
HAL Id: hal-04819054
https://minesparis-psl.hal.science/hal-04819054v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Flexible Operational Framework for Energy Profiling
of Programs

Roblex Nana Tchakoute, Claude Tadonki, Petr Dokladal, Petr Dokladal,
Youssef Mesri

To cite this version:
Roblex Nana Tchakoute, Claude Tadonki, Petr Dokladal, Petr Dokladal, Youssef Mesri. A Flexible
Operational Framework for Energy Profiling of Programs. 2024 International Symposium on Com-
puter Architecture and High Performance Computing Workshops (SBAC-PADW), Nov 2024, Hilo,
United States. pp.12-22, �10.1109/SBAC-PADW64858.2024.00014�. �hal-04819054�

https://minesparis-psl.hal.science/hal-04819054v1
https://hal.archives-ouvertes.fr


A Flexible Operational Framework for Energy
Profiling of Programs

Roblex Nana Tchakoute∗, Claude Tadonki∗, Petr Dokladal† and Youssef Mesri‡
Centre de Recherche en Informatique (CRI), Mines Paris - PSL, Fontainebleau, France∗

Centre de Morphologie Mathématique (CMM), Mines Paris - PSL, Fontainebleau, France†

Centre de Mise en Forme de Matériaux (CEMEF), Mines Paris - PSL, Sophia Antipolis, France‡

Email : {roblex.nana tchakoute, claude.tadonki, petr.dokladal, youssef.mesri}@minesparis.psl.eu

Abstract—Energy has become a serious concern in the HPC
ecosystem for various reasons. The level of the issue is from
crucial to critical depending on the context. Considering the
variety of hardware devices and the granularity of the desired
measurements, addressing the problem of energy profiling clearly
requires adequate support tools for measurements and (energy
aware) monitoring. There are several frameworks that aim at
estimating the energy consumed by a given program on a given
computing system, however they mainly suffer from some short-
comings related to flexibility, portability, accuracy and programma-
bility. Thus, we propose a tool, so-named EA2P, that is reasonably
flexible from both hardware and software standpoints, supporting
the major parallel paradigms including GPU acceleration. The
tool is publicly available at https://github.com/HPC-CRI/EA2P.

Index Terms—Energy, power, profiling, code instrumentation

I. INTRODUCTION

Beside traditional complexity metrics like time and space,
an important focus is nowadays on energy. This is due to
the increasing concern about energy cost and related con-
sequences, together with an intensive usage of computing
systems for scientific research and real-life applications [1].
Vendors in the HPC industry are struggling to provide hard-
ware and software solutions to meet this demand. Traditional
Central Processing Units (CPUs) are no longer sufficient
to efficiently handle cutting-edge AI applications and the
vast data streams from diverse sensors. Leading technology
companies like NVIDIA, AMD, Intel and ARM have been
actively addressing these evolving requirements by pushing the
boundaries of technology to provide efficient and adaptable
processing solutions. However, the energy consumption of
these HPC devices is becoming so important that it has to be
seriously taken into account. This concern is also motivated
by the correlation with the associated carbon footprint [2].
To illustrate the level of energy consumption of computing
activities, we cite two examples: (1) large-scale data centers
consume more than 100 megawatts (≈ power consumption
of 80,000 households) [3]; (2) the energy consumption of
training the current world’s largest open multilingual language
Model (BLOOM) is 433,196 kWh ≈ 24.69 tons of CO2
emissions [4]. According to “Bird & Bird“ [5], the high-
tech sector is responsible for around 7% of global electricity
consumption with a prediction of 13% by 2030. It is thus
clear that optimizing the energy of computing activities is of a

genuine importance, and the need for efficient/accurate energy
measurement tools for this purpose is highly relevant.

Energy consumption can be measured with available tools
like Perf [6], PAPI [7], Likwid [8], Intel PowerGadget [9],
Intel PowerTop [10], Linaro Forge DDT & MAP [11], CrayPat
[12], Score-P [13], to name few of them, or newer generation
tools like perun [14], PyJoules [15], CodeCarbon [16], Eco2AI
[17], Variorum [18], Carbon Tracker [19], Tracarbon [20],
Experiment-impact-tracker(EIT) [21], Green Algorithms [22].
An experimental comparison of software-based power meters
is provided by Jay et al. [23]. Most of existing tools have
a weakness related to important characteristics like flexibil-
ity, portability, accuracy, programmability and maintainability
that are necessary for energy profiling. Flexibility is crucial in
a context of heterogeneous computing as the measurements
have to be done for various kinds of device using the same
tool. Indeed, a typical HPC system nowadays mixes multi-
core CPUs, Graphics Processing Units (GPUs), and Field
Programmable Gate Arrays (FPGAs). Programmability is im-
portant for the design of energy-aware programs directly or
through code generation [24].

In this paper, we present “EA2P (Energy-Aware Application
Profiler)“, a flexible, accurate and multi-platform tool for
energy profiling of Python Programs. EA2P is a Python
package to measure the energy consumption of the major
devices (RAM, CPU, GPU) when running Python applications
(like most AI frameworks). Our tool is built on top of a set of
APIs that includes RAPL interfaces, Linux Perf tools, Nvidia-
SMI and ROCm-SMI. Our methodology allows to accurately
estimate the energy consumption of the main memory (RAM)
on platforms that do not have specific hardware counters for
example. Our experimental evaluation illustrates the flexibility
and accuracy of our tool for energy measurements.

The keys contribution of this paper are :
• Design and implementation of multi-devices energy pro-

filer that works for the major cases.
• An analytical model for RAM energy measurement on

platforms that do not integrate RAPL DRAM.
We provide an experimental validation of our tool and its
model through a comparison with the results obtained with
other existing tools, considering different use cases like ML
training (Python) and benchmarking C/C++ (for non-Python
cases through the binaries).



The remainder of this paper is organised as follows. Section
II provides a detailed explanation about the motivation behind
the design of our proposed tool, followed by the description of
the basic technical background about energy/power measure-
ment in Section III. The design and implementation of our
tool is presented in Section IV, followed by the results of our
experimental evaluation in Section V. Section VI concludes
the paper and indicated some perspectives.

II. PRELIMINARIES AND BACKGROUND

The major contributors to the energy consumption in a com-
mon computing system include the GPU (if any), CPU, and
memory. Nevertheless, there are other components that also
impact on energy like fans, optical drives, motherboards, and
hard drives. Moreover, energy consumption can fluctuate due
to external factors like the ambient temperature, the overhead
of the OS and the dynamic behaviour of user-applications.
Figure 1 displays an overview of the power ranges of the main
components of a standard computer. A study by Appuswamy et
al. [25] indicates that the power consumption by a DRAM be-
comes increasingly significant in overloaded systems, getting
close to the CPU power consumption at 1.5 TB of memory for
2 processor chips, and 3 TB for 4 chips. At 6 TB, the DRAM
significantly consumes more power than the idle CPUs (2.4×
to 4.7×). Note that the values provided by Fig. 1 can be merged
since several components might operate concomitantly.

