
HAL Id: hal-04812464
https://minesparis-psl.hal.science/hal-04812464v1

Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Introduction to Mathematical Morphology
Dominique Jeulin

To cite this version:
Dominique Jeulin. Introduction to Mathematical Morphology. Doctoral. Cotonou, Benin. 2024,
pp.85. �hal-04812464�

https://minesparis-psl.hal.science/hal-04812464v1
https://hal.archives-ouvertes.fr


CENTRE DE MORPHOLOGIE MATHEMATIQUE 

35, rue Saint-Honoré, 77305 FONTAINEBLEAU (FRANCE) 

 

 

 

Introduction to Mathematical Morphology 
 

Lecture Notes 
 

 

 

 Dominique Jeulin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

November 2024 

 

 

 

 

 

 
 

 

 



 



Introduction to Mathematical Morphology 

 
Lecture Notes 

 

Dominique Jeulin 

 
 

 

Contents 
 

 

• Symbols and Notations 

• Introduction to random structures 

• Introduction to mathematical Morphology and to morphological 

segmentation of images 

• Morphological measurements for random structures 

• Introduction to basic models of random structures 



 



Symbols and Notations

Dominique jeulin

1. Morphological operations
Dilation by a compact K : A→ A ⊕Ǩ
Erosion by a compact K : A→ A 	Ǩ = {x,Kx ⊂ A}
Opening by a compact K : AK = A 	Ǩ ⊕K
Closing by a compact K : AK = A ⊕Ǩ 	K

2. Random sets
A, B: random closed sets (RACS)

Ac: complementary set of A
Ǎ = {−x, x ∈ A}: transposed set of A
Ai: component of a multi-component random set
B(r): closed ball with radius r
K: compact set
E: topological space
F , G et K : closed, open and compact sets of E
FK = {F ∈ F ; F ∩K = ∅, K ∈ K}
FG = {F ∈ F ; F ∩G 6= ∅, G ∈ G}
probability P
GK(s): generating function of the random variable N(K)
Choquet’s capacity T (K) = P{K ∩ A 6= ∅} = P{FK} = 1 − P{K ⊂ Ac} =

1−Q(K)
p = P{x ∈ A}
q = P{x ∈ Ac}
Covariance C(h) = P{x ∈ A, x+ h ∈ A}
Covariance Q(h) = P{x ∈ Ac, x+ h ∈ Ac}
Covariance Cij(h) = P{x ∈ Ai, x+ h ∈ Aj} for a multi-component random set
Three points Probability Q(h1, h2) = P{x ∈ Ac, x+ h1 ∈ Ac, x+ h2 ∈ Ac}
Segment l: P (l) = P{l ⊂ A}; Q(l) = P{l ⊂ Ac}
Hexagon H(r): P (H(r)) = P{H(r) ⊂ A}; Q(H(r) = P{H(r) ⊂ Ac}
R(x,A): distance between the point x and the set A
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3. Measurements
µ(A): measure of A

µn Lebesgue measure in R
n

Volume of A: V (A)
Integral of mean curvature of A: M(A)
Surface area of A: S(A)
Perimeter of A (in R2): L(A)
Connectivity number in R2: NA(A)
Connectivity number in R3: NV (A)−GV (A)

4. Random Functions
Random Function Z(x)
test function g(x)
Φ(E): set of functions from E → R
upper semi continuous random functions (usc RF)
Φf ⊂ Φ: set of usc functions from E → R
Choquet’s capacity T (g) = P{x ∈ DZ(g)};DZ(g)c = {x, Z(x + y) < g(y),∀y ∈

K}
lower semi continuous random functions (lsc RF)
Φg ⊂ Φ : set of lsc functions from E → R
functional P (g) = P{x ∈ HZ(g)};HZ(g) = {x, Z(x+ y) ≥ g(y),∀y ∈ K}
subgraph Γϕ of the function ϕ: Γϕ = {x, z}, x ∈ E, z ∈ R, with z ≤ ϕ(x)
overgraph Γϕ: Γϕ = {x, z}, x ∈ E, z ∈ R, with z ≥ ϕ(x)
∨: supremum; Z∨(K) = ∨x∈K{Z(x)}
∧: infimum; Z∧(K) = ∧x∈K{Z(x)}
thresholding: AZ(z) = {x, Z(x) ≥ z}
spatial law: F (x, z) = P{Z(x1) < z1, ..., Z(xm) < zm} with x ∈ Em and z ∈ Rm

