.00 4.02

TRIAD
seq 5.43 1.00 544.94 273.55 1.00 1.00 85.12 33.56 1.00 1.00
sse 3.38 1.61 342.35 173.20 1.59 1.58 55.58 23.44 1.53 1.43
avx 2.30 2.36 237.01 122.15 2.30 2.24 39.79 17.97 2.14 1.87

C. Multi-core time-energy measurements and analysis

The results in Tables VI and VII show that for both archi-
tectures, time and energy efficiencies follow similar tendencies
with different slopes (unlike the single-core case). We can say
that there is a significant power overhead when using more
cores. Thus, the energy speedup is noticeably lower that time
speedup (by factor 2 for some cases like SPMV_COO with
32 cores on both INTEL and AMD). In all cases, time and
energy efficiencies match when using up to 8 cores, and a
serious gap appears with 16 and 32 cores. We think that
this phenomenon will generally apply with a large number
of cores and get worse with NUMA configurations. Since we
did not see this the idle state investigation, we can strongly
presume that there is a significant energy cost associated to
managing multithreading execution including OS orchestration
and all associated hardware mechanism like cache coherency,
bus contention, synchronization (if any).

D. Memory power consumption

Our results in Figures 1 and 2 confirm a clear correla-
tion between memory bandwidth and power consumption.
Higher bandwidth leads to higher power draw, but energy
consumption can be reduced because of lower data transfer
time. For memory-bound applications, the benefit is trivial,
otherwise the energy efficiency will really depend on the
balance between computation energy and memory accesses
energy. As expected, for compute-bound applications like
GEMM, the energy related to memory accesses is proportional
to the overall energy whose also proportional to the execution
time.

On INTEL, although the memory bandwidth increases
for GEMM, the overall RAM power consumption remains
relatively constant (see figure 1.d). In addition, data traffic
decreases significantly (from 2.92GB with 2 threads to 0.98GB
with 32 threads). Similarly, SPMV data traffic tends to slightly
decrease with more threads (from 83GB to 74GB) and remains
constant with DIST and TRIAD. There is a strong correlation
between bandwidth and power even with large volumes of
data.

TABLE VI
MULTITHREAD TIME AND ENERGY MEASUREMENTS ON AMD

#threads Time acc. Energy Energy acc. acc.
[s] (time) PKG[J] Eapp PKG Eapp

SPMV_COO
seq 14.26 1.00 1108.50 328.50 1.00 1.00
2 5.78 2.47 544.11 214.29 2.04 1.53
4 3.22 4.43 338.55 157.49 3.27 2.09
8 3.07 4.64 327.58 156.87 3.38 2.09
16 1.87 7.65 227.27 122.29 4.88 2.69
32 1.63 8.72 229.85 122.81 4.82 2.67

TRIAD
seq 7.17 1.00 547.18 144.32 1.00 1.00
2 3.87 1.85 334.74 114.63 1.63 1.26
4 2.13 3.36 215.68 97.38 2.54 1.48
8 1.82 3.93 200.93 97.04 2.72 1.49
16 0.99 7.26 135.64 74.24 4.03 1.94
32 0.68 10.60 110.45 71.09 4.95 2.03

GEMM
seq 124.83 1.00 9160.88 2201.11 1.00 1.00
2 64.15 1.95 5248.30 1658.71 1.75 1.33
4 32.22 3.87 3039.53 1232.53 3.01 1.79
8 25.44 4.91 2468.35 1049.06 3.71 2.10
16 12.98 9.62 1562.17 849.76 5.86 2.59
32 7.14 17.49 1136.23 732.24 8.06 3.01

DIST
seq 3.44 1.00 289.16 92.74 1.00 1.00
2 2.03 1.70 177.53 75.66 1.63 1.23
4 1.33 2.59 142.91 69.05 2.02 1.34
8 1.15 2.99 136.36 66.27 2.12 1.40
16 0.90 3.81 118.28 62.61 2.44 1.48
32 0.98 3.50 132.67 77.22 2.18 1.20

TABLE VII
MULTITHREAD TIME AND ENERGY MEASUREMENTS ON INTEL

#th time energy CPU [J] CPU acc. energy RAM [J] RAM acc.
[s] acc. PKG app. PKG app. tot. app. tot app.