Fig. 1. Typical power ranges in a computing system.

Standard solutions for fine-grain energy profiling are based
on built-in sensors and native support tools/APIs, despite being
thereby limited to what provided by the manufacturers. Table
I provides a compatibility overview of the aforementioned
tools including ours (EA2P), where CodeC = CodeCarbon,
EIT = Experimental Impact Tracker, CTrac = Carbon tracker,
TraC=Tracarbon, IntelPG = Intel PowerGadget, DDT-MAP =
Linaro Forge DDT & MAP and our “EA2P“.

Considering the major tools listed in Table I (Perun, Code-
Carbon, EIT, Eco2AI, TraCarbon, Likwid, and Variorum) and
their respective limitations, we have been motivated to design
a new framework that offers more flexibility.

Perun is a Python package designed to estimate the energy
consumption of Python scripts on standard processors and
clusters (it can handle MPI implementation). Perun can be
used as a command-line tool or through directives provided
within the code to be profiled. The user has to provide informa-
tion likes carbon intensity and electricity prices. Additionally,
Perun does not provide detailed measurements for systems
with multiple CPUs or GPUs. Its RAM energy measurement
is limited to Intel servers that expose RAPL energy domains.

Eco2AI is a Python library for CO2 emission tracking.
It monitors energy consumption of CPU and GPU devices,
estimating the equivalent carbon emissions based on regional
emission coefficients. Eco2AI can handle any Python script.
An important drawback of this tool is that its provides a rough
estimation of the energy based on device utilization rates and
nominal TDP values (it does not access hardware sensors).

CodeCarbon, EIT, and TraCarbon are also Python li-
braries designed for tracking energy consumption and esti-
mating carbon emissions. However, these tools do not support
all devices and lack detailed measurements related to RAPL
power domains (e.g., uncore, core, pkg, psys, RAM) and are
hard to adapt to new devices. A weak accuracy is likely to be
observed on platforms without energy-related sensors.

Likwid was originally designed as a performance monitor-
ing tool. The addition of the Likwid-Powermeter module
allows to get energy values from hardware sensors. The tool
offers a C/C++ API for instrumentation of specific sections of
a given program. However, Likwid is not designed for Python
code instrumentation and lacks comprehensive support for
energy monitoring across multiple devices, particularly GPUs.

Variorum represents a significant evolution of the older
libmsr library developed at LLNL. It has a flexible design
and can be easily ported to various devices. However, it is not
intended for fine-grain energy profiling of programs such as
measuring the energy consumption of specific modules or code
sections at runtime. Its API focuses on providing wrappers
for vendor-specific power subroutines, making it more suitable
for integration into higher-level energy management tools like
GEOPM [26] and PowerAPI [27].

In addition, none of these tools can provide accurate energy
measurements for systems that lack hardware sensors for main
memory (RAM).

The framework we propose, named EA2P, addresses the
aforementioned limitations by offering a flexible support for
the major devices, featuring a simple and generic design that
facilitates its adoption for other device types such as ARM,
POWER CPUs, FPGAs, and ASICs. EA2P’s modular Python
structure allows for an easy extension by adding a few lines of
code to read the values of the hardware sensors. In addition,
the EA2P has a RAM energy model for an accurate estimation
of the power consumption of the RAM.

III. TECHNICAL BASIS OF ENERGY MEASUREMENT

The primary challenge in utilizing hardware energy meters
lies in the difficulty of obtaining critical technical informa-
tion from both native documentation and scientific literature.
Frequently, programmers must resort to reverse engineering
in order to figure out the specific behavior of energy-related
components. Below, we enumerate the main interfaces for
accessing energy-related counters on the major computing
devices.

• Intel RAPL interface
The Running Average Power Limit (RAPL) is a moni-
toring feature that calculates and reports the combined
energy consumption of the CPU, RAM, and some other



TABLE I
COMPATIBILITY OVERVIEW OF ENERGY MEASUREMENT FRAMEWORKS.

Support Perun CodeC EIT CTrac Eco2AI TraC PyJoules Perf LIKWID PAPI IntelPG Powertop Score-P Variorum CrayPat DDT-MAP EA2P
GPU support

Nvidia GPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AMD GPU ✓ ✓ ✓ ✓
Intel GPU ✓

CPU and RAM supports
Intel CPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AMD CPU ✓ ✓ ✓ ✓ ✓ ✓ ✓
RAM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OS support
Linux ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Windows ✓ ✓ ✓
Mac OS ✓ ✓ ✓ ✓

Other important characteristics
Documentation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Configurable ✓ ✓ ✓ ✓ ✓
Code API ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Open Source ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Perf oriented ✓ ✓ ✓ ✓ ✓ ✓
Energy oriented ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-Nodes ✓ ✓ ✓ ✓ ✓ ✓ ✓
Device details ✓

components in a computer system. RAPL gained support
from integrated voltage regulators, which enhanced its
power modeling capabilities [28]. Extensive research has
been conducted to validate the effectiveness of RAPL for
software-based monitoring of computer systems [29].

• AMD RAPL interface
The 5.8 version of the Linux kernel brought significant
enhancements for AMD processors, like the AMD Energy
Driver for detailed energy reporting and the integration of
RAPL support for AMD Zen/Zen2 CPUs [30]. Recall that
the RAPL framework was originally developed by Intel to
enable fine-grained control and monitoring of power with
their processors. AMD’s integration of RAPL support into
Linux kernel was made to provide similar capabilities for
AMD CPUs.

• Nvidia-SMI
Nvidia-SMI (Nvidia System Management Interface) [31]
offers a simpler and more accessible solution for power
measurements, but with limited information. It reports the
current active power of the entire GPU board.

• ROCm-SMI
ROCm-SMI (Radeon Open Compute System Manage-
ment Interface) [32] is a command-line interface devel-
oped by AMD as part of the ROCm software stack.
It provides a set of tools for managing and monitoring
AMD GPUs kernels that are compatible with the ROCm
platform. ROCm-SMI has been designed to help for the
optimization of performance and power consumption of
AMD GPUs.

In most cases, RAPL, Nvidia-SMI and ROCm-SMI provide
energy/power measurements for the entire board or socket.
To estimate the energy consumed by a specific program, an
approach commonly used is to multiply the RAPL value by
the percentage of CPU and memory it has used. However,
it is important to note that the energy consumed by a set of

programs is not strictly additive. Several factors contribute to
this complexity:

1) Fixed Energy Waste: There is a baseline energy con-
sumption associated with idle states and other background
processes. This fixed energy waste can vary and is not
directly proportional to the load of the running programs.

2) Non-linearity: The relationship between computer re-
source usage (e.g., CPU, memory) and energy consump-
tion is not linear. Energy consumption may exhibit time
delays or non-proportional increases as resource utiliza-
tion varies.