spatial law: T (x, z) = P{Z(x1) ≥ z1, ..., Z(xm) ≥ zm} with x ∈ Em and z ∈ Rm

F (z), G(z) distribution functions (with density, or pdf f(z) and g(z))
S: coeffi cient of variation of a distribution
D2[Z]: variance of the random variable Z
Bivariate distribution Fij(h, z1, z2) = P{Zi(x) < z1, Zj(x+ h) < z2}
Bivariate distribution Tij(h, z1, z2) = P{Zi(x) ≥ z1, Zj(x+ h) ≥ z2}
Bivariate distribution T2(h, z1, z2) = P{Z(x) ≥ z1, Z(x+ h) ≥ z2}
Covariance C(x, x+h) and second order central correlation functionW 2(x, x+h)
γ1(h), γ2(h): variograms of order 1 and 2
Central correlation function of order m Wm(x), with x ∈ Em
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5. Models
5.1. Random sets. Boolean model: RACS A with primary grain A′

Intensity θ
Primary grain A′:
geometrical covariogram K(h) = µn(A′ ∩ A′−h)
normalized covariogram r(h) = K(h)

K(0)

s(h1, h2) =
µn(A

′∩A′−h1∩A
′
−h2

)

K(0)

IBRS: infinitesimal Boolean random set; time t; Intensity θ(t)
Dead leaves tesselation: Ni(t): specific number of intact grains; ϕA′ , ϕA′i : pdf of

grains and of intact grains
Poisson varieties Vk(ω), with intensity θ(ω)

5.2. Random functions (RF). BRF: Boolean random function Z(x)
DLRF: Dead leaves random function
SARF: Sequential alternate random function
Z ′t(x): Primary random function, with subgraph ΓZ

′
t = A′(t) and sections AZ′t(z)

ϕ(Z): transformation of the RF Z by the anamorphosis ϕ
Dilution RF: Φ(U,X) and φt(U,X): multivariate characteristic functions of the

RF Z(x) and Z ′t(x)
Z ∗ p̌(x): convolution of the RF Z(x) by a weight function p(x)



 



 

 

 

 

 

 

 

 

 

Introduction to random structures 
 



 



























 

 

 

 

 

 

 

 

 

 

Introduction to mathematical Morphology 

and to morphological segmentation of 

images 



 



1

Introduction to Mathematical Morphology 

 November 2024

1

Introduction to Mathematical Morphology

Outline

• Origin and purpose

• Mathematical Morphology for binary images

• Mathematical morphology on grey level

images

• Morphological segmentation
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Mathematical Morphology
Origin – Motivations

G. Matheron, 1967

• Characterization of the

morphology of a heterogeneous 

medium?

• Prediction of the macroscopic

behaviour of a porous medium 

(composition of permeabilities)?

• Representation of a heterogeneous 

medium by a model?

L = 1 mm
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Mathematical morphology 

analysis

• Initial motivation: how to quantify complex 

porous media?

• Spatial arrangement from Covariance, sizing 

by morphological opening (G. Matheron, J. 

Serra)
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Mathematical Morphology

for binary images

Fe – Ag (0-255 grey level image) Fe  (Threshold 0-100) 
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Basic operations of binary

mathematical morphology

• Qualitative description of the morphology by means of 

comparison with a  reference shape

• Binary image: set A and complementary set Ac

• Structuring element K: choice of an object moved by 

translation in the image Kx

• Answer to a question about the relative location of Kx

and of A, recorded for each location x 

• For a  binary, answer, indicator function of the set  Φ(A)

obtained by transformation of  A (k(x) = 1 when x in 

Φ(A) )

Introduction to Mathematical Morphology 
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Set Dilation

Structuring
element

v

Dilation

Kx hits A ?

A  K  x,Kx  A    yK Ay  xA,yK x  y   #   
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8
Set Erosion

Kx included in  A ?

• Erosion obtained by  the 

complementary set of the 

result of the dilation of 

Ac by K

• Erosion  and dilation 
dual operations with 
respect to 
complementation

structuring element

Erosion

A  K  x,Kx  A  yK Ay  Ac  K c   #   
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Basic Operations of Mathematical

Morphology: erosion and dilation

Erosion 

hexagonal (2)

Dilation 

hexagonal (2)
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Basic Operations of Mathematical Morphology

(A⊖K₁) ⊖K₂ = A⊖ (K₁⊕K₂)

(A⊕K₁) ⊕K₂ = A⊕ (K₁⊕K₂)

(A∩B) ⊖K = (A⊖K) ∩ (B⊖K)

A⊕ (K₁∪K₂) = (A⊕K₁) ∪ (A⊕K₂)

If A is a convex set, A ⊖ K is a convex set 

If A and K are convex sets, A ⊕ K is a convex set
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Basic Operations of Mathematical Morphology: Opening

   
•  First erode A by K, then  dilate 

by K, to obtain (A)
                   
• The opened set (A) is the union 

of the structuring elements Kx 
which are included in the set A

• The opening is an idempotent 
operation

• The opening operation can be 
used to remove noise by 
filtering, and to measure size 
distribution of the elements of  A

Structuring element

Opening

When K is a disc, the opening amends
 the caps, removes the small islands 
and opens isthmuses.
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Basic Operations of Mathematical

Morphology: opening

Erosion 

hexagonal (2)

hexagonal 

opening(6)



4

Introduction to Mathematical Morphology 

 November 2024

13
Basic Operations of Mathematical Morphology: 

Closing

Structuring element

Closing

When K is a disc, the closing 
closes the channels, fills  the small 
lakes, and partly the gulfs.

