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Symbols and Notations

DOMINIQUE JEULIN

1. MORPHOLOGICAL OPERATIONS
Dilation by a compact K : A — A @K
Erosion by a compact K : A — A oK = {z, K, C A}
Opening by a compact K : Ay = A 6K & K
Closing by a compact K : AX = A K & K

2. RANDOM SETS
A, B: random closed sets (RACS)
A€ complementary set of A
A ={—z,x € A}: transposed set of A
A;: component of a multi-component random set
B(r): closed ball with radius r
K: compact set
E: topological space
F, G et K : closed, open and compact sets of £
FE={FeF, FNK=0,KeK}
Fe={FeF, FNG#0,G e G}
probability P
Gk (s): generating function of the random variable N(K)
Choquet’s capacity T(K) = P{KNA # 0} = P{Fx} = 1— P{K C A°} =

1-Q(K)
p=P{x e A}
q= P{x € A%}

Covariance C'(h) = P{z € A,z + h € A}

Covariance Q(h) = P{zx € A°,x + h € A°}

Covariance C;j(h) = P{x € A;,x + h € A;} for a multi-component random set
Three points Probability Q(hy, he) = P{x € A°,x + h; € A°,x + hy € A°}
Segment [: P(l) = P{l C A}; Q(I) = P{l C A°}

Hexagon H(r): P(H(r)) = P{H(r) C A}; Q(H(r) = P{H(r) C A°}

R(z, A): distance between the point = and the set A
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3. MEASUREMENTS

1(A): measure of A

i, Lebesgue measure in R"

Volume of A: V(A)

Integral of mean curvature of A: M(A)

Surface area of A: S(A)

Perimeter of A (in R?): L(A)

Connectivity number in R%: N4 (A)

Connectivity number in R3: Ny (A) — Gy (A)

4. RANDOM FUNCTIONS

Random Function Z(z)

test function g(x)

®(E): set of functions from F — R

upper semi continuous random functions (usc RF)

®; C ®: set of usc functions from F — R

Choquet's capacity T(g) = P{x € D7(g)}: D2(9)° = {o, Z(x +y) < g(y), Yy €
K}

lower semi continuous random functions (lsc RF)

®, C @ : set of Isc functions from £ — R

functional P(g) = P{z € Hz(9)}; Hz(g9) = {=, Z(z +y) > g(y),Vy € K}

subgraph I'? of the function ¢: T'¥ = {x,2}, v € E, 2 € R, with 2z < ¢(x)

overgraph I',: T, = {z, 2}, x € E, 2 € R, with 2z > ¢(x)

V: supremum; Zy(K) = Veex{Z(z)}

A: infimum; Z,(K) = Apex{Z(2)}

thresholding: Az(z) ={z,Z(z) > 2z}

spatial law: F(z,2) = P{Z(z1) < 21, ..., Z(¥m) < zm} with 2z € E™ and z € R

spatial law: T'(z,2) = P{Z(x1) > 21, ..., Z(xm) > 2zm} with z € E™ and z € R

F(z), G(z) distribution functions (with density, or pdf f(z) and g(z))

S: coefficient of variation of a distribution

D?|Z]: variance of the random variable Z

Bivariate distribution Fj;(h, z1,22) = P{Zi(x) < z1, Z;(x + h) < 22}

Bivariate distribution Tj;(h, 21, 22) = P{Z;(x) > 21, Z;j(x + h) > 25}

Bivariate distribution Ty(h, 21, 22) = P{Z(x) > 21, Z(x + h) > 23}

Covariance C(z, 4+ h) and second order central correlation function Wy (z, z + h)

v1(h), v5(h): variograms of order 1 and 2

Central correlation function of order m W,,(z), with z € E™
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5. MODELS
5.1. Random sets. Boolean model: RACS A with primary grain A’
Intensity 6
Primary grain A”:

geometrical covariogram K (h) = f,(A'NA",)
. . _ K(h)
normalized covariogram r(h) = %5

T (ANAL, NA, )

S(hl, hg) = K (0)

IBRS: infinitesimal Boolean random set; time t; Intensity 6(t)

Dead leaves tesselation: N;(t): specific number of intact grains; ¢ 4, ¢4 pdf of
grains and of intact grains '

Poisson varieties Vj(w), with intensity 6(w)

5.2. Random functions (RF). BRF: Boolean random function Z(z)

DLRF: Dead leaves random function

SARF': Sequential alternate random function

Z}(z): Primary random function, with subgraph I'“t = A'(t) and sections Az (z)

©(Z): transformation of the RF Z by the anamorphosis ¢

Dilution RF: ®(U, X) and ¢,(U, X): multivariate characteristic functions of the
RF Z(z) and Z/(x)

Z * p(x): convolution of the RF Z(z) by a weight function p(z)
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Introduction

@ Why use models of Random Structures?
@ No specific role of Randomness, as opposed to Determinism.

@ Choice of a methodology based on a probabilistic approach.

Random Structure Models

@ Aim: to estimate, from spoiled or missing data, structural,
morphological, or physical propertiesof heterogeneous media.

@ Method: Use of a probabilistic approach

@ for practical reasons
@ to get efficient solutions to the studied problems

Mines ParisTech (Institute) Introduction November 2024
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Heterogeneity

Microstructures, Textures:

@ more or less important heterogeneity at different scales
@ structured aspects

How to account for these two points?

How to replace fluctuating data at a small scale by global
characteristics?

Going from Microscopic to Macroscopic

Relationships Physical Behavior-Textures

Mines ParisTech (Institute) Introduction November 2024 4 /45



| SCALES_IN SINTER STRUCTURE

e SINTER CAKE

® SINTER LUMPS

e POROUS
MACROSTRUCTURE

® MINERALOGICAL COMPONENTS
(Phases - Textures)

® OPTICAL MICROSCOPE

© MICROANALYTICAL SEM
X Ray - maps)

Mines ParisTech (Institute) Introduction November 2024

Representativity

How to extrapolate partial available information to

@ a full single object?
@ a population of objects?
Typical models:

@ Periodic medium, known from a single period (satisfactory for ordered
media like perfect crystals)

@ Probabilistic model (concerns most practical situations for
heterogeneous media)

Mines ParisTech (Institute) Introduction November 2024

Partial knowledge

@ Regionalized data are known from a sampling procedure:
e Selection of objects in a population

Grains of a powder
Biological cells
trees, plants
individuals

® © & ¢

e Partial knowledge of objects

@ Ore deposit explored by probes
@ 2D or 1D sclices in a material
@ Finite number of zones examined with the microscope,...

Mines ParisTech (Institute) Introduction November 2024

Aims of Probabilistic Models

Two main aspects:

@ Descriptive

@ Predictive (probem solving)

Mines ParisTech (Institute) Introduction November 2024




Descriptive aspects Predictive aspects

What can be obtained from partial data, using probabilistic models?
Typical examples from Geostatistics:

Simplified representation of a complex structure: @ Give the precision of a global estimation, such as the integral
@ Summary of structural data in few parameters (1, 2,...) for relation
with the physical properties, or for classification of structures I = /R f(x)dx

@ Genetic models: simplified construction to simulate the physical

processes driving the formation of the structure estimated from sampling points by

@ Realistic simulations of random media p=-o0
I*=a Y f(xo+pa)

p=—c0

e Statistical definition of a RVE (Representative Volume Element)

Mines ParisTech (Institute) Introduction November 2024 9 /45 Mines ParisTech (Institute) Introduction November 2024 10 / 45

Predictive aspects

o Interpolation of data at points without information (orebody
deposit exploration, missing data such as non available slices for a 3D
image analysis of a microstructure,..) by kriging

@ Restore noisy data by filtering (e.g. by kriging)

Microsegregation in steel (noisy image)

Mines ParisTech (Institute) Introduction November 2024 / Mines ParisTech (Institute) Introduction November 2024 12 / 45



Predictive aspects

@ Solution of optimisation problems by simulations:

o Orebody deposits exploitation (Conditional simulations that respect
data at points with information)

e Oil reservoir production (Conditional simulations)

@ Reliability computation, fracture statistics

@ Homogenization: computation of the effective behaviour of random
heterogeneous media (physical effective properties), from probabilistic
information on the microstructure, or from simulations of random
media

@ Materials conception and optimization,...

Mines ParisTech (Institute) Introduction November 2024 13 / 45

SEM Micrograph of Powder

Mines ParisTech (Institute) Introduction November 2024 15 / 45

Predictive aspects

Further practical problems:

@ Stereology: how to reach 3D morphological properties from 1D or
2D morphological properties (obtained on slices or on projections)
@ Counting and measuring;:
e number of imbricated objects in a texture, without segmenting the
image
@ estimation of a powder size distribution from images of overlapping
objects

Mines ParisTech (Institute) Introduction November 2024 14 / 45

Predictive aspects

@ Change of support: change of statistical properties of a medium
with the size and shape of the support of data

@ Change of scale: prediction of the macroscopic physical behavior of
a medium from its microscopic behavior; for instance, in Fracture
Statistics of brittle materials, prediction of the fracture probability of
parts (or planes, buildings,...) from data on small scale samples

Possible construction of algorithms based on theoretical probabilistic
models, to be used more generally in a heuristic way (filtering, counting,
change of support, change of scale,...)

Mines ParisTech (Institute) Introduction November 2024 16 / 45



Main types of data and of models

Examples of regionalized data and corresponding types of models:

@ Dispersions of small particles in a matrix (non metallic inclusions in
steel,...), modelled by realizations of stochastic point processes

@ Granular structures (polycrystals), assimilated to random
tessellations of space (each class corresponding to a grain)

@ Two phase (porous media) or multiphase structures (composite
materials with several components) may be simulated by random
sets (binary), or multicomponent random sets

Mines ParisTech (Institute) Introduction November 2024
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Polycristal in steel

November 2024 19 / 45
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Metallurgical coke
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Iron ore sinter

Mines ParisTech (Institute) Introduction November 2024 22 / 45
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Main types of data and of models

@ Rough surfaces (steel plate, fracture surface,...), chemical
concentration mappings (X ray images obtained with an electron
microprobe), and more generally grey level images (video images,
secondary electron images in a scanning electron microscope,...) can
be represented by random functions

@ Multivariate data (multi species chemical mappings, components of a

vector or of a tensor in every point x of space), modelled by
multivariate random function models

L H62, 5t 3008

Mineral textures in iron ore sinters

Mines ParisTech (Institute) Introduction November 2024 24 / 45
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Chemical maps in an iron ore sinter
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Main types of data and of models Construction of random structures

@ Sequential images (change of a microstructure during its formation,
its deformations under loading, its degradation; successive grounds in To build random structures are required:
a perspective view) associated to sequential random sets or

. @ a set of events and their combination (o algebra)
random functions

@ Data on a network connecting vertices (roads, porous medium, e.g. open sets on a topological space (Borel o algebra)

cracks,...) and their properties depending on connectivity, modelled @ a probability
by random graphs

® Arborescent data, modelled by random trees

Mines ParisTech (Institute) Introduction November 2024 29 / 45 Mines ParisTech (Institute) Introduction November 2024 30 / 45

Characterization of a random set model Characterization of a random function model

For an upper semi continuous random functions (usc RF) Z(x)
defined in R", characterization by the CHOQUET capacity T(g) defined
on the lower semi continuous functions (Isc) g with compact support K

_ T(g) =P{x € Dz(g)}; Dz(g)  ={x. Z(x+y) <gly),Vy € K}
Models derived from the theory of Random Sets by G. MATHERON.