Considering the aforementioned factors, it is recommended
to benchmark a program when it is running alone on the
machine in order to get a more accurate pattern of its energy
consumption. This will provide a baseline for energy consump-
tion that can be used as a reference when comparing it to multi-
program or multi-task scenarios. Understanding these nuances
is crucial for accurate energy profiling and optimization of
software and hardware systems. We now present and describe
our energy profiling tool so-called EA2P (Energy Aware Ap-
plication Profiler), which we designed considering the major
weakness points we have previously mentioned w.r.t. existing
measurement tools.

IV. PRESENTATION AND DESCRIPTION OF OUR TOOL

We now describe the motivation, the design, the implemen-
tation, and the global workflow of our tool.

A. Key characteristics of a profiling tool

- Programmability: This refers to the possibility to call
specific features of the tool within a high-level program
through an API. This possibility allows to annotate the user
code to be profiled to as to be able to measure the energy
consumed by specific sections or modules of the application.
Such feature also allows for a fine-grained profiling.



- Flexibility: Flexibility of use means being able to adapt
the tool to particular needs like measuring the energy of
specific hardware units, handling special configurations such
as sampling frequency, target hardware selection, and porting
to other architectures. Flexibility is a suitable characteristic
for heterogeneous systems since they combine devices from
different natures.

- Standalone/Freestanding: Energy profiling is a complex
task that requires efficient and user-friendly tools that are easy
to install and handle. If a given framework requires third-party
tools that are complex to handle, this could be the reason for
giving up with that choice. Hardware counters typically require
appropriate OS user rights for example. For instance, only root
user has the ability to enablePerf Events, Intel PowerCap and
DMI decode back-ends.

- Portability across devices: Our primary technical motivation
was to maximize compatibility across various architectures or
devices. Hardware counters compatibility between different
architectures is not always granted. To address the issue as
well as the complexity of analyzing different systems, we
chose to create and connect with tools that rely on standard
hardware counters, which are more likely to be available on
newer devices. As result, we have prioritized the consideration
of popular tools with user-friendly interfaces.

- Accuracy: To be able to draw relevant conclusions from the
measurements provided by a tool, it is necessary to perform
two levels of validation. The first one is to ensure that the
returned values correspond to what is being measured, and the
second one is to validate the correctness the values provided
by the hardware counters. Our approach is based on the
aggregation of the measurements obtained by querying the
hardware interface of all devices, assuming that they operate
properly.

B. Technical overview our tool

Our tool is built on top of some energy measurement APIs
for various devices, and its global underlying diagram is
displayed in Figure 2.

EA2P

CPU DRAM GPU

Power
Gadget
(Windows)

PowerCap/
Perf Tools

(Linux)

DMI decode
(Linux)

Nvidia-SMI
(Windows/Linux)

ROCm-SMI
(Linux)

RAPL Interface DMI
interface NVML ROCm

Fig. 2. Main diagram of our framework

We have considered the following aspects to enhance the
utility and usability of our tool.

• Modularity and Flexibility: The modular nature of Python
enables an easy integration of different (third-party) tools
and APIs, thereby our tool should adapt to various
environments and requirements seamlessly.

• Ease of Use: The readability of Python together with its
extensive set of libraries make our tool more accessible to
ordinary users by easing its understanding, modification,
and extension.

• Registers Access: Using intermediate-level tools to re-
trieve the values of power-related registers allows for di-
rect access to hardware-level information, which thereby
improves the accuracy of energy measurements.

• Dynamic Tools Selection: Automatic identification of re-
quired third-party tools based on the system configuration
makes the installation process more simpler.

• Versatility: Offering both standalone and API-based func-
tionalities makes our tool easily adaptable to various use
cases. Users can choose the mode that best suits their
needs (either for a direct use or for an integration into an
existing application).

• Programmability: Our tool is provided with an API for
direct calls of specific features, thus allowing developers
to seamlessly integrate energy measurement functionali-
ties into their applications or workflows.

• Compatibility and Portability: The compatibility across
different systems and platforms for our tool comes from
the interpreted nature and the popularity of Python.

• Documentation: A detailed documentation explaining the
functionalities of the tool and how to integrate them into
a workflow is important for the developers from the hand-
on standpoint.

About Windows OS:
For Windows support, we have two scenarios: direct support
and WSL2 support.

For direct support, our tool currently relies on Intel Power
Gadget for CPU energy measurement, while GPU measure-
ment remains dependent on Nvidia-SMI. We have not yet
tested AMD devices, and direct RAM support has not been
implemented yet. Windows support is quite limited due to the
lack of a command-line interface similar to Linux systems,
thus Intel Power Gadget needs to be pre-installed on Windows.

For WSL2 support, EA2P runs like on a real Linux system.
However, the results are not guaranteed since WSL2 might
experience some limitations (functionality and permissions) to
access hardware sensors on Windows. We have not yet tested
this portability, but it is a target for future versions of EA2P
for Windows users.

C. Implementation of our tool

We describe each of the main feature of our tool w.r.t.
energy measurement depending on the device or the hardware
unit considered.



1) RAM energy measurement: On Intel server architec-
tures, energy profiling of the main memory (RAM) system
aligns with the PowerCap interface, similar to that of the CPU,
as the RAM is covered by RAPL. However, this approach is
not applicable to Intel client and AMD CPU systems for which
an alternative method is thus needed to estimate the energy
consumed by the RAM.

A typical solution uses analytical models considering the
workload together with TDP or nominal power values. How-
ever, there is a genuine difficulty that comes from the varia-
tions among different generations of DDR RAM, particularly
in terms of the Power Management Circuit (PMC). For in-
stance, DDR5 technology stands out as a significant advance
over DDR4, where a Power Management Integrated Circuit
(PMIC) is directly integrated into the dual in-line memory
module (DIMM), thereby resulting in a noticeable 30% in-
crease in power efficiency [33]. Consequently, any analytical
model must consider this evolution with DDR technology.

Another crucial aspect that influences the power consump-
tion of the RAM is the amount of memory space and the
total number of memory sticks on the DIMM slots. According
to Micron Technology [34], a general guideline suggests
allocating approximately 3 watts of power for every 8GB of
DDR3 or DDR4 memory. Interestingly, the amount of RAM
has a marginal impact on the overall power consumption. For
instance, a 4GB DDR3 RAM stick consumes a comparable
amount of power than a 8GB DDR3 RAM stick, assuming
they have the same clock speed [35].

We have considered a discretized approach together with
the classical correlation between power and time to get an
estimation of the global energy as expressed by formula (2).

For Intel Client architectures and AMD CPU systems, we
use “dmidecode“ to retrieve necessary information about the
RAM (type, slots, size) that are used to get the Power base
value considered in formula (1) for the average power of the
whole RAM.

Power RAM = Power base× nb slots×mem use (1)

Energy RAM = (

N∑
i=1

Power RAM)× interval, (2)

where:
• Power base is the TDP like value (i.e. the maximum

possible power in this case) associated to each memory
type and capacity. A list of common memory types and
memory capacity together with their corresponding TDP
is provided.

