

Introduction to Mathematical Morphology Dominique Jeulin

▶ To cite this version:

Dominique Jeulin. Introduction to Mathematical Morphology. Doctoral. Cotonou, Benin. 2024, pp.85. hal-04812464

HAL Id: hal-04812464 https://minesparis-psl.hal.science/hal-04812464v1

Submitted on 30 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright

CENTRE DE MORPHOLOGIE MATHEMATIQUE 35, rue Saint-Honoré, 77305 FONTAINEBLEAU (FRANCE)

Introduction to Mathematical Morphology

Lecture Notes

Dominique Jeulin

November 2024

Introduction to Mathematical Morphology

Lecture Notes

Dominique Jeulin

Contents

- Symbols and Notations
- Introduction to random structures
- Introduction to mathematical Morphology and to morphological segmentation of images
- Morphological measurements for random structures
- Introduction to basic models of random structures

Symbols and Notations

DOMINIQUE JEULIN

1. Morphological operations

Dilation by a compact $K : A \to A \oplus \check{K}$ Erosion by a compact $K : A \to A \oplus \check{K} = \{x, K_x \subset A\}$ Opening by a compact $K : A_K = A \oplus \check{K} \oplus K$ Closing by a compact $K : A^K = A \oplus \check{K} \oplus K$

2.

RANDOM SETS

A, B: random closed sets (RACS) A^c : complementary set of A $A = \{-x, x \in A\}$: transposed set of A A_i : component of a multi-component random set B(r): closed ball with radius r K: compact set E: topological space \mathcal{F}, \mathcal{G} et \mathcal{K} : closed, open and compact sets of E $\mathcal{F}^K = \{ F \in \mathcal{F}; F \cap K = \emptyset, K \in \mathcal{K} \}$ $\mathcal{F}_G = \{ F \in \mathcal{F}; F \cap G \neq \emptyset, G \in \mathcal{G} \}$ probability P $G_K(s)$: generating function of the random variable N(K)Choquet's capacity $T(K) = P\{K \cap A \neq \emptyset\} = P\{\mathcal{F}_K\} = 1 - P\{K \subset A^c\} =$ 1 - Q(K) $p = P\{x \in A\}$ $q = P\{x \in A^c\}$ Covariance $C(h) = P\{x \in A, x + h \in A\}$ Covariance $Q(h) = P\{x \in A^c, x + h \in A^c\}$ Covariance $C_{ij}(h) = P\{x \in A_i, x + h \in A_j\}$ for a multi-component random set Three points Probability $Q(h_1, h_2) = P\{x \in A^c, x + h_1 \in A^c, x + h_2 \in A^c\}$ Segment l: $P(l) = P\{l \subset A\}; Q(l) = P\{l \subset A^c\}$ Hexagon H(r): $P(H(r)) = P\{H(r) \subset A\}; Q(H(r)) = P\{H(r) \subset A^c\}$ R(x, A): distance between the point x and the set A

3. **Measurements**

 $\mu(A): \text{ measure of } A$ $\mu_n \text{ Lebesgue measure in } R^n$ Volume of A: V(A)Integral of mean curvature of A: M(A)Surface area of A: S(A)Perimeter of A (in R^2): L(A)Connectivity number in $R^2: N_A(A)$ Connectivity number in $R^3: N_V(A) - G_V(A)$

4. RANDOM FUNCTIONS

Random Function Z(x)test function q(x) $\Phi(E)$: set of functions from $E \to \overline{R}$ upper semi continuous random functions (usc RF) $\Phi_f \subset \Phi$: set of usc functions from $E \to \overline{R}$ Choquet's capacity $T(g) = P\{x \in D_Z(g)\}; D_Z(g)^c = \{x, Z(x+y) < g(y), \forall y \in U\}$ Klower semi continuous random functions (lsc RF) $\Phi_a \subset \Phi$: set of lsc functions from $E \to \overline{R}$ functional $P(g) = P\{x \in H_Z(g)\}; H_Z(g) = \{x, Z(x+y) \ge g(y), \forall y \in K\}$ subgraph Γ^{φ} of the function φ : $\Gamma^{\varphi} = \{x, z\}, x \in E, z \in \overline{R}, \text{ with } z \leq \varphi(x)$ overgraph Γ_{φ} : $\Gamma_{\varphi} = \{x, z\}, x \in E, z \in \overline{R}$, with $z \ge \varphi(x)$ \lor : supremum; $Z_{\lor}(K) = \lor_{x \in K} \{Z(x)\}$ \wedge : infimum; $Z_{\wedge}(K) = \wedge_{x \in K} \{Z(x)\}$ thresholding: $A_Z(z) = \{x, Z(x) \ge z\}$ spatial law: $F(x, z) = P\{Z(x_1) < z_1, ..., Z(x_m) < z_m\}$ with $x \in E^m$ and $z \in \overline{R}^m$ spatial law: $T(x, z) = P\{Z(x_1) \ge z_1, ..., Z(x_m) \ge z_m\}$ with $x \in E^m$ and $z \in \overline{R}^m$ F(z), G(z) distribution functions (with density, or pdf f(z) and g(z)) S: coefficient of variation of a distribution $D^{2}[Z]$: variance of the random variable Z Bivariate distribution $F_{ij}(h, z_1, z_2) = P\{Z_i(x) < z_1, Z_j(x+h) < z_2\}$ Bivariate distribution $T_{ij}(h, z_1, z_2) = P\{Z_i(x) \ge z_1, Z_j(x+h) \ge z_2\}$ Bivariate distribution $T_2(h, z_1, z_2) = P\{Z(x) \ge z_1, Z(x+h) \ge z_2\}$ Covariance C(x, x+h) and second order central correlation function $\overline{W}_2(x, x+h)$ $\gamma_1(h), \gamma_2(h)$: variograms of order 1 and 2