For a random closed set A (RACS), characterization by the CHOQUET
capacity T (K) defined on the compact sets K —_— g

o + + o
T(K)=P{KNA#®} =1—P{KC A} =1— Q(K) /N

E
usc RF: x € Dz(g)°¢

Mines ParisTech (Institute) Introduction November 2024 31/ 45 Mines ParisTech (Institute) Introduction November 2024 32 /45




Characterization of a random function model

For a lower semi continuous random functions (Isc RF) ,
characterization by the functional P(g) defined on the upper semi
continuous functions (usc) g with compact support K

P(g) = P{x € Hz(g)}: Hz(g) = {x, Z(x +y) > g(y),Vy € K}

K
N |
o E
] o+
R |

Mines ParisTech (Institute) Introduction November 2024 33 /45

Construction of Random Structure Models

Main steps:

@ Choice of basic assumptions

o Computation of the functionnal T(K)

November 2024 35 /45

Mines ParisTech (Institute) Introduction

Characterization of a random model

@ The CHOQUET capacity of a RACS is equivalent to the distribution
function of a random variable

@ Two models (RACS, usc RF, Isc RF) with the same functionnal T (K)
, T(g), P(g) cannot be distinguished (theoretically as well as
experimentally)

@ The functionnal T(K) , T(g), P(g) connects theory and
experimentation; it is used to estimate the parameters of a model and
to test its validity

November 2024

Mines ParisTech (Institute) Introduction

Construction of Random Structure Models

Choice of basic assumptions

@ Genetic models: construction from elementary processes and
geometrical modes of interaction

@ Definition of a RF as a solution of Stochastic partial differential
equations (e.g. Reaction-Diffusion models)

Mines ParisTech (Institute) Introduction November 2024




Construction of Random Structure Models

Choice of basic assumptions

@ Prior general properties satisfied by a class of models:

stationarity

independent increments

infinite divisibility

Markov property (lack of memory)

stable distribution after transformation, ...

o Asymptotic limit of families of models: Gaussian RF (" Central limit

" theorem); Boolean RF obtained by the supremum V of independant
RF

Mines ParisTech (Institute) Introduction November 2024

Construction of Random Structure Models

Construction of Random Structure Models

Calculation of the CHOQUET capacity

Determination of the functional T(K), T(g), P(g) as a function of

@ the assumptions
@ the parameters of the model

@ the compact K or the function g

Mines ParisTech (Institute) Introduction November 2024 38 / 45

Construction of Random Structure Models

Calculation of the CHOQUET capacity

For a given model, the functionnal T is obtained:

@ by theoretical calculation
@ by estimation

@ on simulations
o on real structures (possible estimation of the parameters from the
"experimental” T , and tests of the validity of assumption)

Mines ParisTech (Institute) Introduction November 2024 39 / 45

Calculation of the CHOQUET capacity

@ The functions T(K) (K being variable) are consistent (which is not
the case of any prior analytical model)

@ After specification and validation of the model from available data,
possible predictive implementation of its properties (such as T(K)
for compacts K not used during the identification step). Examples:
3D properties deduced from 2D observations (stereology); change of
support by V or A in the case of a change of scale in fracture statistics

Mines ParisTech (Institute) Introduction November 2024 40 / 45




General properties of the proposed models

@ Most random structure models defined in the Euclidean space R" :

o more general than stochastic processes limited to the 1D space R,
where the order relation is used;

o different from discrete models defined on a grid, even if the discrete
counterpart of the euclidean models is easily defined

@ Models depending on a few number of parameters, not to ask too
much from the available data, and for realistic experimental
identification and test

Mines ParisTech (Institute) Introduction November 2024 41 / 45

@ Chiu S. N., Stoyan D., Kendall W. S., & Mecke J. (2013). Stochastic
geometry and its applications, John Wiley & Sons.

@ Choquet G. (1969) Cours d'analyse, Tome II, Topologie, Masson,
Paris.

[ Jeulin D. (1991) Modeles morphologiques de structures aléatoires et
de changement d'échelle, Thése de Doctorat d'Etat és Sciences
Physiques, University of Caen.

[ Jeulin D. (ed) (1997) Proceedings of the Symposium on the Advances
in the Theory and Applications of Random Sets (Fontainebleau, 9-11
October 1996), World Scientific Publishing Company.

[E Jeulin D., Ostoja-Starzewski, M. (eds) (2001) Mechanics of Random
and Multiscale Microstructures, CISM Lecture Notes N° 430, Springer
Verlag, Wien.

[ Jeulin D. (2021) Morphological models of random structures, Springer
Verlag.
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General properties of the proposed models

@ Mostly stationary and ergodic version, to allow a statistical
inference from a single realization

@ Good stereological properties, for access from slices or projections
e Facilities for simulations (and often for conditional simulations)
@ Approach based on the Choquet capacity extended to convolutional

neural networks (CNN) in the context of Deep Learning, for the
discrimination of various point processes (Mohammadi et al.)

Mines ParisTech (Institute) Introduction November 2024 42 / 45

B Matheron G. (1965) Les variables régionalisées et leur estimation,
Masson, Paris.
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& Angulo J. (2024). Choquet Capacity networks for random point
process classification,in Proceedings CMDS14, p. 229, F. Willot, J.
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Introduction to mathematical Morphology
and to morphological segmentation of
Images






Introduction to Mathematical Morphologly
Outline

* Origin and purpose

Mathematical Morphology for binary images
Mathematical morphology on grey level
images

* Morphological segmentation

Introduction to Mathematical Morphology
November 2024

Mathematical Morphology
Origin — Motivations
‘Cc;_.Mat\rlgron, 1967

3 ?‘ » Characterization of the

« Prediction of the macroscopic
behaviour of a porous medium
(composition of permeabilities)?
 Representation of a heterogeneous
&3 medium by a model?

Introduction to Mathematical Morphology
November 2024

IMMGE ANRLYSIS
AND

Ny

MMTHEMRTICAL
MORPHOLOGY

Introduction to Mathematical Morphology
November 2024

Mathematical morphology
analysis
« Initial motivation: how to quantify complex
porous media?

+ Spatial arrangement from Covariance, sizing
by morphological opening (G. Matheron, J.
Serra)

Introduction to Mathematical Morphology
November 2024




Mathematical Morphology
for binary images

v

Fe — Ag (0-255 grey level image) Fe (Threshold 0-100)

Introduction to Mathematical Morphology
November 2024

Basic operations of binary
mathematical morphology

* Qualitative description of the morphology by means of

comparison with a reference shape

« Binary image: set A and complementary set A°

» Structuring element K: choice of an object moved by
translation in the image K,

« Answer to a question about the relative location of K,

and of A, recorded for each location x

« For a binary, answer, indicator function of the set @®(A)
obtained by transformation of A (k(x) =1 when x in
P(A))

Introduction to Mathematical Morphology
November 2024

Set Dilation !

Structuring
element

K, hits A ? [\@‘
X ! [ )

4

Yy

Dilation

AD R = {X, Ky« NA # @} = Uyek A—y = UxeA,yeK {X _y}

Introduction to Mathematical Morphology
November 2024

K, included in A ?

structuring element

 Erosion obtained by the P
complementary set of the
result of the dilation of o
Achy K

+ Erosion and dilation
dual operations with

respect to
complementation

Erosion

Ao K ={xKx C A} = Ny Ay = (A° @ K)©

Introduction to Mathematical Morphology
November 2024




Basic Operations of Mathematical
Morphology: erosion and dilation

Erosion Dilation

hexagonal (2) hexagonal (2)

Introduction to Mathematical Morphology
November 2024

Basic Operations of Mathematical Morphology

(ASK,1) BK; = A (KiBKz)
(ABK,) BK, = Ad (K:BKz)
(ANB) ©K = (ASK) N (BEK)
A® (K1UKz) = (ABK,) U (ADK,)
If Ais a convex set, A © K is a convex set

If A and K are convex sets, A @ K is a convex set

Introduction to Mathematical Morphology
November 2024
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11

Basic Operations of Mathematical Morphology: Opening

i . Structuring element
First erode A by K, then dilate
by K, to obtain yg(A)

The opened set y5(A) is the union
of the structuring elements K,
which are included in the set A

The opening is an idempotent ,
operation Opening

The opening operation can be
used to remove noise by| |WhenKis adisc, the opening amends
filtering, and to measure size the caps, removes the small islands
—m&tionof the elements of A and opens isthmuses.

Introduction to Mathematical Morphology
November 2024

Basic Operations of Mathematical
Morphology: opening

Erosion hexagonal
hexagonal (2) opening(6)

Introduction to Mathematical Morphology
November 2024

12




Basic Operations of Mathematical Morphology:
Closing

13

First dilate A by K, then erode
by K, to obtain ¢5(A)

The closed set ¢5(A) is also
obtained by the complementary
set of the opening by K of the set
Ac (opening and closing dual
operations with respect to
complementation)

The closing is an idempotent
operation

The opening operation can be
used to remove noise by
filtering, and to measure size
distribution of the elements of
AC

Structuring element

Closing

When K is a disc, the closing
closes the channels, fills the small
lakes, and partly the gulfs.

Introduction to Mathematical Morphology
November 2024

Basic Operations of Mathematical
Morphology: closing

Dilation Closing
hexagonal (2) hexagonal (2)

Introduction to Mathematical Morphology
November 2024

15

Mathematical morphology on
grey level images

Introduction to Mathematical Morphology
November 2024
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| Dilation and Erosion by a flat structuring Element|

grey levels

Definition : The dilation (erosion) of| | Dilate
a function Z(x) by a flat structuring
element K is introduced as the 50 o
dilation (erosion) of each set A; (L) —> Original
by K.They are said to be planar 09
This definition leads to the following| | | Eroded
formulae (J.Serra) :
20
Z@K(X)=up{Z(x),x € K} — Structurin
01 element
Z OK(X) = Inf{Z(x)x,x € K} ol

80
Space

« Erosion shrinks peaks. Peaks thinner that the structuring element disappear. It
expands the valleys and the sinks

« Dilation produces the dual effects

Introduction to Mathematical Morphology
November 2024
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Dilation and Erosion by a flat structuring Element

Powder (SEM) Dilation (hexagon 10) Erosion (hexagon 10)

Introduction to Mathematical Morphology
November 2024

« Opening: erosion followed
» Closing: dilation followed

« Opening and erosion create 7

18

Opening and closing of functions
by flat structuring element

by a dilation by K Level

by an erosion by K 7 closing
a simpler function than the 0 origina
original.  They  smooth
(filter) the image in a *1
nonlinear way 20
The opening  (closing)
removes positive (negative)
peaks that are thinner than 0
the structuring element.

The opening  (closing)
remains below (above) the
original function

Opening

— Structuring
element

0 20 40 60 80

Introduction to Mathematical Morphology
November 2024

19

Opening and closing of functions
by flat structuring element

c

a: closing (10)
b: opening (10)
c: opening (30)

Initial image of powder

Introduction to Mathematical Morphology
November 2024

20

| Top-hat transformation

Opening top hat:
Z(x) - Opening(Z(x))

Level igi
. 7 Original

Closing top hat:
Closing(Z(x)) - Z(x) 50

|
Opening:y

Top-hat used to extract contrasted
components with respect to the
background. The opening top-hat
extracts positive components and the | Top hat
closing top hat the negative ones

Typically, top-hats remove the slow B P P M %
drifts, and thus performs a contrast Sample
enhancement

Introduction to Mathematical Morphology
November 2024




Example of Top-hat

Aim :extraction of the aneurisms in retian (small white spots)..