• nb slots is the total number of memory slots within the
entire motherboard. We consider the fact that the power
consumption of the RAM depends on its number of slots.
Thus a system with 4 slots in use is expected to consume
4 times more power than the same system with only 1
slot in use [36].

• mem use is the percentage (i.e. footprint) of the total
system memory that is used by the profiled code. The
value is recorded at a the granularity of a sampling

interval, so we end up with as many values as the number
of intervals (i.e. N ). We process this measurement in
parallel in order to reduce the time overhead.

• interval is the sampling frequency (in seconds) of the
experiment.

Limitations: The power consumption of the memory seems to
grow non-linearly w.r.t. to its size, transitioning from sublinear
at low capacity to superlinear at high capacity. For instance,
while a 16× increase in capacity from 8 GB to 128 GB results
in a modest 3× rise in power consumption, the subsequent 4×
increase to 1 TB leads to a significant 10× increase [25]. This
is due to the necessity of using high-density DRAM DIMMs to
achieve high capacities, coupled with the considerably higher
power consumption of these high-density DIMMs compared to
their low-density counterparts. These factors are not currently
considered in our work at this time.

According to Crucial [37], with an empirical rule of 3W
for every 8GB of DDR3/DDR4 RAM, and Skhynix [38]
that states “Our 256GB DDR4 RDIMM consumes around
8.5W of power and LRDIMM around 10.5W, both the most
competitive levels in the High Density Module market“. We
fixed Power base at 10W for 256GB stick, 8W for 128GB,
6W for 64GB, 5W for 32GB and 4W for 16GB. Additionally,
for less than 5% of real usage, we consider 30% of the
theoretical value as we have the baseline power consumption
for Idle state which is not-null. from 5% to 15% we consider
60% of the theoretical value as we enter in active state and so
memory allocation on multiple DIMM memory. From 15%
to 25%, we define 70%. For 25 to 50% we defined 75% and
for more than 50% we set 80%. Our experimental validation
(see fig 6) show that it work well on a server with 512 GB
as it gave values close to those of Intel RAPL DRAM domains.

2) CPU energy measurement: For Intel systems, we use
PowerCap interface. We periodically (at the sampling fre-
quency) examine all energy log files, principally the file so-
called energy uj, within the “/sys/class/powercap/intel-rapl“
directory and sum up all so collected results at the end of
profiling. We take into account the impact of max-energy-
value of the PowerCap interface, which is an upper bound
of the power value that can be recorded.

For other CPUs, PowerCap interface does not apply. AMD
RAPL does not implement it, so it’s more difficult to get
accurate measurements. The Linux “perf tool“ provides a
measurement for the “CPU package“, which is equivalent to
the package domain of Intel RAPL. The problem is that this
tool is more suitable for profiling an entire application, not
specific sections. Thus we execute (in parallel) the command
“perf stat -e power/energy-pkg“ and kill the corresponding
processes after getting out of the instrumented code section.
We store the values thus collected during the profiling in a log
file and ultimately process its content to get the global output
profile report. As mentioned for the RAM energy measurement
in the previous section, all the snooping processes are per-
formed in parallel in order to reduce the time overheads. The
total energy of CPU domain using Intel RAPL power domain



is calculated using the update described by the algorithm
displayed in Figure (3), where Ei is the value provided by
the RAPL from request ith. In fact, each time we read the
current value of the energy consumed so far, we update the
global energy only if that value it is not lower than the previous
one, which occurs when there has been a reset of the counter
meanwhile.

Fig. 3. Update of the overall CPU energy

For AMD processors, using “perf stat“ results in only
two measures per run (one at the beginning and one at the
end). The procedure described in Figure (3) is for Intel CPUs
as we can query multiple values from the powerCap RAPL
interfaces at the same sampling frequency. It is important to
highlight the fact that multiple queries are essential because
there is an automatic reset of powerCap registers when
the energy uj files reach a maximum value predefined by
the system. This behavior must has been considered in the
implementation of our tool as previously explained about the
measurement procedure.

3) GPU energy measurement: Regarding energy measure-
ment of a GPU, our tool use the native vendor interfaces as
indicated in section III (i.e., Nvidia-SMI and ROCm-SMI)
through command line calls to get the power at a given
frequency. Similar to the case of standard CPUs as previously
explained, we collect the measurements (at the sampling
frequency) in a log file that is processed at the end to get
the expected profile report. The overall energy is calculated
using formula (3).

EnergyGPU =

N∑
i=1

Pi ×∆Ti, (3)

where Pi (resp. ∆Ti) is the power value of the GPU (resp.
the ith time interval during which we assume a constant
power Pi) at measurement step ith.

4) MPI extension for multi-node energy measurement:
Our multi-node energy measurement feature is based on the
MPI (Message Passing Interface) implementation, specifically
through the “mpi4py“ library [39]. By leveraging mpi4py
features, our tool can measure and report the overall energy
consumption of a distributed memory parallel machine.

Each node runs its own instance of the energy
measurement tool, capturing detailed energy metrics
(mpi4py implementation ensures that these measurements
are synchronized across nodes). Ultimately, energy data are
collected from all nodes and aggregated to get the overall

energy consumed by the cluster.

5) Docker containerization for portability and ease of use:
To further enhance the usability and portability of our tool, we
consider containerization using Docker. Docker is a popular
platform for developing, shipping, and running applications
in a consistent environment across different systems. By con-
tainerizing the tool, we ensure that it can be easily deployed
on various systems without the need for manual installation
of dependencies or system-specific configurations. This is
particularly advantageous for users who wish to quickly set
up and run the tool on heterogeneous environments.

Note that the Docker container does not includes all nec-
essary dependencies for system tools such as powerCap,
dmidecode, nvidia-smi, and rocm-smi. Therefore, the container
to be in a privileged mode in order to be able to access
hardware counters related to energy. On an Intel system for
example, the container should be launch as described below:

docker run --privileged -it --rm \
--device /dev/cpu/0/msr:/dev/cpu/0/msr \
-v /sys/class/powercap:/sys/class/powercap\
-v /proc:/proc \
-v /dev/mem:/dev/mem \
--gpus all \
ea2p-tool

By providing a Dockerized version of our tool, we make
things easier for users who are not familiar with OS-level
considerations or who not want to configure their environment
manually. The containerization approach also supports repro-
ducibility, as the same container can be used across different
systems. This makes the tool not only more accessible but
also more reliable for conducting energy efficiency studies in
diverse computing environments.

D. Functional workflow of EA2P

Figure 4 provides an overview of the step-by-step func-
tional workflow followed by our framework. It is a structured
approach for setting up, running, and concluding an energy
measurement experiment using EA2P. The use of threads is for
a parallel processing for data collection, thus ensuring minimal
time overhead for the measurement itself.

The formatted output can be easily analyzed and considered
as a valuable record of the experiment. We now describe each
of the main hand-on steps.