•  First dilate A by K, then  erode 
by K, to obtain (A)

• The closed set (A) is also 
obtained by the complementary 
set of the opening by K of the set 
Ac (opening and closing dual 
operations with respect to 
complementation)

• The closing is an idempotent 
operation

• The opening operation can be 
used to remove noise by 
filtering, and to measure size 
distribution of the elements of  
Ac
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Basic Operations of Mathematical

Morphology: closing

Closing

hexagonal (2)

Dilation 

hexagonal (2)
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Mathematical morphology on 

grey level images
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Dilation and Erosion by a flat structuring Element

• Erosion shrinks peaks. Peaks thinner that the structuring element disappear. It 
expands the valleys and the sinks

• Dilation produces the dual effects

Definition : The dilation (erosion) of 
a function Z(x) by a flat structuring 
element K is introduced as the 
dilation (erosion) of each set Af () 
by K.They are said to be  planar  

This definition leads to the following 
formulae (J.Serra) :

  Z ⊖K(x) = Inf{Z(x)x,x 2 K}
806040200
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Space

grey levels
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Dilate

Eroded

Structuring 
element

ZÅK(x) = Sup{Z(x), xÎK}
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Dilation and Erosion by a flat structuring Element

Powder (SEM) Dilation (hexagon 10) Erosion (hexagon 10)
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Opening and closing of functions 
by flat structuring element

• Opening: erosion followed 
by a dilation by K

• Closing: dilation followed 
by an erosion by K 

• Opening and erosion create 
a simpler function than the 
original. They smooth 
(filter) the image in a 
nonlinear way

• The opening (closing) 
removes positive (negative) 
peaks that are thinner than 
the structuring element.

• The opening (closing)  
remains below (above) the 
original function

806040200
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Level

Original

Closing

Opening

Structuring 
element
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Opening and closing of functions 
by flat structuring element

a b c

Initial image of powder

a: closing (10)

b: opening (10)

c: opening (30) 
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Top-hat transformation

• Opening top hat: 
     Z(x) - Opening(Z(x))

• Closing top hat: 
     Closing(Z(x)) - Z(x)

• Top-hat used to extract contrasted 
components with respect to the 
background.  The opening top-hat 
extracts positive components and the 
closing top hat the negative ones

• Typically, top-hats remove the slow 
drifts, and thus performs a contrast 
enhancement

806040200
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20

40

60

80

100

Sample

Level

Opening: 

Original

Top hat
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Example of  Top-hat

Negative image  
 of  the  retina.

Top hat  by  an
hexagon opening
   of  size 10.

Top hat by the sup 
 of  three segments 
openings  of size 10.

Aim :extraction of the aneurisms in retian (small white spots)..
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• Morphological filter: increasing and idempotent transformation

• Basic filters: opening and closing operations

• Serial combinations: filters more progressive than the openings  and 

closing  used in the combination

  or  

• Sequential alternate filters  and 

    1  1    

 = 11

 = 11

Morphological filters

Introduction to Mathematical Morphology 
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Morphological Segmentation

• AIM: extraction in  images of domains with a similar

morphology

• PRINCIPLE

– extraction of pertinent markers

– construction of Watershed Lines (2D), or of separation

surfaces (3D), boundaries of domains

Beucher, S., & Lantuéjoul, C. (1979). Sur l’utilisation de la ligne de partage des eaux en 

détection de contours. Rapport Interne N-598, Ecole des Mines de Paris, Centre de Morphologie 

Mathématique, 21-46

Meyer, F., & Beucher, S. (1990). Morphological segmentation. Journal of visual communication 

and image representation, 1(1), 21-46.
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Watershed Line 

S. Beucher, Ch. Lantéjoul, 1979

Grey level Image

Gradient image
Representation by 

a topographical

surface 

Flooding from

minima:  basins

and watersheds
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Construction  of the Watershed by 

flooding from minima

• Dam built to prevent the merging of 

two lakes

• Elevation of the water level  until the  

complete flooding of the relief

• Boundaries : watershed lines 

• In 3D, boundaries are watershed 

surfaces

• Advantage: closed boundaries are 

generated  
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Watershed from markers 