Top hat by an
hexagon opening
of size 10. openings of size 10.

Top hat by the sup

Negative image
of three segments

of the retina.

Introduction to Mathematical Morphology
November 2024
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Morphological filters

» Morphological filter: increasing and idempotent transformation

« Basic filters: opening and closing operations

« Serial combinations: filters more progressive than the openings y, and
closing ¢, used in the combination

@Y, 0Ny @
» Sequential alternate filters Mn and Nn

m< ... <7l <pl <...<pn
Mn = ynpn..yipi..ylel
Nn = pnyn...ivyi...plyl

Introduction to Mathematical Morphology
November 2024

Morphological Segmentation

AIM: extraction in images of domains with a similar
morphology

PRINCIPLE

— extraction of pertinent markers

— construction of Watershed Lines (2D), or of separation
surfaces (3D), boundaries of domains

Beucher, S., & Lantuéjoul, C. (1979). Sur I'utilisation de la ligne de partage des eaux en
détection de contours. Rapport Interne N-598, Ecole des Mines de Paris, Centre de Morphologie
Mathématique, 21-46

Meyer, F., & Beucher, S. (1990). Morphological segmentation. Journal of visual communication
and image representation, 1(1), 21-46.
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Watershed Line
S. Beucher, Ch. Lantéjoul, 1979

Grey level Image
Gradientimage

Flooding from
minima: basins
surface and watersheds

Representation by
a topographical

Introduction to Mathematical Morphology
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Construction of the Watershed by
flooding from minima

» Dam built to prevent the merging of

two lakes
“' « Elevation of the water level until the
complete flooding of the relief

» Boundaries : watershed lines

 In 3D, boundaries are watershed
surfaces

+ Advantage: closed boundaries are
generated

Introduction to Mathematical Morphology
November 2024
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Watershed from markers

» Possible use of markers, instead of filling all
basins

» Depending on applications, choice of different
types of markers

Introduction to Mathematical Morphology
November 2024
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Segmentation: cleavage facets
S. Beucher

Fractography of steel
(IRSID) zones

Markers Contour of cleavage

Introduction to Mathematical Morphology
November 2024

Probabilistic segmentation

Journal of i
Microscopy ) Segmentatior_1 o_f 3D
microtomographic images of granular
materials with the Stochastic
watershed
(J. Angulo & D. Jeulin, M. Faessel )
Use of random markers and

estimation of contour probabilities,
to generate a hierarchy

Angulo, J., & Jeulin, D. (2007, October) Stochastic
watershed segmentation. In ISMM (1) (pp. 265-276)
Faessel, M., & Jeulin, D. (2010). Segmentation of 3D
microtomographic images of granular materials with
the stochastic watershed. Journal of
microscopy, 239(1), 17-31.
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3D Segmentation of grains by the
probabilistic watershed

(D. Jeulin & M. Faessel) . .
Fully automatic Segmentation

Two phase granular material (CEG Gramat)

Introduction to Mathematical Morphology
November 2024

3D Reconstruction of fragmented granular materials
L. Gillibert and D. Jeulin, CEA Gramat

Aim : to rebuild grains from
fragments, then evaluation of
damage for each grain
Fragments gathering

Tools : closing, distance map,
watershed surface, k-means,
h-minima

Gillibert L. Jeulin D. (2013) 3D Reconstruction
and analysis of the FragmentedGrains in a
Composite Material, Image Analysis and
Stereology, Vol. 32, pp. 107-115

Introduction to Mathematical Morphology
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Measurement of fragmentation

Specific Surface Area of cracks (MAT2)

Specific surface area of the cracks {histogram)

MAT2 (HM) e
MAT2 (KM)
80
50 -
2 4
&
2
® Nf
20 b
“r K..
.'—-—-—._'__.___'/—-——._—_““_
o | T .
o 0.005 0.01 0015 0.02

Specific surface area of the cracks (micron®(-1))
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Measurement of fragmentation
Specific Surface Area of cracks (MAT3)

Specific surface area of the cracks (histogram)

MAT3 (HM) —
MAT3 (KM}

9% of grains

E
N 2
I\ A% y 4
W VN .
g :
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Specitic surface area of the cracks (micron™(-1))
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Images of Coldspray deposits %

microtomography

Region of interest :
ESRF Images : 900 x 550 x 551 401 x 401 x 400 voxels3
voxels® ; 0.35 micron per voxel 140.4 x 140.4 x 140 pm?
(315 x 192.5 x 192.9 um?) —

Introduction to Mathematical Morphology
November 2024

Combination of two segmentations
Final Result

i) Multiscale Segmentation

i) Stochastic watershed

Gillibert L., Peyrega Ch., Jeulin D., Guipont V., Jeandin M.
(2012) 3D MultiscaleSegmentation and Morphological Analysis
of X-ray Microtomography fromCold-sprayed Coatings, Journal
of Microscopy, vol. 248, Part 2, pp. 187-199

Introduction to Mathematical Morphology
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Segmentation and Skeleton in 2D

A ball Bz(r) with radius r and centre z is maximal for the set
A <= there is no other ball Bz/(r1) (r1 > r),

such that Bz(r) C Bxs (rl) C A

The skeleton of a set A according to a family of balls B(r)

is the union of centres of all its maximal balls (namely its medial
axis)

- skeleton of a disc: its centre

- In the continuous case, the skeleton preserves the connectivity

- On digitized images special algorithms to preserve the

connectivity, like sequences of homotopic thinnings

Introduction to Mathematical Morphology
November 2024

Segmentation and 3D reconstruction of
aggregates from 2D TEM micrographs

Aggregates of carbon nanospheres (diameter 30nm)

» Sequence of images with 5° tilts

 Binary segmentation to extract characteristic points
» 3D coordinates of particles centres by stereographic

reconstruction

Le CoéntA., Jeulin D., Strudel J.L. (1997) Carbon aggregate reconstruction
from Transmission Electron Microscope images, Cell Vision, vol. 4 No.2,
219-221
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Segmentation of TEM micrographs

Triple points of the skeleton: candidates for centres markers

Skeleton triple points

Introduction to Mathematical Morphology
November 2024
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TEM micrographs
Carbon black aggregate (1500 nm); initial image and filtered image
Introduction to Mathematical Morphology
November 2024
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Morphological measurements for
random structures






Introduction

Morphological measurements for Random Structures Microstructure of materials: heterogeneity

Morphological measurements

Qualitative and quantitative Analysis of the morphology
(images analysis)

I

Construction of probabilistic models of structures

for porous or multicomponent media

Dominique Jeulin

Centre de Morphologie Mathématique, Mines ParisTech, Fontainebleau, France

dominique.jeulin@minesparis.psl.eu U,
Understanding and prediction of the behaviour
November 2024 of materials in service
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Quantitative characterization of a random structure

Main criteria

Quantitative characterization of a random structure

@ Basic measures (volume fraction Vy/, surface area Sy, integral of
mean curvature My,...) — stereology

@ Size distribution (2D-3D)

@ Distribution in space:

@ Random closed sets
® Multicomponent random sets

@ Random functions .
o Clustering
e Scales

@ Anisotropy

@ Connectivity
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Principle of morphological Measurements Principle of morphological Measurements

Experimental access — constraints for allowed measurements:

Two steps (J. Serra): @ invariance by translation

@ morphological transformation ® applied to the structure (use of

@ continuity (with respect to the mesh and to the sampling grid)
image analysis) @ local knowledge (study of the structure from bounded measure fields)
@ measurement performed on the transformed object o additivity (averages)
Choice of measures and transformations according to morphological criteria @ stereological properties (2D-3D)

Measurements and transformations respecting these constraints

Mines ParisTech (Institute) Morphological measurements November 2024 5 /100 Mines ParisTech (Institute) Morphological measurements November 2024 6 /100

Basic measurements and Minkowski functionals Basic measurements and Minkowski functionals

In integral geometry, it is shown that in R", n+ 1 measures satisfy the

constraints: the de Minkowski functionals, noted W, with W, In R?
h d of d — i Wi(AA) = AW, (A
omogeneous and of degree n — i (AA) (A) Wo(A) = A(A) (area of the set A)
In R 2Wi(A) = L(A) (perimeter of A) (2)
2Ws(A) = 27tN(A) (connectivity number in R?)

Wo(A) = I(A) (length of A) "
Wi(A) =2 N(A): difference between the number of connected components of A and
the number of holes it contains
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Basic measurements and Minkowski functionals

In R3

Wo(A) = V(A) (volume of the set A)
3Wi(A) = S(A) (surface area of A)

3W5(A) = M(A) = %faA (Ril + Ri2> ds

(integral of the mean curvature) (3)

3W4(A) = 4rt(N — G) = N(A) = [,, (ﬁ) ds

(integral of the total curvature,
or connectivity number in R3)

Mines ParisTech (Institute)

Basic measurements and Minkowski functionals

Morphological measurements November 2024 9 / 100

Principal curvatures (Wikipedia)
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Basic measurements and Minkowski functionals

Ry and R»: principal radii of curvature in any point of the boundary dA of
A

(N — G): difference between the number of connected components of A,
N and its genus G

Genus of A : maximal number of closed curves to be drawn on its
boundary dA without disconnecting it into two parts: 0 for a sphere and 1
for a torus

Mines ParisTech (Institute)

Connectivity numbers

Connectivity numbers in R? and in R®: topological characteristics
describing the connectivity of an object

in R2, N(A) is obtained by the difference between two convexity
numbers C(A) and C(A°):

Morphological measurements November 2024 10 / 100

N(A) = C(A)— C(A°) = % (/R>0 da — /R<O doc) (4)

d!
R : radius of curvature in every point of dA and da = ﬁs rotation of the

normal along the boundary, according to the arc ds
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Connectivity numbers

in R3, connectivity number related to the rotation of the normal to the
boundary dA by:

1
NA) = — / dw — dw 5
(A) 47T< R1Ry>0 R1R,<0 ) (5)
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Specific Measurements and Stereology

Stereological  relationships  (Crofton) for Slices
R3 Vv Sy My Ny — Gy
T T T
VV:AA SV:%LA MV:27TNA
T T T
R2 Aa La Na
T T
AA = LL LA = 71'NL
T T
R Ly N,
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Morphological criteria

Basic Specific Measurements in R3

For a random set A, the functionals W; are random variables.
For a stationary random set (porous medium, mineralogical texture),with
average properties invariant by translation, specific values, given per
unit volume

@ volume fraction Vy,

@ specific surface area Sy

@ integral of the mean curvature My or of the total curvature Ny — Gy

estimation from slices (1D or 2D)

Mines ParisTech (Institute)
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Measures on RCS

For a closed random set, every measure j must be a random variable j(A)
Example:

p(A) = [1a()n(d0)

where 14(x) is the indicator function of A (1a(x) =1if x € A) and u is a
positive measure
1a(x) is measurable: u(A) is a random variable with expectation E[u(A)]

Elu(A)] = [ P{x € Aju(dx)

Mines ParisTech (Institute)
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Measures on RCS

Application to the Lebesgue measure : p(dx) = dx
In R", volume

o) = [ 1a()dbe = Wo(4)

For a random closed set,

E[n, (A)] = /P{x € Aldx

Mines ParisTech (Institute) Morphological measurements November 2024 17 / 100

Measurements estimated from images sampled on a grid of points,
usually regular (square, or hexagonal in the plane), related to a graph