• Step 1: Environment Setup
1.1. Installation Procedure: Our energy measurement tool
and the required third-party libraries can be installed
using a package manager or a script. The EA2P package
is available as open source on PyPi1 website. It is required
to have installed all necessary drivers, as well as to have
root privileges to be able to read sensors outputs.

1https://pypi.org/project/EA2P/



Fig. 4. EA2P general workflow.

1.2. Code Instrumentation: This is done by either in-
strumenting the code with the corresponding annotations
wherever needed or integrating energy measurement rou-
tines into the code in order to capture energy related data
as indicated in the documentation2.

• Step 2: Settings and Initialization
2.1. Basic Parameterization: The tool reads the configura-
tion files for the main parameters like sampling frequency,
device details, and location of the output file.
2.2. Automatic Detection of Devices: We have imple-
mented a mechanism that automatically detects and lists
the main active devices for the profiling. In fact, we use
appropriate APIs or libraries to identify and connect to
the devices specified in the configuration files.
2.3. Experiment Initialization: The tool sets up the main
variables related to the experiment and then connects to
the devices that have been detected in the previous step.

• Step 3: Launching and Running the Profiling
3.1. Parallel Energy Measurement: We consider a multi-
thread implementation (using Python threading library)
to get and process energy values of the devices, so the
measurements are done in parallel and independently. The
measurement threads run in the background and collect
energy data at a constant sampling frequency.
3.2. Instrumented Code Execution: The main instru-
mented code region to be profiled is executed, with the
energy measurement threads running concomitantly on
the background as previously explained.

• Step 4: Epilogue of the Experiment
4.1. Termination: We terminate the threads responsible
for recording the energy measures once the main instru-
mented code region has reached its end. For Python MPI
programs, data from each node (rank) are sent to master
node which make final aggregation.
4.2. Output: We process and format the collected energy
data so a to make easier any further analysis and inter-
pretation. Data are aggregated and organized based on
the device or time intervals and the formatted output is

2https://hpc-cri.github.io/EA2P/

written into to specified output files (CSV or text files).
Metadata that provide experiment details are added. For
distributed systems, the output contains per node data and
a last column with total energies and times values.

V. EXPERIMENTAL EVALUATIONS

A. Our test-bed

Our test-bed is based on the devices listed in table II, with
CPUs and GPUs from Intel and AMD.

TABLE II
PLATFORM CHARACTERISTICS

name Intel-1 AMD-1 AMD-2 Intel-2
CPU name i9 12950HX EPYC 7452 EPYC 7513 E5-2698v4
GPU name RTX 3080Ti A100 SXM4 A100 SXM4 Tesla V100
CPU TDP 55W 155W (x2) 200W(x1) 135W (x2)
GPU TDP 150W 400W (x2) 400W (x4) 300W (x8)
CPU threads 24 64 (x2) 64 (x1) 40 (x2)
GPU VRAM 16GB 40GB (x2) 40GB (x4) 32GB (x8)
CPU RAM 32 GB 128 GB 512 GB 512 GB
Multi-SoC No Yes No Yes

Our validation process focuses on the following aspects:

• Tool Accuracy Assessment: Validate the accuracy of
the measurements across different devices and hardware
components (CPU, RAM and GPU).

• Energy Profiling Consistency: Ensure the consistency
of profiling results across multiple different platforms
(AMD, Intel, and Nvidia).

• Workload Characterization: Profile various kinds of
workload ({CPU, GPU, CPU/GPU}-intensive) to eval-
uate the robustness of the tool.

• Cross-platform Compatibility: Check the portability of
the tool on different platforms (AMD/Intel CPUs and
AMD/Nvidia GPUs) for versatility.

• Profiling Overhead Analysis: Measure the time cost of
the profiling.

The primary objective of our experiment is to measure and
compare the energy consumption during the fine-tuning of the
VGG16 [40] deep learning model on two different hardware
configurations: CPU-only and GPU-accelerated. We use two
datasets for this purpose: CIFAR-10 [41] and Stanford Dogs
[42], [43]. Additionally, we use the “sleep“ function from
Python’s “time“ package to validate idle energy consumption.
To analyze NUMA and thread scalability for energy consump-
tion (this aspect is not really in the scope of this paper),
we perform parallel matrix multiplication using OpenMP and
measure the whole code. The matrix size is set to 8000x8000
in single precision. This use case demonstrates the use of the
EA2P command-line API to measure the energy consumption
of various executable files. Consequently, C/C++, Fortran, and
other codebases can be evaluated using this approach, even our
API does not handle explicit source-code instrumentation for
high-level languages other than Python. This functionality is
particularly useful for energy optimization.



B. Experimental results

We validate our tool beside established tools like Linux perf
tools for CPU and RAM energy and CodeCarbon for GPU
energy (see tables IV, V, VI, and VII). Understanding and mit-
igating the overhead, especially when it is considerably high,
is key to obtaining accurate and consistent measurements.

We globally see that our tool returns nearly similar measure-
ments than the baseline with nearly equal overheads. Each of
the experiments was repeated 5 times to assess the consistency
through the standard deviation which turned to be tiny. For
simplicity, we only report the average values of the 5 runs
and especially for table III, we report standard deviation to
illustrate the variability which is due to the operating system
and the machine state.

We describe the items of Table V :
• cores: is Power Plane 0 (PP0), associated with the CPU

cores. It tracks the energy consumption of all cores.
• uncore: is Power Plane 1 (PP1), it measures the energy

consumption of the integrated GPU (not to be confused
with an external Nvidia or AMD GPU) on Intel client
architectures only. Remember that powerCap Linux in-
terface name this package as “uncore“ while in Linux
perf tools it correspond to “energy-gpu“ event.

• DRAM (RAM): This domain specifically measures the
energy consumption of the RAM.

• Package (Pkg): This domain tracks the overall energy
consumption of the System on Chip (SoC). It includes
the consumption of all cores, integrated graphics and
also the uncore components (QuickPath Interconnect
(QPI) controllers, L3 cache, snoop agent pipeline, on-die
memory controller, on-die PCI Express Root Complex,
Thunderbolt controller).

• Psys: It provides an aggregate view of power con-
sumption across various components: package domain,
System Agent, Platform Controller Hub(PCH), eDRAM
and a few more domains on a single socket SoC. It is
useful especially when the main source of the power
consumption is neither the CPU nor the GPU, but the
whole system instead.

1) EA2P overhead analysis: Table III provides an overview
of the overhead associated with EA2P and perf tools when
profiling the same workload (executed five times). This ex-
periment aims to validate the stability of our tool consider-
ing the OS activity and its impact on the accuracy of the
measurements. We reported the mean values for energy and
runtime to test the sleep state or idle power on the CPU-
intensive VGG16 CIFAR10 fine-tuning over 10 epochs. The
deviation from these five runs was less than 3% for RAM and
CPU during the CPU-intensive task. For idle system energy
tests, this overhead is even more negligible, less than 1% for
both CPU and RAM. These behaviors are highly correlated
with runtime deviations and can be attributed to OS task
management and thermal throttling, as current voltage and
frequency may vary over time. The difference between EA2P

and perf results is associated to the fact that EA2P focuses
on instrumented code regions, while perf measures the energy
of the entire application. Consequently, the results of perf are
typically higher than those of EA2P.