• Possible use of  markers, instead of filling all  

basins

• Depending on applications, choice of  different 

types of markers
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Segmentation: cleavage facets

S. Beucher

Fractography of steel

(IRSID)
Markers Contour of cleavage

zones

Introduction to Mathematical Morphology 

 November 2024

28

Probabilistic segmentation

Segmentation of 3D 

microtomographic images of granular 

materials with the Stochastic 

watershed   

(J. Angulo & D. Jeulin, M. Faessel )

Use of random markers and 

estimation of  contour probabilities, 

to generate a hierarchy

Angulo, J., & Jeulin, D. (2007, October) Stochastic 

watershed segmentation. In ISMM (1) (pp. 265-276)

Faessel, M., & Jeulin, D. (2010). Segmentation of 3D 

microtomographic images of granular materials with 

the stochastic watershed. Journal of 

microscopy, 239(1), 17-31.
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3D Segmentation of grains by the  

probabilistic watershed
(D. Jeulin & M. Faessel)

Fully automatic Segmentation 
Two phase granular material (CEG Gramat)
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3D Reconstruction of fragmented granular materials

L. Gillibert and D. Jeulin, CEA Gramat 

• Aim : to rebuild grains from

fragments, then evaluation of 

damage for each grain

• Fragments gathering

• Tools : closing, distance map, 

watershed surface, k-means, 

h-minima

• Gillibert L. Jeulin D. (2013) 3D Reconstruction 

and analysis of the FragmentedGrains in a 

Composite Material, Image Analysis and 

Stereology, Vol. 32, pp. 107-115
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Measurement of fragmentation

Specific Surface Area of cracks (MAT2)
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Measurement of fragmentation

Specific Surface Area of cracks (MAT3)
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Images of Coldspray deposits

microtomography

• ESRF Images : 900 x 550 x 551 

voxels3 ; 0.35 micron per voxel

• (315 x 192.5 x 192.9 µm3)

Region of interest :

401 x 401 x 400 voxels3

140.4 x 140.4 x 140 µm3
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Combination of two segmentations

Final Result

i) Multiscale Segmentation

ii)  Stochastic watershed

Gillibert L., Peyrega Ch., Jeulin D., Guipont V., Jeandin M. 

(2012) 3D MultiscaleSegmentation and Morphological Analysis

of X-ray Microtomography fromCold-sprayed Coatings, Journal 

of Microscopy, vol. 248, Part 2, pp. 187-199
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Segmentation and Skeleton in 2D

A ball () with radius  and centre  is maximal for the set

 () there is no other ball 0(1) (1 ¸ ),

such that () ½ 0 (1) ½ 

The skeleton of a set A according to a family of balls ()

is the union of  centres of all its maximal balls (namely its medial

axis)

- skeleton of a disc: its centre

- In the continuous case, the skeleton preserves the connectivity

- On digitized images special algorithms to preserve the 

connectivity, like sequences of homotopic thinnings
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Segmentation and 3D reconstruction of 

aggregates from 2D TEM micrographs

Aggregates of carbon nanospheres (diameter 30nm) 

• Sequence of images with 50 tilts

• Binary segmentation to extract characteristic points

• 3D coordinates of  particles centres by stereographic

reconstruction

Le Coënt A., Jeulin D., Strudel J.L. (1997) Carbon aggregate reconstruction 

from Transmission Electron Microscope images, Cell Vision, vol. 4 No.2, 

219-221
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TEM micrographs

Carbon black aggregate (1500 nm); initial image and filtered image
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Segmentation of TEM micrographs
Triple points of the skeleton: candidates for centres markers

Skeleton                               triple points
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Basic Books

Matheron G. (1967) Eléments pour une théorie des milieux poreux, Masson, 

Paris

Matheron G. (1975) Random Sets and Integral Geometry, J. Wiley

Serra J. (1982) Image analysis and Mathematical Morphology, vol 1, 

Academic Press

Serra J. (ed.) (1988) Image analysis and Mathematical Morphology, vol 2, 

Academic Press

Coster M., Chermant J. L (1985) Précis d’analyse d’images, CNRS. Paris

Soille, P. (1999) Morphological Image Analysis: Principles and Applications, 

Springer Verlag

Najman L., Talbot, H. (eds.) (2013) Mathematical morphology: from theory to 

applications. John Wiley & Sons

Chiu S. N., Stoyan D., Kendall W. S., Mecke J. (2013) Stochastic geometry 

and its applications, John Wiley & Sons

Jeulin D. (2021) Morphological models of random structures, Springer Verlag
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