@ To every node x of the grid is given the value 1 if x € A, and O if
x € A° (complementary set of A)

o Number of summits v of the grid in A — area in R? or volume in
R3

@ Number of intercepts N(01) in a given direction — estimation of
the number of chords generated by A in this direction

Mines ParisTech (Institute) Morphological measurements November 2024 19 / 100

Estimation of the volume fraction of RCS

If the random closed set is not bounded, one can study AN B, where B is
a bounded domain:

Eln, (AN B)] = /B P{x € A}dx

If the random closed set is stationary, P{x € A} = p and then

Eln,(ANB)] = [ pdx = pi, (B)

For every B in R (0 < k < n)
_ Efu, (AN B)]
i (B)

And
VW =As= 1L,

Mines ParisTech (Institute)
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@ Connectivity Numbers estimated by counting from the Euler
relations

@ In the plane, N, v, the number of faces (f) and the number of edges
(e) are related by:
N=v—et+f (6)

On a hexagonal or a square grid, (6) is deduced from counting the
following configurations (where * means "not tested”):

/\/(A) = N<010> — N<101> on the hexagonal grid Gy

(7)

10 *1 .
N(A) = N(OO) - N<10> on the square grid Cg

Mines ParisTech (Institute)
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In R3, the Euler relation is expressed as a function of previous properties
and of the number of blocks (b):

N—G=v—e+f—b (8)

For an isotropic structure sampled on a cubic grid, specific connectivity
number estimated from relation (8):

C(0) —3C(a) + 3P<E> — P(C)

23

(9)

N\/ - G\/ = —lim
a—0

where C is the cube with side a and C(h) is the covariance of the random
set A
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Minkowski Tensors

Tensors W10,2 and WQO’2 invariant by translation

Scalar measurement of anisotropy obtained from the ratio of the smallest
and the largest eigenvalues

Tensor W0 related to the inertia tensor /(A) used in to characterize
particles of complex shapes and their orientations. The inertia tensor can
be estimated for objects of any shape, I; being the identity matrix:

li = /(—X,'Xj-i-(S,'j)dV
I(A) = —WF°(A) + latr(W5° (A))

Similarly W12'0 is related to the tensor of inertia of a mass uniformly
distributed over dK. Furthermore,

S(A) = 3tr(W{?(A))
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Minkowski Tensors

Symmetric tensors generated from symmetric tensor products of vector x
and the normal vector n on dA
Restricting to tensors of rank two provides quadratic normal tensors

(eigen vectors give information on local orientation)
: 1(1 1 11
In R3, noting Gy =1, Gp = 5 (R_l + R_2)' and G3 = AR

wW2o = / X & xdV/ (10)
A

r,s 1 r S
Wy= = §/BAGVX ® n°dS

with v=1,2,3 and (r,s) = (2,0),(1,1),(0,2). Obviously from
definition of Egs (10),

WP (AA) = 5w ()

[ Jensen E. B. V., Kiderlen M. (eds.) (2017) Tensor valuations and their

applications in stochastic geometry and imaging, Springer.
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Minkowski Tensors and Inertia features of particles with
complex shapes

Microtomography of Intermetallic particles in an aluminium alloy

Reduced principal moments obtained from normalization of the principal
components of inertia (A1 > Ay > A3). For any set A (even non
connected) :

MAAs+A3=1;A; <05 (i=1,23):; A > 0.5(1— Ap)

Mines ParisTech (Institute)
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Inertia features of particles with complex shapes

@ Any object A represented by a point in the plane A;, Ay located
inside a triangle typical of the shape

@ For convex 3D objects, the summits of the triangle represent the
three most distant types of mass distribution: spherical, flat, and
thread type

@ Between these summits there is a continuous change of shape. On
the edges of the triangle, objects show typical shapes: prolate
ellipsoid, oblate ellipsoid , and planar ellipse

@ Orientation of the main axis of inertia (parallel to the eigen vector
corresponding to the eigen value A;) allows us to study the in situ
distribution of orientations of particles, and their evolution during
during rolling

8 Parra-Denis E., Barat C., Jeulin D., Ducottet C. (2008) 3D complex
shape characterization by statistical analysis: Application to
aluminium alloys. Materials characterization, 59(3), 338-343
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Basic Operations of Mathematical Morphology

Dilation and erosion of A by K:

) K hits A? (KNA # ©)?
i) K included in A (K C A)?

(11)
ADK = {x, K NA# D} = UyekA-y = Ureayex{x —y} (12

AOK = {x, K« C A} = NyekA-y = (A°® K)° (13)

K, = {x+y,y € K}: translated of K to point x; K obtained by
transposition of K: K = {—x,x € K}
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Basic Operations of Mathematical Morphology

Qualitative description of the morphology of objects: spherical or
elongated pore, polyhedral grain...

@ Structuring element: choice of an object K (compact set, like a
point, sphere, segment) implanted in every point x of the euclidean
space R"

@ Answer to a question on the mutual location of K and of the
studied set A, for every point x

@ For a binary answer, indicator function of ®(A) obtained by
transformation of the set A (k(x) =1 for x € ®(A), else k(x) = 0)

Morphological measurements November 2024 26 / 100
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Basic Operations of Mathematical Morphology

Symbols ¢ and & : Minkowski addition and substraction :
AD K =Useayek{x+y} =UjekA, = UgeaKx (14)

AS K =NyekA, = (A° @ K)© (15)
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Steiner Formulae

Relation between the Minkowski functionals of a convex set A dilated by a
convex set K and the functionals of A and of K:

n—1

k=n—i .
Efwi(A K)) = o b3 ( 5 >Wk+/<A>Wn_k<K> (16)

where E{W;(A® K)} is the average value of W;(A® K) over the
rotations of K around the origin O.
K: ball with radius r, (polynomials with degree n — i)
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Steiner Formulae
For A C R3 and for K C R?, M(K) = %L(K) and
. L(K M(A
E{V(A® K)} = V(A) + %S(A) + %A(K)
(18)
M(A)L(K)

E{S(A®K)} = S(A) + +2A(K)
For A C R% and for K C R (for instance the segment: K = /)

E(V(A® K)} = V(A) + 1S(A) (19)
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Steiner Formulae

For AC R® and for K C R3

E{V(A® K)} = V(A) +%S(A) +%S(K) L V(K)
E{S(A® k)} =5S(A)+ M(A)M(K) + S(K) (17)

E{M(A® K)} = M(A) + M(K)

Mines ParisTech (Institute)
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Steiner Formulae

For A C R? and for K C R?,

E{AADK)} = A(A) + % + A(K)

(20)
E{L(ADK)} = L(A) + L(K)

Mines ParisTech (Institute)
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Granulometry

Morphological Criteria

Separate objects
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Granulometry Granulometry

Axiomatic of granulometries

Size Distribution
Definition ( G. Matheron) A granulometry is a family of set

transformations @, depending on a positive parameter A (the size),

diameters of de cavities . : .
satisfying the following properties:

crack lengths
Areas of objects i) Dy(A) C A (P, is anti-extensive)
® Any increasing criterion W: A C B = W(A) < W(B)

i) if AC B,®,(A) C ®,(B) (P, is increasing)
Access from 1D or 2D slices (spherical shape, or at least convex)
Size Distribution of any media (including connected networks) by
morphological opening (erosion followed by a dilation) by convex As a consequence of axiom iii), applied to A = y, the transformation ®,
structuring elements must be idempotent:

i) &y o ®, = &, 0P, = &, (absorption for the composition)

CIDAOCI)/\:CD/\
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Granulometry

Size distribution by opening by convex sets
Openings of the set A by AK, (A > 0), for a convex set K, noted Kj:
D)\(A) = (AS Ky) @ K,

Transformation to be applied to any set (isolated particles, or connected
medium):

@, (A) = Ak, = {x € ATy € Awith Ky, C A} (21)

Ak, is the set of points of A covered by K translated in space, while

remaining included in A

Mines ParisTech (Institute)
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Granulometry

Size distribution by closing by convex sets
The closing operation is dual of the opening:
A = (AB K)) © Ky = (P(A%))° (22)

By closing A by compact convex sets K, size distribution of the set A°.
The size distribution for a given granulometry is obtained from measures:
counting numbers,or measure of a volume in the space R”

Mines ParisTech (Institute)
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Granulometry

Hexagonal opening (6)
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Granulometry

Hexagonal closing (6)

Mines ParisTech (Institute) Morphological measurements November 2024 40 / 100



Two dimensional Granulometry

Openings or closings, followed by the measurement of an area (or volume
for extension to 3D)
Cumulative measure distribution, from openings by convex structuring

elements:
_ P{xe A} - P{x € A}

P{x € A}
From equation (23) are deduced in R? the moments of the area S of the
largest K containing x and included in A. For a disc with radius r:

G(A)

(23)

E{S} =2m [;(L—G(r))rdr
(24)
E{S"} =2nm [ (1= G(r))r*"" dr
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3D Granulometry of a fibrous medium

Project Silent Wall. Peyrega Ch., Jeulin D., Delisée Ch., Malvestio J.
(2009) 3D Morphological modelling of a random fibrous network, Image
Analysis and Stereology, Vol. 28, pp.129-141
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Alliage Fe Ag Granulometrie hexagonale
1000 T T T T T T —T
'FEAG10UV.DAT' —
'FEAG1FER DAT' —

0 2 4 6 8 10 12 14 16 18 20
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3D Granulometry of a fibrous medium Linear granulometry

Available from linear erosions (depends on the orientation of /)
VOLUME weighted GRANULO. of the FIBRES of Thermisorel (RC) VOLUME weighted GRANULO. of the PORES of Thermisorel (RC) For a statlonary random set A
o | oo RS e s = | comtonci EESSES St RS
ranulometry ATED of the i ranulometry JLATES o' e . . .
P() = P{I C A}; Q(I) = P{I C A%}
@ 100 f— o 100
5 s ) . .
£ £ P(I) and Q(/) have a derivative. We have:
% wl " % 40 ,
P Poal P{x € A} =P()—IP (] (25)
‘\;,-‘""‘\\ .
s 0 40 60 80 100 120 %o 50 100 150 200
sizssofoPENlNGhyR-hombicuboctasdra(RadiiinMICRONS) Sizes of OPENING by Rhombicuboctaedra (Radii in MICRONS) P{X e A;?} — Q(/) o IQ/(/) (26)
Fibres Pores ] , , o ]
since —P'(/) and —Q'(/) are specific numbers of intercepts of A and of
A | with lengths larger than /
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Linear granulometry
Erosions lineaires Fe (P(I)) et Ag (Q(I))
7000 T T T T T T
'FEAG 1PL.DAT'
'FEAG1QL.DAT'
6000 I i
500 |\ -
- P{x € A} gives access to the measure distribution of intercepts, G(/)
(with the density g(/) when it exists), every chord having a weight
| proportional to its length , (the probability for x to belong to a chord with
length larger than /)
60 70 80
Linear Erosions (Fe and Ag)
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Linear granulometry

Measure Granulometry
For A (similar result for A after replacing Q(/) by P(/)):

1— G(/) — Q(I) — /Ql(l)

Q(0)
(27)
B IQ//(/)
Average measure intercept, L*
o2 7
L* = Q(O)/o Q(I) dl (28)
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Linear granulometry

Measure and number Size distributions

Two types of linear size distributions: g(/) is proportional to (/) and to /
(egs (27,29)).