Central correlation function of order $m \overline{W}_m(x)$, with $x \in E^m$

MODELS 5.

Random sets. Boolean model: RACS A with primary grain A'5.1.

Intensity θ

Primary grain A':

geometrical covariogram $K(h) = \overline{\mu}_n(A' \cap A'_{-h})$ normalized covariogram $r(h) = \frac{K(h)}{K(0)}$ $s(h_1, h_2) = \frac{\overline{\mu}_n(A' \cap A'_{-h_1} \cap A'_{-h_2})}{K(0)}$

IBRS: infinitesimal Boolean random set; time t; Intensity $\theta(t)$

Dead leaves tesselation: $N_i(t)$: specific number of intact grains; $\varphi_{A'}$, $\varphi_{A'_i}$: pdf of grains and of intact grains

Poisson varieties $V_k(\omega)$, with intensity $\theta(\omega)$

Random functions (RF). BRF: Boolean random function Z(x)5.2.

DLRF: Dead leaves random function

SARF: Sequential alternate random function

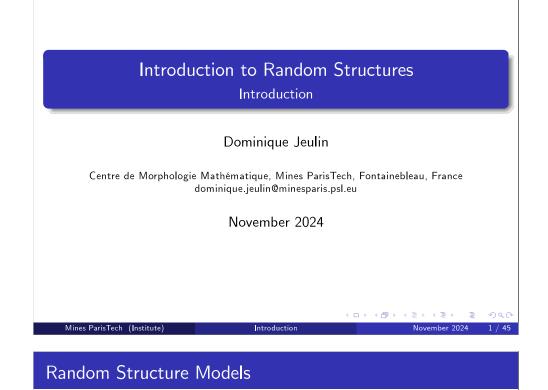
 $Z'_t(x)$: Primary random function, with subgraph $\Gamma^{Z'_t} = A'(t)$ and sections $A_{Z'_t}(z)$

 $\varphi(Z)$: transformation of the RF Z by the anamorphosis φ

Dilution RF: $\Phi(U, X)$ and $\phi_t(U, X)$: multivariate characteristic functions of the RF Z(x) and $Z'_t(x)$

 $Z * \check{p}(x)$: convolution of the RF Z(x) by a weight function p(x)

Introduction to random structures



- Aim: to estimate, from spoiled or missing data, structural,
- morphological, or physical properties of heterogeneous media.
- Method: Use of a probabilistic approach
 - for practical reasons
 - to get efficient solutions to the studied problems

Introduction

- Why use models of **Random Structures**?
- No specific role of Randomness, as opposed to Determinism.
- Choice of a methodology based on a probabilistic approach.

Introduction

Heterogeneity

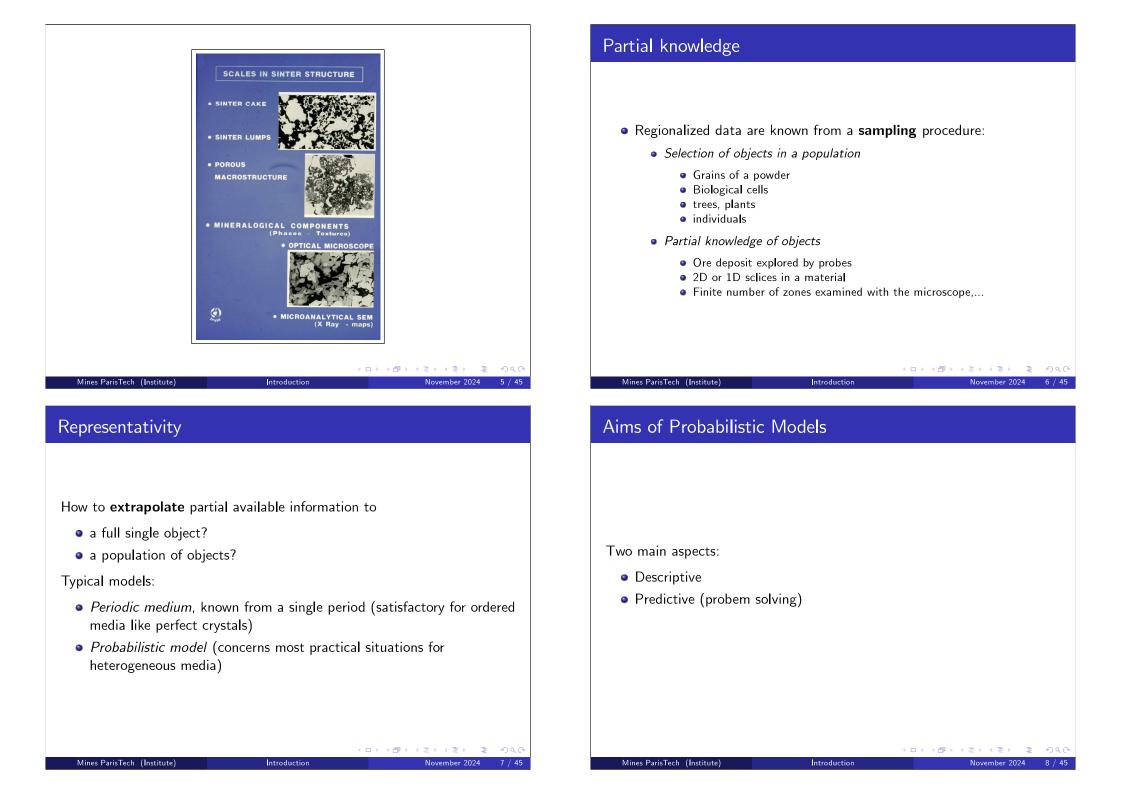
Mines ParisTech (Institute)