SPMV_COO
seq 9.91 1.00 991.37 476.01 1.00 1.00 164.17 70.02 1.00 1.00
2 5.63 1.76 597.85 305.27 1.66 1.57 105.59 52.14 1.55 1.34
4 2.96 3.35 349.97 196.12 2.83 2.44 66.35 38.24 2.47 1.83
8 1.66 5.97 230.20 143.83 4.31 3.32 46.37 30.59 3.54 2.29
16 0.99 9.98 175.81 124.16 5.64 3.85 34.74 24.81 4.73 2.82
32 0.71 14.03 159.36 115.57 6.22 4.14 29.40 22.33 5.58 3.14

DIST
seq 6.45 1.00 663.17 340.64 1.00 1.00 94.83 33.55 1.00 1.00
2 3.34 1.93 370.88 203.91 1.79 1.67 51.59 19.86 1.84 1.69
4 1.69 3.82 219.11 134.72 3.03 2.53 28.37 12.33 3.34 2.72
8 0.88 7.34 144.69 100.76 4.58 3.38 16.51 7.72 5.75 4.35
16 0.50 12.86 111.27 85.20 5.96 4.00 10.99 5.98 8.63 5.61
32 0.41 15.72 95.19 69.80 6.97 4.88 10.14 6.03 9.36 5.56

GEMM
seq 116.56 1.00 11943.84 6116.03 1.00 1.00 1606.94 499.66 1.00 1.00
2 56.84 2.05 6162.93 3320.87 1.94 1.84 786.53 246.54 2.04 2.03
4 34.26 3.40 4092.08 2378.91 2.92 2.57 473.73 148.22 3.39 3.37
8 17.14 6.80 2471.08 1614.09 4.83 3.79 236.93 74.10 6.78 6.74
16 8.61 13.54 1670.17 1239.89 7.15 4.93 119.88 38.12 13.41 13.11
32 5.56 20.97 1330.47 1052.57 8.98 5.81 77.29 24.49 20.79 20.40

TRIAD
seq 5.43 1.00 544.94 273.55 1.00 1.00 85.12 33.56 1.00 1.00
2 2.94 1.85 313.14 166.28 1.74 1.65 49.97 22.06 1.70 1.52
4 1.50 3.63 185.50 110.67 2.94 2.47 29.80 15.58 2.86 2.15
8 0.80 6.80 120.49 80.54 4.52 3.40 19.48 11.49 4.37 2.92
16 0.49 11.03 95.21 69.64 5.72 3.93 15.05 10.13 5.65 3.31
32 0.48 11.23 96.20 66.22 5.66 4.13 14.63 9.79 5.82 3.43



On AMD (note that we could not get RAM energy as there
no specific hardware counter for that), the volume of memory
is stable but significantly fluctuates with GEMM although
a constant bandwidth. For other applications, the bandwidth
increases with the number of cores as the overall energy.

The main conclusion here is that optimizing for memory
has a twofold benefit: reduction of both execution time and
consumed energy.

V. GPU INVESTIGATION THROUGH PYTHON FRAMEWORKS

The goal of this section is twofold, we first show that
EA2P is operational for measuring power consumption of
specific applications on GPU and then we analyse the obtained
measurements in order to provide some insights about the
trade-off between speed and energy. Tables VIII and IX display
our experimental results. In both cases, the whole program is
launch on the CPU and only the main kernel is offloaded on
the GPU. The timeframe of the measure (time and energy)
is that of the execution on the GPU without data transfers.
This means that the reported energy values for the GPU (resp.
CPU) is related to its computation (resp. the moment the
GPU operates). We generally see that, even if the CPU is
not doing any computation during that time, it consumes a
significant part of the overall energy, sometimes the major
part like TRIAD/JAX, TRIAD/TORCH and STENCIL/JAX
(see Table VIII, where the last two columns related to power
are obtained by dividing the overall energy by the execution
time). In addition, the considered framework has a significant
impact on computing time on the GPU (SPMV is six times
faster with JAX that with PyTorch for instance), and thus on
energy consumption (ten times more with the same example).
Power looks stable from the CPU side, which is normal as
there no ongoing computation. However, from the GPU side,
power fluctuates (55W with STENCIL to 392W with GEMM
using JAX), a similar gap can be observed with TRIAD and
GEMM using PyTorch. What we can say at this point is that,
for a given application, the choice of the implementation is
important depending on its structural nature.