Example f(/) = aexp(—al) (exponential distribution),
- 1 2
g(l) = a®lexp(—al) (gamma distribution); then, L = = and L* =

a a
For applications, choice of the most appropriate type of distribution
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Linear granulometry

When —Q'(0) is finite (specific number of intercepts), number size
distribution of intercepts — counting the intercepts after length
classification

Distribution function F (/) and density (histogram) f(/):

1= F(l) = number of d'intercepts with length > /| _ Q'(1)

total number of intercepts Q'(0)
(29)
—QN(/)
f(l) = —+==
=20
Average "number” intercept L
L)
L=
Q0) (30)

Mines ParisTech (Institute)

Morphological measurements

November 2024 50 / 100

Size distribution of objects

For isolated objects, size distribution obtained from the distribution of a
measurement (area,diameter) made on every object (and correction of
edge effects by means of the Miles-Lantuejoul correction)

Mines ParisTech (Institute)
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Size distribution of spheres

Estimation of the distribution of diameters of a population of spheres
in R3 from data obtained on sections: basic stereological problem

(" unfolding problem")

Sometimes used for estimating a size distribution of objects with a non
spherical shape (grains of a polycrystal seen in section)

Basic relations between properties in R3 (number of spheres N\(/3) and
distribution of diameters in number F3(D)) and induced properties in R?

(average number of discs N\(/Q) , distribution of diameters in number

F2(D)) and in R (average number of chords N\ and distribution of
lengths in number F;(D))
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Spatial Arrangement

Scales, clusters, or preferential associations between component of a
microstructure:

@ covariance

o distance function

@ anisotropy
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Size distribution of spheres

From R to R3: )
3 1
N = 2R
1 F{(D) (1)
1—FR(D)==-
From dimension i to i +1 (i = 1,2):
(1) _ Ny o Fl()
NV = 7 0 h dh
(32)

FL(h)
- D

Specific numerical techniques (regularization of an ill-posed problem)

dh

(1)
i N 5]
Ny (1= Fa(D) = 2 [
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Spatial Arrangement: Covariance

Covariance C(x, x + h) of a random set A
C(x,x+h)=P{x€ A x+heA} (33)

For a stationary random set, C(x,x+ h) = C(h)
If in addition A is ergodic, C(h) is estimated from the volume fraction of
AN A_h:

C(h)y=W(ANA_,) = VW (ACH) (34)
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Spatial Arrangement: Covariance

Estimation of the covariance from images (like plane sections) inside a
mask X, by means of the geometrical covariograms of the sets AN X

(KAOX(h>) and X (Kx(h))

CAANX)N(ANX)_y)  Kanx(h)
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Spatial Arrangement: Covariance

Properties of the covariance of a random set in R?

o C(0)=P{xeA}=p

o C(h)=C(—h)
° % . (W) de = Sy(A) when the partial derivative
h=0

remains finite.

e If C(0) — C(h) = hP for h — 0, with 0 < B < 1, the boundary of A
has a non integer Haussdorf dimension d =3 — B (A is a fractal
set)

@ C(o0) = p? (the covariance of a stationary and ergodic random set
reaches a sill)
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Spatial Arrangement: Covariance

Result of the erosion by {x, x + h}, which depends on vector h (by its
modulus | h | and its orientation &) characteristic of the size and of the
arrangement of connected objects building the set A — variations of C(h)
with h

Covariance Q(h) of A° (with Q(0) =g =1—p):

Q(h) = P{x € A° x+he A} =1—2C(0) + C(h) (36)

The covariance characterizes simultaneously the two sets (A, A°), while
the two granulometries of (A, A°) bring additional information
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Spatial Arrangement: Covariance

Properties of the covariance of a random set in R3

@ For the orientation &, C(h) reaches a sill at the distance a,, or range
(characteristic length scale of the structure):
C(ay) = C(0) = V (A)? = p?

@ Presence of various scales — inflections of the experimental
covariance (nested structures, like clusters, clusters of clusters, etc.)

@ Periodicity in images — periodicity of the covariance

@ Anisotropic structures studied by roses of directions, from the
derivative of the covariance in h =0
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Spatial Arrangement: Covariance

6500

5500

4500

3500

Alliage Fe Ag Covariance de Fe

815 —

Binary image of Fe

Covariance of Fe
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Transverse section xOy

Covariance of a fibrous medium

Axial section xOz

Spatial Arrangement: Covariance

Covariance disques impenstrables (rspulsion)

663 —

Covariance

Non overlapping random discs
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Covariance of a fibrous medium

COVARIANCE of the FIBRES

COV. of the FIBRES of Thermisorel in 6 directions in 3D

T T T
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Transverse isotropy of fibres C(h)

Mines ParisTech (Institute) Morphological measurements November 2024

Mines ParisTech (Institute) Morphological measurements November 2024



Random Functions: Characterization by the spatial law

RF Z(x) (E — R) characterized for all m € N by (Kolmogorov):

F(x,z) = P{Z(x1) < z1, ... Z(Xm) < zZm} (37)
where x € E™ and z € R"
@ For x = x; and x = {x1, x2}, uni and bivariate distributions

@ restriction to countable sets of points {xi, xp, ..., X } in the space E

Mines ParisTech (Institute)

Random Functions: Characterization by moments

To study physical properties of random media, use of the correlation
functions

Central correlation function deduced from the set covariance in the case
of a two phase composite with properties Z = Z; when x € Aand Z = 2
when x € A€

Wa(h) = E{(Z(x+h) — E(2))(Z(x) — E(Z))}
= (2= 2)*(C(h) = p?*) = (4 — 22)*(Q(h) — ¢*)

Useful to solve sampling problems (estimation variance and statistical
RVE) for any RF Z(x)
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(40)
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Random Functions: Characterization by moments

Covariance C(x, x + h) and central correlation function W5 (x, x + h)

C(x,x+h)=E{Z(x)Z(x+ h)}

Wa(x,x + h) = E{Z()Z(x+ h)} — E{Z(x)}E{Z(x + by} 3B

Central correlation function of order m W, (x), with x € E™:

W (x) = E{(Z(x1) — E{Z(x) })--(Z(xm) — E{Z(xm)})} ~ (39)

Mines ParisTech (Institute)
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Integral range and estimation variance

Stationary RF Z(x), with expectation E{Z}, and point variance D2

@ Size of a RVE (representative volume element) for Z(x)

@ variance D2 (V) of the average of Z(x) in the volume V
(Z(V) =3 [, Z(x)dx):

D%(V) = % /v /VWQ(X —y) dxdy, (41)

e For V > Az (for finite As), to first order in 1/V/, As being the
Integral Range

Mines ParisTech (Institute)
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Statistical RVE

Volume V made of k = V/Aj3 subvolumes in which the average valuesof
the RF Z(x) are uncorrelated random variables
Absolute error €, and relative error €, of the average value obtained
for n independant realizations of volume V/, deduced from the confidence
interval (to 95%)

€abs = %; €rela = Cabs = 2DZ(V) (42)

NG E{Z}  E{Zh/n

RVE: volume V' (obtained for instance for n = 1 realization in the
ergodic case) for which E{Z} is estimated with a given relative precision
(for instance €,e1, = 1%). Applied to the volume fraction (with
Z(x) = 1a(x), E{Z} = p and D?[Z] = p(1 — p)), to a stress field o'(x)
or a strain field e(x) — RVE of effective properties

@ Kanit T., Forest S., Galliet 1., Mounoury V., Jeulin D. (2003).
Determination of the size of the representative volume element for
random composites: statistical and numerical approach. International
Journal of solids and structures, 40(13-14), 3647-3679
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Spatial Agencement: Cross Covariances

Multicomponent random set with components A; (i = 1,2,..., m)

Separate study for every covariance Cji(h), and mutual associations from
the cross covariances Cjj(h):

Ci(x,x+h)=P{x € Aj,x+heA;} (43)
Stationary and ergodic multicomponent random set:

Gi(h) = W(A NA;_p) (44)
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Statistical RVE

Example: 20£(V) and 20£(S) (— interval of variation g £ 20 of

g = 1 — p expected for observations) of a cube with volume V = L3 and
of a square of area S = L? for a Boolean model of spheres with diameter a
with a/L = 0.1

q 0.05 0.1 0.2 0.3 0.5
20£(V) | 0.0054 | 0.00865 | 0.0134 | 0.0167 | 0.02
20£(S) | 0.021 | 0.032 0.049 | 0.0603 | 0.071

Mines ParisTech (Institute)
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Spatial Agencement: Cross Covariances

Estimation of cross covariances image analysis from cross geometrical
covariograms of the sets A; N X (Kanx (h)) and X (Kx (h)):

A(ANX)N(ANX)_p)  Kanx, anx(h)
AX N X_p) ~ Kx(h)

Gj(h) = (45)
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Spatial Agencement: Cross Covariances Spatial Agencement: Cross Covariances

Properties of the cross covariance of a random set in R®
Every Cjj(h) brings its own information on the mutual association of the o C;(0) =0
pair (A;, A;). N
Morphological properties of cross covariances similar to those of ° Z 7 Gij(h ) = Gi(0,a) = p
covariances (case when the A; build a space tessellation, such as ° CX UX; (J,a) = Gi(h o)+ ij(h, o)+ C,-j(h, x) + CJ-,-(h, o)
P{xeAjﬂAj} =0) BC,J(h ) .
° — fo da = Sy, (specific surface area of contact
T oh h=0 g
between he components A; and A;), when the derivative is finite
° Cjj(o0) = pip; (sill)
Mines ParisTech (Institute) Morphological measurements November 2024 73 / 100 Mines ParisTech (Institute) Morphological measurements November 2024 74 / 100

Spatial Agencement: Cross Covariances Spatial Agencement: Cross Covariances

For orientation «, Cjj(h) reaches its sill at distance ajj,, or range:

Cij(ajn) = Cij(00) = pip;
For h > a the events {x € A;} and {x + h € A;} are uncorrelated

Micrograph of an iron ore sinter (W|th decreasmg reflecting power:
Hematite, magnetite, calcium ferrites , slag, pores)
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Covariance rectangle Ferrite de calcium - Magnetite
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Spatial Agencement: Cross Covariances

Characterization of multicomponent textures from surface areas of
contact

¢ Indexes of coordination i.(ij) , symmetrical in i and j:
ie(if) = <F (47)

with Sy = ijn Sv;, (total surface area of contact of the medium)

1 o m
and i-(1j) to
| mg oM el to Ty o test
attraction or a repulsion between components i and j

@ Compare p;; to 1 to test a mutual
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Spatial Agencement: Cross Covariances

Characterization of multicomponent textures from surface areas of
contact

Behavior in h = 0 of the cross covariances Cj;(h) — specific surfaces area
of contact SVU:

@ Distribution of contacts of the component A; with the components
A; (j # i), or transition probability from A; to A; for a random point
over 0A;:

pij =< (46)

In general, pjj.pji , as Sy, # Sy,

Mines ParisTech (Institute)
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Spatial arrangement from distance distributions

Clustering

@ Distribution of distances of any point x outside objects to their
boundary (estimated by the volume fraction measurements after
dilation by balls with increasing radius)

@ Distances of any point x located in one component (phase of a
composite) to boundaries of another component (cracks)

e Construction of zones of influence of objects (or Voronoi cells);
estimation of the distribution of its area (or of its inverse, equivalent
to an intensity) — 2D-3D transition to be done from models
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Spatial arrangement from distance distributions