TABLE III
CONSISTENCY OVER SYSTEM OVERHEAD ON INTEL-2

Application tool Pkg (std) RAM (std) time(s) (std)

sleep

perf 2.254(0.004) 1.290(0.002) 183.508(0.02)
EA2P 2.181(0.02) 1.270(0.001) 180.272(0.002)

gap (perf-EA2P) 0.073 0.02 3.236

CIFAR-
CPU

perf 28.592(0.32) 4.899(0.10) 445.236(5.36)
EA2P 28.252(0.40) 4.825(0.12) 438.33(6.81)

gap (perf-EA2P) 0.34 0.074 6.906

TABLE IV
CPU AND DRAM VALIDATION

Intel-2 AMD-1
Energy(Wh) time(s) Energy(Wh) time(s)

Application Tool Pkg RAM Pkg RAM

sleep perf 2.254 1.290 183.508 4.781 / 185.105
EA2P 2.181 1.270 180.272 4.650 4.853 180.503

CIFAR-
CPU

perf 28.592 4.899 445.236 45.580 / 574.215
EA2P 28.252 4.825 438.333 45.293 14.241 557.021

CIFAR-
GPU

perf 1.627 0.514 68.40 1.610 / 45.105
EA2P 1.229 0.371 52.50 1.225 0.968 33.921

2) Validation of EA2P through comparison to SOTA tools:
EA2P measurements seems to be lower than those of perf.
But this behavior is associated to the fact that EA2P profiles
only a specific section of the code while perf profile the
entire application. This can be viewed as a clue regarding
consistency.

TABLE V
CPU AND GPU VALIDATION ON INTEL-1 (NVIDIA RTX 3080TI)

Application tool CPU (Wh) GPU (Wh) time(s)

sleep CodeCarbon 0.305 0.987 181.931
EA2P 0.204 0.824 180.706

CIFAR-
GPU

CodeCarbon 0.229 2.077 67.993
EA2P 0.230 2.047 67.757

EA2P values seem to be lower than those from CodeCarbon,
especially for CPU energy, with a non negligible gap. This be-
havior can be associated to the fact that CodeCarbon chooses
80% TDP of the CPU when it cannot detect the system path
of RAPL, which thus leads to less accurate result. We checked
this behavior on an Intel core i9 12950 HX (see Table V).

TABLE VI
CPU AND DRAM VALIDATION ON INTEL-1 (CORE I9 12950HX)

Energy(Wh) time(s)
Application Tool cores uncore pkg psys RAM

Sleep perf 0.008 0.000 0.149 0.520 / 180.029
EA2P 0.008 0.000 0.149 0.520 0.031 180.192

CIFAR-
GPU

perf 0.089 0.001 0.274 2.78 / 72.626
EA2P 0.056 0.001 0.229 2.672 0.014 66.903

CIFAR-
CPU

perf 3.715 0.007 5.949 12.001 / 1476.905
EA2P 3.696 0.007 5.952 13.488 0.295 1478.121



3) Multi-GPU system analysis: The discrepancy w.r.t. en-
ergy consumption and execution time between CPU-based
and GPU-based computations highlights the relative time-
energy positioning between the two processing units. Table
VII shows our case with fine-tuning VGG16 on the Stanford
dog dataset. We got nearly 77 Wh for more than 9 minutes
as execution time on Intel Xeon. The GPU was disabled with
CUDA VISIBLE DEVICE flag for the TensorFlow case so
as to operate only with the CPU. The same code took around
10 Wh of energy for less than a minute on the same machine
with 8 Nvidia V100 GPUs. We can also notice that only one
GPU was effectively used for the computation since by default
the TensorFlow engine did not distribute across the GPUs. We
can also see it with the highest energy value on GPU 0 when
each of the other GPUs consumes similar low values.

The highly parallel execution mode of the GPUs makes
them significantly faster compared to CPUs, resulting in
significantly lower energy consumption for the same task. This
is more noticeable when running complex algorithms like deep
learning models.

4) Self-validation of EA2P on shared-memory parallelism:
Analyzing the energy consumption beside time performance
considering a multithread execution provides valuable opti-
mization insights. We did the measurement with our tool also
for consistency purpose and the results are reported in figure
5 and 6, where we can see the correlation between the two
metrics. This kind of experiment can help to seek an optimal
balance between energy efficiency and time performance. In
our example, we can observe that the best time-energy trade-
off is obtained with 64 or 128 threads.

1 2 4 8 16 32 64 128 256
num_thread

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

en
er

gy
 c

on
su

m
pt

io
n 

(W
h)

package 0 (Wh)
package 1 (Wh)

0

25

50

75

100

125

150

175

200

av
er

ag
e 

ru
nt

im
e 

(s
ec

)

runtime (sec)

Fig. 5. Time vs energy reports with a multi-threaded case on AMD-1.

5) Impact of the sampling frequency: The sampling fre-
quency is important in capturing accurate energy values and
their correlation with running time as shown in Figure 7. Here
are some considerations related to our experiment:

• Correlation between Energy and Execution Time:
Smaller sampling intervals tend to capture finer-grained
changes in energy consumption and correspond more

4 6 11 20 24 47 92 182 226 271 338 406 450
Memory footprint (GB)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

en
er

gy
 c

on
su

m
pt

io
n 

(W
h)

Intel_RAPL_RAM (Wh)
EA2P_model_RAM (Wh)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

av
er

ag
e 

ru
nt

im
e 

(s
ec

)

runtime (sec)

Fig. 6. EA2P RAM energy model vs Intel RAPL RAM domain on Intel-2.

closely with time intervals. Larger sampling intervals
might miss transient spikes or nuanced changes in energy
usage on shorter duration. For example, the psys (system
power) typically encompasses the entire board’s power
consumption and is normally higher than the sum of the
values related to the CPU package and the GPU (see
Figure 7). This consolidated measurement might show a
higher correlation with execution time due to its broader
scope.

• Challenges with GPU Energy Reporting: Nvidia-smi
reports power rather than energy, causing inconsistencies
when attempting to correlate it directly with energy values
from other components. This can be a limitation on the
way to consistent and accurate measurements, especially
with low sampling intervals. In addition, the Nvidia driver
significantly impacts the querying of power values, as
at low frequencies (milliseconds and less), it returns
“Unknown“ values.

• Time Overhead and Thread Joining: When threads
join at a report process, especially in scenarios with large
intervals, that might cause long idle states of the threads.
The time taken for these threads to join might become
a significant overhead, which can impact the accuracy of
execution time measurements.

6) Illustrative MPI case: In this section, we illustrate the
ability of our tool to measure the energy of an MPI application
through a matrix multiplication in MPI for Python, focusing
on global and point-to-point communication modes.