A. Main experimental observations

GEMM (Compute-Bound Kernel): GEMM is the most
power-hungry kernel across all frameworks (see the penul-
timate column of Table VIII), which aligns with the fact that
it is heavily compute-bound. TensorFlow and JAX stand out,
with TensorFlow leading in GFLOPS/W while JAX has good
performance but with the highest power consumption.

TRIAD (Memory-Bound Kernel): CuPy and TensorFlow are
the most power-hungry for this kernel, probably the price from
their aggressive approach to maximize performance.

SPMV (Balanced Kernel): TensorFlow demonstrates the
best performance (which indicates that it is well-optimized
for sparse computation on GPU) while also JAX is the most
power-efficient. PyTorch does not perform well neither on
speed nor on power consumption.

Monte Carlo Pi Estimation (Compute-Bound Kernel): JAX
(resp. CuPy) is the most (resp. less) efficient both in time

TABLE VIII
BENCHMARK RESULTS FROM THE FRAMEWORKS STANDPOINT

Energy(J) Power(W)
Ben Bench Time (s) GPU CPU GPU CPU

JAX

triad 22.707 1019.163 1333.950 44.883 58.746
gemm 2.868 1124.698 200.235 392.185 69.823
dist 16.405 4199.758 1189.615 256.004 72.515
stencil 20.468 1139.352 1238.476 55.665 60.508
spmv 4.507 496.708 328.250 110.197 72.824
monte_carlo 5.761 1409.745 428.575 244.721 74.397

TORCH

triad 23.729 913.214 1354.176 38.485 57.068
gemm 22.346 7832.080 1621.745 350.498 72.576
dist 6.460 1477.742 458.006 228.736 70.894
stencil 9.561 2304.111 685.952 240.980 71.742
spmv 26.672 5853.350 1928.214 219.460 72.295
monte_carlo 6.983 1194.045 486.140 171.004 69.622

TFLOW

triad 3.496 828.763 245.760 237.071 70.300
gemm 3.964 1426.650 298.625 359.942 75.343
dist 6.292 1511.220 450.808 240.175 71.646
stencil 12.418 2942.685 904.744 236.968 72.857
spmv 3.416 632.714 246.714 185.196 72.213
monte_carlo 7.890 2084.313 572.970 264.187 72.624

CUPY

triad 3.477 983.167 246.026 282.737 70.752
gemm 23.337 8309.033 1685.315 356.049 72.217
dist 6.191 1909.106 445.360 308.350 71.933
stencil 8.585 2331.348 621.098 271.563 72.348
spmv 23.529 3263.848 1712.680 138.718 72.791
monte_carlo 5.725 1777.493 414.570 310.486 72.416

TABLE IX
BENCHMARK RESULTS FROM THE LIBRARIES STANDPOINT

Bench lib CPU (J) GPU (J) GPU Power (W) Time (s) Gflops/s Gflops/W

Stencil

torch 685.95 2304.11 241.01 9.56 63.18 0.262
tflow 904.74 2942.69 236.93 12.42 28.17 0.119
jax 1238.48 1139.35 55.66 20.47 57.68 1.036
cupy 621.10 2331.35 271.08 8.59 70.34 0.259

DIST

torch 458.01 1477.74 228.75 6.46 123.62 0.540
tflow 450.81 1511.22 240.25 6.29 126.91 0.528
jax 1189.62 4199.76 255.93 16.41 730.87 2.856
cupy 445.36 1909.11 308.42 6.19 96.84 0.314

TRIAD

torch 1354.18 913.21 38.48 23.73 16.85 0.295
tflow 245.76 828.76 236.79 3.50 114.12 0.482
jax 1333.95 1019.16 44.87 22.71 17.61 0.392
cupy 246.03 983.17 282.52 3.48 114.71 0.406