For a random set A and a ball with radius r, B(r):
T(Bi(r)) =P{xe A® B(r)}

T(Bx(r)) allows us to estimate the distribution of the random variable
R(x,A), or distribution of the first point of contact, where the symbol Vv
means the upper bound (sup):

R(x,A) = V{r; B«(r) C A°}

T(Bx(r)) = T(x)
1—T(x)

Fi(r) = P{R(x,A) <r|xe€ A} =
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Spatial arrangement from distance distributions

Image of a two-phase alloy Fe (black) Ag (grey)
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Spatial arrangement from distance distributions

For a stationary random set A,

T(r) = 1— F(r) = 1-— P{xle_APEB B(r)} (48)

The moments of F(r) allow us to summarize this distribution.
For a fractal random set A (with irregular boundaries with non integer
dimension d), F(r) behaves as rf when r — 0 with d = n—
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Spatial arrangement from distance distributions

Hexagonal erosion (2)
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Spatial arrangement from distance distributions
Alliage Fe Ag Erosions hexagonales et Fonction distance
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Spatial arrangement: increasing neighbourhoods Spatial arrangement: increasing neighbourhoods

For multi component systems, possible generalization of ®j(k,r) = P{x € (A ® B(r)) N A} (49)
cross-covariances Cj;(h) to degenerate components (with dimension

d < n), as cracks, boundaries, or points, for which covariances are equal 0; (k,r) = ®; (k. r) 1= pw (50)
to zero P{x € (Ac®B(r))} —px P

Comparison of microstructure in neighborhoods with increasing sizes of a When Pj(k, r) > 1, a preferential association is expected between

given component, to the overall microstructure — measurement of specific components A, and A;, on scale r

properties after dilation by balls with increasing radius For p;(k, r) <1, a repulsion effect is detected between the two

components at this scale
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Spatial arrangement: increasing neighbourhoods

The functions ®@;(k, r) and p;(k, r) are related to the distributions of
distances:
@ of a random point x in A} to the boundary of Ay:
P A B —
Flk,r) = P{d(x Ay) < r | x € Az} = TIXEL i@p“))} Pi
— Pk
(51)
@ of a random point x in A; to the boundary of Ay:
D (k,
Fi(k,r) = P{d(x,Ac) <r|x €A} = % (52)
)j
We have: F(k.r)
(k,r
(k r) = L
pj( ’r) F(k,r) (53)
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Spatial arrangement: increasing neighbourhoods

Distance to a random point in Measure
A DB A
component A; crack A Sv((Ai ® B(r)) NAx)
VoA Sv (é‘\k) p
crack Ay component A; v((Ax® B(r)) NAJ)
Aa((E VV/(BA") A
points Ej component A; A((Ex @ B(r)) NA;) (54)
Aa(A7)
(in R?)
Na((A; B E
component A; points Ej A((Ai ® B(r)) NEy)
Na(Ex)
(in R?)
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Spatial arrangement: increasing neighbourhoods

For structures in R3, probability P estimated by the volume fraction Vy/
Other information obtained by replacing the measure V|, by other specific
properties as the surface area Sy, or the connectivity number Ny
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Morphological criteria

Spatial arrangement: Anisotropy

@ Directional Measurements : variation with orientation of the
covariance or of the histogram of chord lengths

@ Roses of orientation, obtained by counting in the direct space or by
directional filtering in the Fourier plane — characterization of damage
with respect to a coordinate system (orientation off the applied stress,
or crystallographic orientation)
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Connectivity Connectivity: Geodesic Distance

Important morphological aspect for the prediction of physical properties of
composites with components presenting a high contrast (microcracks,
voids)

o Connectivity number N in R3: topological measurements describing
the overall connectivity of a given medium

@ Heterogeneous propagation phenomena, based on paths across a
specimen (percolation effect) — determination of a geodesic
distance (length of shortest paths)
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Connectivity: Geodesic Distance Connectivity: Geodesic Distance

For a valued planar graph, calculation of distances to a source on the
valued graph, the geodesic distance (or length of shortest paths)

@ geodesic distance between W and Wy (or length of shortest paths

Propagation phenomena, with different propagation velocities in > o
linking the source and the destination)

heterogeneous media:
@ distribution of the geodesic distances in the image — sequence of

® propagation of light in optics (principle of Fermat) propagation of the front and estimation of the tortuosity of a network

@ sound in acoustics . .
undin UsH @ extraction of shortest paths connecting W, and W,

o id i 1 . . .
fluid in a porous medium @ Points not be accessed during the propagation are located at the

@ diffusion of a constituent distance +oo from the source — detection of closed pores in a
@ advance of a crack front specimen

Applications: fracture of polycrystalline graphite, diffusion in polymers
and in porous media, fracture of simulated random media at different
scales (porous media, polycrystals), fluid flow between rough surfaces,
sound propagation in porous media
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Connectivity of a porous medium

Interconnected pores

3D serial sections (L. Decker,D. Jeulin, I. Tovena; with CEA)
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Connectivity: Geodesic Distance and Tortuosity

o
1A 1z 125 1a 138 14 145 T8 2 22 24 26

Distribution of the tortuosity of paths (cuboctahedron) in the x (a) and y
(b) directions
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Connectivity of a porous medium: Shortest paths

Shortest paths (tortuosity: 1.6 —2.2)
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Conclusion

Morphological Characterization of a microstructure — large number of
parameters according to various criteria
Every type of measurement — specific aspect of the structure

@ Possible reduction of data by multivariate data analysis — texture
learning
@ Synthesis from probabilistic models

@ Use of these morphological measurements to predict the
macroscopic behavior of materials (change of scale models)
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Characterization of a random set

@ Models derived from the theory of Random Sets by G.
MATHERON

@ For a random closed set A (RACS), characterization by the
CHOQUET capacity T(K) defined on the compact sets K

Random Structures November 2024 1/84

T(K)=P{KNA#£Q} =1- P{K C A} =1 - Q(K)

@ In the Euclidean space R", CHOQUET capacity and dilation
operation

T(Ke) = P{K\NA# D} =P{xe AD® K}
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Modelling random media

In materials, geological and biological structures: heterogeneous properties
at various scales — probabilistic approach — estimation of spoiled or
missing data, or physical properties of heterogeneous media

@ Random structure characterization

@ Introduction of the variability by random morphological models at
the micro scale

@ Prediction of the average macroscopic response of random media
from their microstructure

Random Structures November 2024 2/ 84
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Binary Morphology (Fe-Ag)
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Basic Operations of Mathematical Morphology

Dilation by hexagon Erosion by hexagon

(2) ()
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Morphological interpretation

Experimental estimation of T(K) by image analysis, using realizations of
A, and dilation operation

@ General case: several realizations and estimation of a frequency for
every point x

@ For a stationary random set, T(Ky) = T(K);

@ For an ergodic random set, T(K) estimated from a single realization
T(K)*=P{xe Ao K} = V(A K)*

Every compact set K (points, ball...) brings its own information on the
random set A
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Morphological interpretation

Every compact set K brings its own information on the set A
o K = {x}
T(x) = P{x € A}
In R® T(x) = p= VW (A)
o K={x,x+h}

T(x,x+h)=P{xe AUA_,;}

Q(x,x+h)=P{xec A°NA,}

Q(x,x + h) is the covariance of A°. It depends only on h for a stationary
random set.

Useful to study the spatial distribution of A, to measure its scale
(correlation length, integral range) or its anisotropy

Random Structures November 2024
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Morphological interpretation

Spatial law of A
o K={x1,%0,..xn}

T(K)=1—P{xq € A% 5y € A, ..., x, € A°}

e Cannot completely characterize the RACS A: T(K) =0 for a
stationary point process... (— use of B(r), closed ball with radius r,
undenumberable set of points)

@ Can be used to estimate bounds of the effective physical properties

Mines ParisTech (Institute)
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Characterization of a random model Calculation of the CHOQUET capacity

@ The CHOQUET capacity of a RACS is equivalent to the distribution
function of a random variable

@ Two models (RACS, usc RF, Isc RF) with the same functional T (K) For a given model, the functional T is obtained:
, T(g), P(g) cannot be distinguished (theoretically as well as
experimentally)

@ The functional T(K) , T(g), P(g) connects theory and
experimentation; it is used to estimate the parameters of a model and
to test its validity

@ by theoretical calculation
@ by estimation

¢ on simulations

o on real structures (possible estimation of the parameters from the
"experimental" T , and tests of the validity of assumptions)

@ Possible predictive implementation (7 (K) for K not used during

the identification step). Examples: 3D properties deduced from 2D
observations (stereology); change of support by V or A in the case of
a change of scale in fracture statistics
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@ Most random structure models defined in the Euclidean space R" : _ ) _ _
Most simple kind of random structure — very small defects isolated in a

o more general than stochastic processes limited to the 1D space R, matrix

where the order relation is used
o different from discrete models defined on a grid, even if the discrete @ Particular RACS — Choquet capacity T (K)

counterpart of the euclidean models is easily defined @ Probability generating function Gk (s) of the random variable N(K)

@ Models depending on a few number of parameters, not to ask too representing the number of points of the process contained in K
much from the available data, and for realistic experimental

identification and test
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Poisson Point Process

Prototype random process without any order

Mines ParisTech (Institute)
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Poisson Point Process

As a random set, Choquet capacity of the Poisson point process
T(K)=1-Q(K) =1-Py(K) =1—exp(—0(K)) (3)
In the stationary case

T(K) = 1—exp(=0u,(K)) (4)
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Poisson Point Process

Non homogeneous Poisson point process in R" with a regionalized
intensity 6(x) (x € R";6 > 0): the numbers N(K;) are independent
random variables for any family of disjoint compact sets K;

N(K) is a Poisson random variable with parameter 6(K) :

0(K) = | 0(dx) (1)
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Cox Point Process

@ Non homogenous intensity 0(x) generated by a positive random
function (RF), useful to generate multi-scale random processes

@ For any realization of this RF, generation of a Poisson point process
with intensity 6(x)

@ Number of points in a domain D: for a given realization, Poisson
distribution with average 6(D) = [, 0(dx)

@ Conditionnaly to a given realization, or for a deterministic intensity
0(x), T(K) =1—exp(—0(K))
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Cox Point Process

Probabilistic properties of the Cox point process derived from those of the
Poisson point process by randomization of the random measure 0
Let ®k (A) be the Laplace transform of the positive random variable 0(K)

Proposition

The probability generating fonction of the Cox point process is given by
Gk (s) = E{exp(0(K)(s —1))} = Pk (1 —s) (5)

and the Choquet capacity of the Cox point process is

T(K) =1 G(0) = 1 - E{exp(—0(K))} =1 - ®x(1)  (6)]
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Boolean Model

The Boolean model (G. Matheron) is obtained by implantation of
random primary grains A’ (with possible overlaps) on Poisson points x4
with the intensity 0: A = U, A},

Any shape (convex or non convex, and even non connected) can be used
for the grain A’
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Random sets and Random Functions Models

Starting from a point process, more general models, called grain models:

@ The Boolean model
@ The dead leaves model

@ Random function models

Random Structures November 2024 18 / 84
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Fe (black) Ag (grey) alloy Boolean spheres V,, = 0.5
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(b)

Boolean model with Poisson polyhedra (a); WC (black) -Co (white)
composite (b) (J.L. Quenec’h, J.L. Chermant, M. Coster, D. Jeulin)
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Boolean Model

@ Covariance

Q(h) = P{x€A° x+he A} =g’ exp(0K(h))
— q2—r(h)
with the geometrical covariogram

K(h) = ﬁn(Al NA_,) et r(h) = %
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Boolean Model

Choquet capacity, with g = P{x € A°}:

1,(A © K)
T(K)=1—Q(K) =1—exp (—0fi (A ®K) =1—q FalA) (7

The number of primary grains hit by K follows a Poisson distribution with
average 07 (A’ @ K)

Ex.: Covariance, Three points probability...