We use a distributed computing system with four compute
nodes (AMD-2 described in table II), each equipped with
AMD Zen3 CPUs and Nvidia A100 GPUs. We leverage
MPI with Python’s mpi4py to the workloads of the matrix
multiplication across the nodes, each numpy.matmul. Note
that the energy reported for the GPUs is just indicative since
they are idle in this case because numpy runs only on the
CPU (denoted by Pkg in all tables).

• Scenario 1: Collective communications (broadcast and
gathering). In this scenario, each of the four nodes



TABLE VII
MULTI GPU ENERGY REPORT ON INTEL-2 WITH NVIDIA GPUS

Apps pkgs(Wh) RAM(Wh) GPU 0(Wh) GPU 1(Wh) GPU 2(Wh) GPU 3(Wh) GPU 4(Wh) GPU 5(Wh) GPU 6(Wh) GPU 7(Wh) time(sec)
Sleep 2.194 1.333 2.179 2.103 2.127 2.104 2.103 2.129 2.105 2.143 181.038
DOG-CPU 28.528 5.407 5.633 5.419 5.505 5.413 5.399 5.490 5.418 5.524 495.096
DOG-GPU 1.219 0.388 2.519 0.811 0.816 0.804 0.810 0.816 0.802 0.813 52.459

0.001 0.01 0.1 0.5 1.0 2.0 4.0 8.0 16.0 32.0
interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

en
er

gy
 c

on
su

m
pt

io
n 

(W
h)

psys (Wh)
package (Wh)
gpu (Wh)

0

20

40

60

80

100

120

av
er

ag
e 

ru
nt

im
e 

(s
ec

)

runtime (sec)

Fig. 7. Sampling interval behavior on Intel-1

computes a portion of the matrix and sends the result
to the master node (rank 0), which aggregates the final
result. The energy measurements for this scenario are
reported in tables VIII and IX.

• Scenario 2: Point-to-Point Communication (with 2 of
4 Nodes). Here, only two of the four nodes participate
in the global matrix multiplication and cooperate though
with point-to-point communication. Energy measurement
is still conducted across all four nodes, which helps
identify energy consumption patterns in the idle mode
(for passive nodes). The energy measurements for this
scenario are reported in tables X and XI

TABLE VIII
MEASUREMENTS ON AMD-2 WITH 214 × 214 MATRICES (1)

Node Pkg(J) GPU 0 (J) GPU 1 (J) GPU 2 (J) GPU 3 (J) RAM (J) Time (s)
0 1493.59 648.52 680.59 649.10 666.36 201.6 13.25
1 1419.99 714.36 633.82 625.94 670.95 193.2 12.54
2 1457.43 664.03 666.67 652.40 719.44 201.6 13.03
3 1472.65 667.21 653.88 659.93 689.50 201.0 13.11
Total 5843.66 2694.11 2634.95 2587.35 2746.25 596.4 51.93

TABLE IX
MEASUREMENTS ON AMD-2 WITH 215 × 215 MATRICES (2)

Node Pkg(J) GPU 0 (J) GPU 1 (J) GPU 2 (J) GPU 3 (J) RAM (J) Time (s)
0 9109.88 3374.76 3530.46 3319.83 3425.45 1058.4 74.66
1 8777.08 3674.04 3255.40 3208.25 3430.79 999.6 70.65
2 9012.43 3353.60 3363.65 3291.97 3638.53 1041.6 73.26
3 9090.88 3408.30 3347.95 3435.98 3442.57 1058.4 74.43
Total 35990.27 13810.70 13497.44 13256.03 13937.32 4158.0 293.00

TABLE X
MEASUREMENTS ON AMD-2 WITH 10240× 10240 MATRICES (1)

Node Pkg(J) GPU 0 (J) GPU 1 (J) GPU 2 (J) GPU 3 (J) RAM (J) Time (s)
0 536.67 255.75 261.8 258.92 271.46 75.6 4.34
1 555.88 380.09 344.25 331.31 357.12 100.8 5.85
2 94.84 113.97 123.36 128.24 134.06 33.6 1.24
3 94.09 112.98 121.65 135.57 147.30 33.6 1.24
Total 1281.48 862.78 851.09 854.02 909.93 243.6 12.67

TABLE XI
MEASUREMENTS ON AMD-2 WITH 20240× 20240 MATRICES (2)

Node Pkg(J) GPU 0 (J) GPU 1 (J) GPU 2 (J) GPU 3 (J) RAM (J) Time (s)
0 3604.08 1285.74 1374.71 1268.67 1314.77 403.2 28.09
1 3674.26 2200.34 1925.82 1892.41 2033.96 588.0 39.34
2 388.52 279.94 291.57 276.03 305.47 84.0 4.62
3 359.49 275.35 272.37 297.48 301.01 84.0 4.61
Total 8026.35 4041.37 3864.46 3734.58 3955.20 1159.2 76.66

VI. CONCLUSION

We have designed and validated an operational framework
for energy profiling. Our tool is hardware/system flexible and
can be easily adapted to newer devices. Our experimental
validation demonstrates the accuracy and consistency of its
measurements, and also its portability across various devices.
Our API allows the user to instrument python program for
fine-grain profiling or to use command-line mode for binary
codes (a way to handle compiled high-level languages). The
tool can handle the major parallel models (shared memory,
distributed memory and GPU-acceleration).

For future work, we plan to implement robust error handling
mechanisms and logging functionalities to help handling trou-
bleshooting.

ACKNOWLEDGEMENTS

This research was supported by The Transition Institute 1.5
driven by École des Mines de Paris - PSL.

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations.

REFERENCES

[1] C. Tadonki, “High performance computing as a combination of machines
and methods and programming,” Ph.D. dissertation, Université Paris
Sud-Paris XI, 2013.

[2] R. Nana, C. Tadonki, P. Dokladal, and Y. Mesri, “Energy concerns with
hpc systems and applications,” ArXiv, vol. abs/2309.08615, 2023.

[3] EnergyInovation, “How much energy do data centers really use?” 2020,
accessed: 2024-08-29. [Online]. Available: https://energyinnovation.org
/2020/03/17/how-much-energy-do-data-centers-really-use/

[4] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, “Estimating the carbon
footprint of bloom, a 176b parameter language model,” ArXiv, vol.
abs/2211.02001, 2022.



[5] M. Lang and R. Hendrikx, “Energy outlook 2023: Energy digitalisation,”
2023, accessed: 2024-08-29. [Online]. Available: https://www.twobirds
.com/en/insights/2023/global/energy-outlook-2023-energy-digitalisation

[6] Firefox, “Energy estimates,” 2023, accessed: 2024-08-29. [Online].
Available: https://firefox-source-docs.mozilla.org/performance/perf.html

[7] H. McCraw, J. Ralph, A. Danalis, and J. Dongarra, “Power monitoring
with papi for extreme scale architectures and dataflow-based program-
ming models,” in 2014 IEEE International Conference on Cluster
Computing (CLUSTER), 2014, pp. 385–391.