SPMV

torch 1928.21 5853.35 219.47 26.67 1.88 0.008
tflow 246.71 632.71 185.00 3.42 35.32 0.190
jax 328.25 496.71 110.13 4.51 3.20 0.029
cupy 1712.68 3263.85 138.71 23.53 0.23 0.002

Monte
carlo

torch 486.14 1194.05 171.06 6.98 214.44 1.253
tflow 572.97 2084.31 264.17 7.89 253.18 0.958
jax 428.58 1409.75 244.75 5.76 1732.50 7.079
cupy 414.57 1777.49 310.21 5.73 261.56 0.843

GEMM

torch 1621.75 7832.08 350.43 22.35 17454.74 49.810
tflow 298.63 1426.65 360.26 3.96 103368.22 286.923
jax 200.24 1124.70 391.88 2.87 95814.29 244.498
cupy 1685.32 8309.03 355.00 23.34 17595.68 49.426

and power. JAX seems particularly well-suited for compute-
bound applications, where it efficiently converts power into
computational output (best Gflops/W).

7-Point 3D Stencil (Memory-Bound Kernel): In the 3D
stencil benchmark, JAX provides the best energy-efficiency
(W), and it also achieves the highest performance per watt
(Gflops/W). This indicates that JAX is well-optimized for
handling large-scale memory-intensive tasks on GPU.

DIST (Compute-Bound Kernel): JAX achieves the best
performance with similar power that the others (thus the best
Gflops/W). JAX’s strength in compute-bound scenarios looks
consistent, making it a good choice for intensive calculation
applications.
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Fig. 1. Memory performance and power consumption with an INTEL multicore
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Fig. 2. Memory performance and power consumption with an AMD multicore

B. Global analysis of the considered frameworks

• JAX: Demonstrates its strength not only on compute-
bound tasks but also on complex memory-bound op-
erations like 3D-stencil. Its ability to handle complex
workloads with high efficiency makes it a strong client
for tasks that require high memory bandwidth and good
computing efficiency.

• TensorFlow: While TensorFlow show good performances
in a broad range of tasks, it appears less efficient in a
memory-bound scenario like 3D-stencil.

• PyTorch: Memory-bound tasks are still a little challeng-
ing. However, it remains a versatile framework, particu-
larly for tasks with large data size support.

• CuPy: CuPy is globally powerful and can handle highly
optimized workloads at the price of higher power con-
sumption especially on memory-bound cases.

These insights are valuable for selecting the right framework
based on the metric of interest (time or energy) and on the
specific nature of the application (compute-bound, memory-
bound, or a mixed).

VI. SUMMARY, CONCLUSION AND FUTURE WORK

Our goal was to conduct an experimental investigation of
the power consumption pattern considering standard both CPU
(single-core and multi-core) and GPU so as to provide some
insights about the correlation between speedup and energy
reduction.

The correlation between time and energy seems to remain
valid even in the multi-core context to some extents. The re-
gression models shows that while multi-threading (potentially)

improves the computing speed, it does not (always) scale
linearly with power consumption, thus highlighting the needs
for specific tuning to achieve an optimal balance between
performance and energy efficiency.

Regarding power consumption related to memory accesses,
higher bandwidth is likely to yield an increase of the power
draw but can improve the overall energy efficiency, partic-
ularly with large data volume. Things are less predictable
with memory-bound tasks, thus the need for careful memory
management so as to avoid unnecessary power consumption
overhead.

In summary, this research underscores the complex relation-
ship between performance, power consumption, and energy
efficiency across different architectures and workloads. Opti-
mizing for both energy efficiency and performance requires a
comprehension of workload characteristics, hardware-specific
features, and the impact of parallelization and vectorization.
These aspects are the basis for investigating energy-efficient
computing with CPUs and GPUs.

For future work, we plan to design power management
techniques by deeply investigating all hardware power-saving
features for energy-aware programming and scheduling. From
the programming side, we wish to consider our observations
together with existing fine-grain profiling tools/API to design
a methodology to seek energy-efficient implementation in the
major computing platforms. A DSL approach [22] could be
considered too, so as to seek an energy-aware code generation.
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Fig. 3. GFLOPS and GB/s vs Power all benchmaks and frameworks
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