Percolation threshold obtained from simulations: 0.2895 4= 0.0005 for
spheres with a single diameter
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Boolean Model

@ Three points Probability

Q(hl,hg) = P{XEAC,X+h1€AC,X+h2€AC}
= exp (=0, (AUAL, UA )
3—r(h1)—r(h2)—r(h2—hl)—l—s(hl,hg)

q
with o ,
S(hl h2) — :un(A mA—hl mA—hz)
' K(0)
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Boolean Model

@ convex primary grains — application of the Steiner formula:
7, (A" @ AK) is a polynom with degree k in A, where K is a convex
set in RX | with coefficients depending on the average Minkowski
fonctionnals of A’

@ Segment

Q) = exp (=07, (A @) =exp (—0(K(0) —IK'(0))

— ql—/r’(O)

Boolean Model: identification

Unknowns

@ intensity 6
@ random set A’
@ Use of a family of compact convex sets K (/, C(r), H(r), B(r))

!

Expectation of the Minkowski Fonctionnals of A’

@ Use of non connected compact sets K
{x,x+h}, {x,x+hi,x+ h})
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Boolean Model: identification
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Example of the covariance Q(h)

Q(h) = ¢>r®
_ K(h) __log(Q(h)
=50 =2 g (a)

One can estimate r(h) from the covariance for any kind of primary grain
(convex or non convex)
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Boolean Model: examples of application

@ Boolean model with spherical primary grains
o Fe Ag Alloys (Th. Bretheau, D. Jeulin)

@ Boolean model with Poisson primary grains

e Porous media: formed coke (D. Jeulin)
o WC-Co sintering (J.L. Quenec'h, M. Coster, J.L. Chermant, D. Jeulin)

Models with 2 parameters; identification from the covariance Q(h)

@ Bretheau T., Jeulin D. (1989,. Caractéristiques morphologiques des
constituants et comportement a la limite élastique d'un matériau
biphasé Fe/Ag, Revue de Physique Appliquée, 24(9), 861-869.

8 Quénec’h J. L., Chermant J. L., Coster M., Jeulin D. (1996) Example
of application of probabilistic models: Determination of the kinetics
parameters during liquid phase sintering, Microscopy Microanalysis
Microstructures, 7(5-6), 573-580.

Mines ParisTech (Institute)
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Fe Ag Alloys

@ Influence of the spatial distribution of Fe and Ag on the
macroscopic plastic behaviour of composites obtained from spherical
powders (hot isostatic compression)

@ Propagation of plastification fronts (Piobert-Liiders shear bands ) for
some compositions (percolation effect): propagation for continuous
paths in phase Fe — connectivity problem in R>

@ Microstructural data: 2D slices — 3D data estimated from a ol > T4 )
probabilistic model in R3 Fe Ag Alloy

Morphological criterion: — connectivity number (Euler-Poincaré
caracteristic) Ny — Gy estimated from the Boolean model with spherical
primary grains
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Fe Ag Alloys Fe Ag Alloys

Erosions lineaires Fe (P(1)) etAg (Q(I))
10000 T T T T

T
-~ 'FEAG1PL.DAT'
~ 'FEAG1QL DAT'

1000

® Test of the Boolean model with convex primary grains from Q(/)
(exponential function)

o ldentification of the model from the Covariance Q(h) (stereological 100
aspect)

80
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Fe Ag Alloys

Spherical primary Grain

!

Population of spheres known from K(h)

!

Identification from a Boolean Model from its covariance Q(h)

For any sphere with diameter a:

3 3
7Ta 3 h 1h T
h 1—>- == ——ha—|— h3 ifh<a
K(h) = 6 < 22 2 a3> 6 < -
=0ifh
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Fe Ag Alloys

Primary Grain: population of spheres

Geometrical covariogram of a population of spheres with random
diameters following a discrete distribution (p; = P{a = a;})

<Zp, ——th,a +5 h3Zp,)

aj>h aij>h ai>h

continuous diameter distribution f(x) (with cumulative distribution
function F(x))

K(h) = % (/}700337‘(3) da— gh/hooazf(a) da + %h3/hoof(a) da)
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Fe Ag Alloys

Spherical primary Grain

(swn), .=

(true for any population of spheres)

I

0= <aa;3 log Q(h )>h:0

— Numerical unstability
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Mines ParisTech (Institute)

Fe Ag Alloys

Primary Grain: population of spheres

F(x) deduced from K (h) by an inversion relation, obtained from Q(h)
and from K(h):
1 92
27th Oh?

— Numerical unstability — use of prior distributions F(r): uniform,
exponential, lognormal, Gamma,....

log Q(h) = 0(1 — F(h))
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Boolean model: Connectivity

Connected morphology for a high intensity 6 (possible overlaping grains)
Connectivity number in R® for the Boolean model

Ny — Gy, for a 3D Boolean model with isotropic primary grains, with
surface area S(A’), and integral mean curvature M(A’), (R.E. Miles):

Ny (A) = Gy (A) = q (G_gzw T (@)j

47T 6 4

Percolation threshold obtained from simulations: 0.2895 =4 0.0005 for
spheres with a single diameter
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Boolean model

@ Point process with a limited extent as a primary grain A’, —
Neyman-Scott point process, with clusters

@ Anisotropic models

@ Replacing the Poisson points by Poisson varieties — generate
random sets models with fiber or strata textures (exemple, random
fibers network of wood composites: Ch. Delisée, D. Jeulin, F.
Michaud, F. Bos, P. Castera)

M Delisée Ch., Jeulin D., Michaud F. (2001) Caractérisation
morphologique et porosité en 3D de matériaux fibreux cellulosiques,
C.R. Académie des Sciences de Paris, t. 329, Série Il b, pp. 179-185,
2001.
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Boolean model: Connectivity

@ Model fit in a limited range of composition (9-18% Ag)

@ Change of composition obtained by the intensity 0, keeping constant
the population of primary grains

@ Theoretical calculation of Ny, — Gy (use of the model in a predictive
way)

@ Domains of transition of Ny — Gy corresponding to changes of the
rheological behaviour (behaviour of pure Fe or of pureAg)

@ Same type of variation (positions of 0 and of extrema) expected for
similar grains — possible experimental control on powders with
different sizes
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~

o

/

Poisson fibers or strata

Poisson lines
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Boolean model on Poisson lines in 3D

Isotropic Poison fibres

B Faessel M., Jeulin D. (2011) 3D Multiscale Vectorial Simulation of
Random Models, Proc. ICS 13, Beijing.

@ Schladitz K., Peters S., Reinel-Bitzer D., Wiegmann A., Ohser J.,
Design of acoustic trim based on geometric modeling and flow
simulation for non-woven, Computational Materials Science 38 (2006)
5660,

Mines ParisTech (Institute)

Multi Scale Models - Combination of basic random sets

Starting from the basic models — more complex structures, such as
superposition of scales, or fluctuations of the local volume fraction p of
one phase

Union or intersection of random sets

Random Structures November 2024 41 / 84

A=ANA
for two independent random sets A; and Aj
P(K)=P{K C (AiNA)} =P{K C A }P{K C A}

P = p1p2
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Multi Scale Models - Motivation

@ Non-homogeneous dispersion of a charge in a matrix: arrangement of
aggregates (like carbon black) at different scales

e Prediction of the effective properties of such composites (dielectric
permittivity or the elastic moduli), from the properties of the two
components (charge and matrix), and their spatial distribution

@ General methodology, based on the theory of random sets :
morphology summarized and simulated by multi-scale random models
accounting for the heterogeneous distribution of aggregates.
Identification of the model from image analysis
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Multi Scale Models - Intersection of random sets
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Composite carbone black resin
(TEM)

Transmission micrographs (L. Savary, D. Jeulin, A. Thorel)

@ Savary, L., Jeulin, D., & Thorel, A. (1999). Morphological analysis of

carbon-polymer composite materials from thick sections. Acta

Stereologica.

Mines ParisTech (Institute) Random Structures

Percolation of 3D multi-scale aggregates in
Nanocomposites (D.Jeulin, M. Moreaud)

For several well separate scales, p. >~ picpoc...pre

November 2024

45 / 84

(a) Two scales
spheres

Carbon black (a): (p. ~ 0.0856 ~ 0.3%; Carbon nanotubes (b)

pc ~ 0.01; 2 scales CNT (c) p. ~ 0.00049

Mines ParisTech (Institute) Random Structures

November 2024
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Simulation of a Carbon black composite: Intersection of 3 scales Boolean

models of spheres (identification from thick sections)

Mines ParisTech (Institute)

Random Structures

Color Dead Leaves Model

November 2024

46 / 84

@ Sequential implantation of random primary grains A’(t) on a Poisson

point process

@ In point x is kept the last occurring color during the sequence

@ Non symmetric random sets obtained if two different families of
primary grains are used for A and for A€

Mines ParisTech (Institute)

Random Structures
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Color Dead Leaves Model
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Dead leaves: intact grains
Random Structures November 2024 51 / 84
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Color Dead Leaves Model

Covariances Cj;(h) for primary grains A’ independent on time t,
implanted with a constant intensity 6, (asymptotic value for t — o0)
o P,'I’,'(h) -+ 2Pi2(1 — r;(h))

N 2—r(h)

Gii(h)

where r;j(h) = K;(h)/K;(0), 0K (h) = Zfif 0;:K;(h)
Volume fraction P;

b _ 0:K(0)
P =
0K (0)
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Intact grains: a random set with non overlapping objects

@ Size distribution of grains of the random packing, given by the pdf
¢ 5 of intact grains A. (f;(r) in the case of spheres), and volume
fraction

@ For a single type of convex grain (e.g. sphere with the radius r, or
polyhedron) and a homogeneous model in R"

1

volume fraction in space: 0.125 (0.25 in the plane, and 0.5 on the
line)

@ Multivariate distribution function of the centres of grains building a
hard-core point process
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Random Functions and Random Sets

For a Random Function Z(x),

@ Continuous function too restrictive

@ Semi-continuous (upper, lower) for which the changes of supports by
V or by A provide random variables:

Zu(K) = Vxex{Z(x)}

Z/\(K) = /\XEK{Z(X)}

Applications to Fracture Statistics Models based on the weakest
link assumption, and to the statistics of extremes

Mines ParisTech (Institute) Random Structures November 2024 53 / 84

Characterization of a random function model

30‘3
=}_{_.
+
3

usc RF: x € Dz(g)°
Mines ParisTech (Institute) Random Structures November 2024 55 / 84

Characterization of a random function model

For an upper semi continuous random functions (usc RF),
characterization by the CHOQUET capacity T (g) defined on the lower
semi continuous functions (Isc) g with compact support K

T(g) = P{x € Dz(g)}: Dz(g)" = {x. Z(y) < gly —x).Vy € K}

Particular case: spatial law for a support K made of a finite number of
points

Mines ParisTech (Institute)
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Characterization of a random function model

g(x;)) =z for x; (i=1,2,...,n), else g(x) = +o0:
T(g) =1- P{Z(Xl) g Z(x,,) < zn}

1— T(g) gives the spatial law.
For g(x;) = z, else g(x) = +oo0:

1-T(g) =Q(g) = P{Z(x) < z}

Mines ParisTech (Institute)
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Characterization of a random function model

Random Function Models

Continuous version of random sets models

For the function g(x) = z if x € K, and g(x) = 4+ if x ¢ K,

Dz(g)® ={x.Z(y) < z,Vy € K}
Boolean RF: random implantation of primary random functions on

Therefore points of a Poisson point process
The U operation for overlapping grains is replaced by the supremum (V)
T(g) =P{xeDz(g)} =1-Q(g) =1—-P{Z/(K) < z} or by the infimum (A)

The Choquet capacity gives the probability distribution of the RF Z(x)
after a change of support by V over the compact set K
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Random Function Models: Boolean RF Boolean random functions

Choquet Capacity

Starting from a sequence of primary RF's implanted according to the
supremum, the Choquet capacity of the BRF Z(x) is given by:

1= Tle) = Qle) = (- [ 1.(D(e)) 0(at))

If g(xi) = z in points x; (i = 1,2,...,n), else g(x) = +00, we get the
spatial law for Az/(z) = {x, Z{(x) > z}

1-T(g)=P{Z(x1) < z1,... Z(xn) < zn}
= exp (—/Rﬁn(AZtr(zl)Xl U...UAZ(2Zn)x,) 6(dt)>

() (b)

Boolean RF with cone primary grains (a) and Boolean Variety RF (b)
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Boolean random functions

Change of support by V

If g(x) = z for x € K and g(x) = +o0 otherwise (K compact set), we
get the change of support of Z(x) by operator VV over the compact set K

(Zu(K) = Viek{Z(x)}) .
In that case Dz/(g) = Az (z) ® K, and

PLZAK) <2} =ep (= [ (Az2) 0 K) o(ar) )

Mines ParisTech (Institute)

Dead Leaves Random Functions
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Dead Leaves Variety

Dead Leaves RF with cones
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Dead Leaves Random Functions

@ Sequential implantation of random primary functions Z/(x) on a
Poisson point process

@ In point x is kept the last occurring value during the sequence

Mines ParisTech (Institute)

Dead leaves and powders
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Morphological analysis of powders with the help of the SEM, from the
dead leaves model— possible control of the quality of a product or of a
process (lvan Terol & D. Jeulin in connexion with Pechiney, Calgon and
Isover)

Mines ParisTech (Institute)
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Size distribution of a spherical powder

L S on O
SEM Image

15.5um; a = 0.03um

Mines ParisTech (Institute)
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Application of random functions and of signal processing, and from
numerical image processing — plate users (steel, car industry) and
mechanical parts users (tribology)

@ Theoretical models of random surfaces (boolean functions,
sequential alternate RF, reproducing depositions and abrasions)

@ Application to steel products : modeling the EDT roughness and
its transfer to the plate in skin-pass by simulation of the indentation
(P. Laurenge and D. Jeulin, in relation to IRSID)

Mines ParisTech (Institute)
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UO2 powder: composition

Mines ParisTech (Institute)

Simulation of the EDT Roughness
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(IRSID) 1.28x1.28 mm?

[ Jeulin D., Laurenge P. (1996) Probabilistic model of rough surfaces
obtained by electro-erosion, Mathematical Morphology and lts
Applications to Image and Signal Processing, 289-296.
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The Mosaic model

Mosaic or cell model (Miller, Hori, Matheron) built in two steps:

@ random tessellation of space into cells C; (Voronoi, Johson-Mehl,
Poisson...)

@ to every cell G is affected independently a realization of the random
variable Z

Parameters of this model: distribution function of Z and probabilistic
properties of the tessellation (separation of the space and of the physical
variables)

Mines ParisTech (Institute)

The Mosaic model

Random Structures November 2024 69 / 84

s(|h1|,|h2]) is the probability that the three points {x}, {x + h1},
{x+ ho} belong to the same random cell A" ( yi,: Lebesgue measure in
R?, 11, its average over the realizations of A/, and A} obtained by
translation of A’ by the vector h):

fig(ANA, NAL)
Fg(A)

s(lh| . |ho],6) =
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The Mosaic model

Centred Covariance W5

Wa(h) = C(h) = E{(Z(x+ h) - E(2))(Z(x) - E(2))} = D[Z] r(h)

K(h
where D?[Z] is the variance of the RV Z, and r(h) = KEO; is the
probability that two points are in the same cell with the geometric

covariogram K (h)

Third order moment W3
W3 (hy, ho)
= E{(Z(x) - E{Z})(Z(x+ M) — E{Z})(Z(x + ho) — E{Z})}
= s(x,y.0)E{(Z-E{Z})’}
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The Poisson Mosaic model
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The Poisson Mosaic model

Poisson mosaic

Poisson random planes in R® (with the intensity A), and Poisson lines in
R? (with the intensity A)
Cells: Poisson polyhedra and Poisson polygons. In R? we have:

r(h) exp(—2A | h|)
s(hi, h2) = exp(=A(Ih|+ |ho| + [h2 — b))
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Reaction-Diffusion Models

@ Space-time dependent, multi-variate

@ Coupling of a physical phenomenon of diffusion (transport) with a
physical phenomenon of reaction (generation of species)

@ Complex systems: generation of heterogeneous media,
self-organization

@ Random models: starting from a white noise as initial conditions

Mines ParisTech (Institute)
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Reaction-Diffusion Models

L. DECKER and D. JEULIN

Reaction-diffusion RF are solutions of stochastic PDE, modeling competion
between chemical reactions between species, and transport by diffusion.
— Textures reproducing various morphologies (example: interconnected
random set obtained by thresholding a simulation of the Ginzburg-Landau
model)

Lack of knowledge of probabilistic properties

B Decker L., Jeulin D. (1999) 3D spatial time structure simulations by
reaction-diffusion models, Acta Stereologica.

Mines ParisTech (Institute)
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Reaction-Diffusion Equations

@ N chemical species (components) : 1,2,..., N

@ Variables = concentrations (densities)
Zi(x,t), Zo(x,t),.... Zn(x,t)
@ Set of N non linear partial differential equations :

0Z:(x, t
% = DAZi(x.t) + Fi(Z, 25, ... Z)
E
@ Example: for the reaction X1 + 3 Xo — 2 X3 + X4
kp
FI(Z, 20,73, 2s) = —ka 21 20° + ki Z5% Z4
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Ginzburg-Landau Model

@ Reactive system with two species of concentrations Z;(x,y, z, t) and
Z)(x,y,z,t), having a representation in the complex plane Z(Z1, Z,)

o Partial differential equations of reaction-diffusion:

Z
%—t:DAZ + AZ -Bl|Z*Z
Z=2 +i2
with { A=a + ivy

B=B +id

@ Genesis of a population of coupled and rotating spirals, delimiting
convective cells
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Change of scale in random media

Applications of the models of random media to the prediction of the
macroscopic behavior of a physical system from its microscopic

behavior.
e Estimation of the effective properties (namely the overall
properties of an equivalent homogeneous medium) of random

heterogeneous media from their microstructure. From variational
principles, bounds of the effective properties for linear constitutive
equations

o Estimation of the effective behaviour from numerical simulations
on random media

@ Fracture statistics models

Reaction Diffusion model built from the simulation of Ginzburg-Landau
equations; component Z;(a); binary images obtained by thresholding
(Z1(x, t) > 0.9) after 2000 (b) and 10000 (c) iterations
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Probabilistic models of structures

@ Tools of simulation to generate realizations of random and periodic
structures (polycristals, multicomponents) — input in a finite element
code (L. Decker & D. Jeulin)

@ Estimation from 3D simulations of transport properties
(permeability, coefficient of macroscopic diffusion) of heterogeneous
media (e.g. porous media) (L. Decker, D. Jeulin & I. Tovena)

[ Decker L., Jeulin D. (2000) Simulation 3D de matériaux aléatoires
polycristallins, Revue de Métallurgie, 97(2), 271-175.

8 Decker L., Jeulin D., Tovena I. (1998) 3D morphological analysis of
the connectivity of a porous medium, Acta Stereologica.
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e Estimation by FFT of dielectric properties (D. Eyre, G. Milton, A.
Delarue, D. Jeulin) and of elastic and nonlinear properties (H.
Moulinec, P. Suquet, F. Willot) of random media

[E Delarue A., Jeulin D. (2002) Homogenization of dielectric properties
of random nanocomposites, " Matériaux 2002" (Tours, 21-25 October
2002), N-12/02/MM , Paris School of Mines.

B Eyre D. J., Milton G. W. (1999) A fast numerical scheme for
computing the response of composites using grid refinement, The
European Physical Journal-Applied Physics, 6(1), 41-47.

B Moulinec H., Suquet P. (1994) A fast numerical method for
computing the linear and nonlinear mechanical properties of
composites, Comptes Rendus de |’Académie des sciences. Série Il

B Willot F., Pellegrini Y. P. (2008) Fast Fourier Transform
Computations and Build-Up of plastic deformation in 2D,
elastic-perfectly plastic, pixelwise disordered porous media, Continuum
Models and Discrete Systems CMDS11 (ed. D. Jeulin and S. Forest),

Presses Mines ParisTech.
Mines ParisTech (Institute)
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@ Chiu S. N., Stoyan D., Kendall W. S., & Mecke J. (2013). Stochastic
geometry and its applications, John Wiley & Sons.

@ Jeulin D. (1991) Modeles morphologiques de structures aléatoires et
de changement d'échelle, Thése de Doctorat d'Etat és Sciences
Physiques, University of Caen.

[E Jeulin D. (ed) (1997) Proceedings of the Symposium on the Advances
in the Theory and Applications of Random Sets (Fontainebleau, 9-11
October 1996), World Scientific Publishing Company.

B Jeulin D. (2000) Random texture models for material structures,
Statistics and Computing, 10, 121-132.

8 Jeulin D., Ostoja-Starzewski, M. (eds) (2001) Mechanics of Random
and Multiscale Microstructures, CISM Lecture Notes N° 430, Springer
Verlag, Wien.

8 Jeulin D., Moreaud M. (2007) Percolation of random cylinder
aggregates, Image Analysis and Stereology, 26(3), 121-127.

[ Jeulin D. (2021) Morphological models of random structures, Springer
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Conclusion

Random models of structures — simulate complex morphology of
microstructures

Approach, based on measurements obtained by image analysis —
test and select appropriate models, estimate their parameters

Prediction of overall physical properties of materials, and
modeling fracture statistics behaviour

Possible use in the synthesis of textures

Simulations to feed deep learning tools like CNN (Convolutional
Neural Network)
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[ Matheron G. (1967) Eléments pour une théorie des milieux poreux,
Masson, Paris.

[ Matheron G. (1969), Théorie des ensembles aléatoires, Cahiers du
Centre de Morphologie Mathématique, fasc. 4, edited by Paris School
of Mines.

@ Matheron G. (1975) Random Sets and Integral Geometry, J. Wiley.
[H Matheron G. (1989) Estimating and Choosing, Springer Verlag, Berlin.

[ Serra J. (1982) Image analysis and Mathematical Morphology, vol 1,
Academic Press.

[ Serra J. (ed.) (1988) Image analysis and Mathematical Morphology,
vol 2, Academic Press.
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