[8] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
2010 39th International Conference on Parallel Processing Workshops,
2010, pp. 207–216.

[9] Intel, “Intel powergadget,” 2019, accessed: 2024-08-29. [Online].
Available: https://www.intel.com/content/www/us/en/developer/articles
/tool/power-gadget.htm

[10] ——, “Powertop,” 2020, accessed: 2024-08-29. [Online]. Available:
https://github.com/fenrus75/powertop

[11] Linaro, “Linaro forge release 23.0,” 2023, accessed: 2024-08-29.
[Online]. Available: https://docs.linaroforge.com/23.0/userguide-forge.p
df

[12] NERSC, “Craypat,” 2017, accessed: 2024-08-29. [Online]. Available:
https://docs.nersc.gov/tools/performance/craypat/

[13] A. Knüpfer, C. Rössel, D. a. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, “Score-p: A joint
performance measurement run-time infrastructure for periscope,scalasca,
tau, and vampir,” in Tools for High Performance Computing 2011,
H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91.

[14] J. P. Gutiérrez Hermosillo Muriedas, K. Flügel, C. Debus, H. Obermaier,
A. Streit, and M. Götz, “perun: Benchmarking energy consumption of
high-performance computing applications,” in Euro-Par 2023: Parallel
Processing: 29th International Conference on Parallel and Distributed
Computing, Limassol, Cyprus, August 28 – September 1, 2023, Proceed-
ings. Berlin, Heidelberg: Springer-Verlag, 2023, p. 17–31.

[15] Inria, “Welcome to pyjoules’s documentation!” 2019, accessed: 2024-
08-29. [Online]. Available: https://pyjoules.readthedocs.io/en/latest/

[16] B. GAMM, “Codecarbon,” 2020, accessed: 2024-08-29. [Online].
Available: https://mlco2.github.io/codecarbon/index.html

[17] S. Budennyy, V. Lazarev, N. Zakharenko, A. Korovin, O. Plosskaya,
D. Dimitrov, V. Akhripkin, I. Pavlov, I. Oseledets, I. Barsola et al.,
“Eco2ai: carbon emissions tracking of machine learning models as the
first step towards sustainable ai,” in Doklady Mathematics. Springer,
2023, pp. 1–11.

[18] LLNS, “Variorum,” 2023, accessed: 2024-08-29. [Online]. Available:
https://variorum.readthedocs.io/en/latest/

[19] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker: Tracking
and predicting the carbon footprint of training deep learning models,”
ICML Workshop on Challenges in Deploying and monitoring Machine
Learning Systems, July 2020, arXiv:2007.03051.

[20] Tracarbon, “Tracarbon documentation,” 2023, accessed: 2024-08-29.
[Online]. Available: https://fvaleye.github.io/tracarbon/documentation/

[21] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints
of machine learning,” Journal of Machine Learning Research, vol. 21,
no. 1, jan 2020.

[22] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: Quan-
tifying the carbon footprint of computation,” Advanced Science, vol. 8,
no. 12, p. 2100707, 2021.

[23] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A.-C. Orgerie, and
B. Fichel, “An experimental comparison of software-based power me-
ters: focus on CPU and GPU,” in CCGrid 2023 - 23rd IEEE/ACM
international symposium on cluster, cloud and internet computing.
Bangalore, India: IEEE, May 2023, pp. 1–13.

[24] D. Barthou, G. Grosdidier, M. Kruse, O. Pene, and C. Tadonki, “Qiral:
A high level language for lattice qcd code generation,” arXiv preprint
arXiv:1208.4035, 2012.

[25] R. Appuswamy, M. Olma, and A. Ailamaki, “Scaling the memory
power wall with dram-aware data management,” Proceedings of the 11th
International Workshop on Data Management on New Hardware, 2015.

[26] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible

open power manager: A vehicle for hpc community collaboration
on co-designed energy management solutions,” in High Performance
Computing, J. M. Kunkel, R. Yokota, P. Balaji, and D. Keyes, Eds.
Cham: Springer International Publishing, 2017, pp. 394–412.

[27] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “Powerapi:
A software library to monitor the energy consumed at the process-level,”
ERCIM News, 2013.

[28] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell pro-
cessor,” in 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, 2015.

[29] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action,” ACM Transactions on Modeling and Performance Evaluation of
Computing Systems (TOMPECS), vol. 3, pp. 1 – 26, 2018.

[30] R. Schöne, T. Ilsche, M. Bielert, M. Velten, M. Schmidl, and D. Hack-
enberg, “Energy efficiency aspects of the amd zen 2 architecture,” 2021
IEEE International Conference on Cluster Computing (CLUSTER), pp.
562–571, 2021.

[31] NVIDIA, “nvidia-smi - nvidia system management interface program,”
2016, accessed: 2024-08-29. [Online]. Available: https://developer.do
wnload.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf

[32] AMD, “Rocm - smi,” 2014, accessed: 2024-08-29. [Online]. Available:
https://sep5.readthedocs.io/en/latest/ROCm System Managment/ROC
m-System-Managment.html

[33] Samsung, “Here to upgrade the world: Introducing samsung’s
game-changing ddr5 solution,” 2022, accessed: 2024-08-29. [Online].
Available: https://semiconductor.samsung.com/news-events/tech-blog/
here-to-upgrade-the-world-introducing-samsungs-game-changing-ddr
5-solution/

[34] Crucial, “How much power does memory use?” 2019, accessed:
2024-08-29. [Online]. Available: https://www.crucial.com/support/articl
es-faq-memory/how-much-power-does-memory-use

[35] Buildcomputers.net, “Power consumption of pc components in
watts,” 2013, accessed: 2024-08-29. [Online]. Available: https:
//www.buildcomputers.net/power-consumption-of-pc-components.html

[36] I. Wallossek and C. Angelini, “Measuring ddr4 power consumption,”
2014, accessed: 2024-08-29. [Online]. Available: https://www.tomshard
ware.com/reviews/intel-core-i7-5960x-haswell-e-cpu,3918-13.html

[37] M. Technology, “How much power does memory use?” 2024,
accessed:2024-08-29. [Online]. Available: https://www.crucial.com/su
pport/articles-faq-memory/how-much-power-does-memory-use

[38] Skhynix, “256gb ddr4 rdimm/lrdimm ultra-high capacities at industry’s
lowest power budget,” 2021, accessed: 2024-08-29. [Online]. Available:
https://product.skhynix.com/products/dram/module/ddr4dm.go

[39] L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Computing in Science & Engineering, vol. 23, no. 4, pp.
47–54, 2021.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ArXiv, vol. abs/1409.1556, 2015.

[41] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

[42] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[43] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset
for fine-grained image categorization,” in First Workshop on Fine-
Grained Visual Categorization, IEEE Conference on Computer Vision
and Pattern Recognition, Colorado Springs, CO, June 2011.