- Microstructures, Textures:
 - more or less important heterogeneity at different scales • structured aspects
- How to account for these two points?
- How to replace fluctuating data at a small scale by global characteristics?
- Going from Microscopic to Macroscopic
- Relationships Physical Behavior-Textures

人口区 人間区 人居区 人居区

200

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



Descriptive aspects

Simplified representation of a complex structure:

- Summary of structural data in few parameters (1, 2,...) for relation with the physical properties, or for classification of structures
- Genetic models: simplified construction to simulate the physical processes driving the formation of the structure

Introduction

• Realistic simulations of random media

Predictive aspects

Mines ParisTech (Institute)

- Interpolation of data at points without information (orebody deposit exploration, missing data such as non available slices for a 3D image analysis of a microstructure,..) by **kriging**
- **Restore noisy data** by filtering (e.g. by **kriging**)

Predictive aspects

Mines ParisTech (Institute)

What can be obtained from partial data, using probabilistic models? Typical examples from Geostatistics:

• Give the **precision** of a global estimation, such as the integral

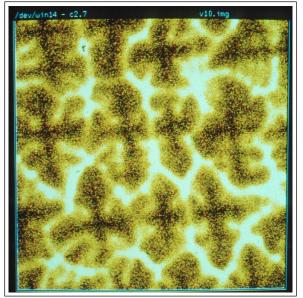
$$I = \int_{R} f(x) dx$$

estimated from sampling points by

$$I^* = a \sum_{p=-\infty}^{p=+\infty} f(x_0 + pa)$$

• Statistical definition of a **RVE (Representative Volume Element)**

Introduction



Microsegregation in steel (noisy image)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Mines ParisTech (Institute

200

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

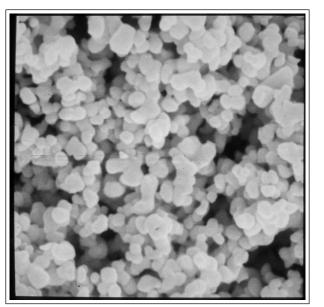
Predictive aspects

- Solution of optimisation problems by simulations:
 - Orebody deposits exploitation (**Conditional simulations** that respect data at points with information)
 - Oil reservoir production (**Conditional simulations**)
 - Reliability computation, fracture statistics
 - Homogenization: computation of the effective behaviour of random heterogeneous media (physical effective properties), from probabilistic information on the microstructure, or from simulations of random media
 - Materials conception and optimization,...

Mines ParisTech (Institute)

November 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの



Introduction

SEM Micrograph of Powder

Mines ParisTech (Institute)

≣ ▶ ∢ ≣ ▶ ≡ • ⊃ ९.० November 2024 15 / 45

Predictive aspects

Further practical problems:

- **Stereology:** how to reach 3D morphological properties from 1D or 2D morphological properties (obtained on slices or on projections)
- Counting and measuring:
 - number of imbricated objects in a texture, without segmenting the image
 - estimation of a powder size distribution from images of overlapping objects

Predictive aspects

Mines ParisTech (Institute)

• **Change of support:** change of statistical properties of a medium with the size and shape of the support of data

Introduction

• **Change of scale:** prediction of the macroscopic physical behavior of a medium from its microscopic behavior; for instance, in *Fracture Statistics of brittle materials*, prediction of the fracture probability of parts (or planes, buildings,...) from data on small scale samples

Possible construction of **algorithms** based on theoretical probabilistic models, to be used more generally in a heuristic way (filtering, counting, change of support, change of scale,...)

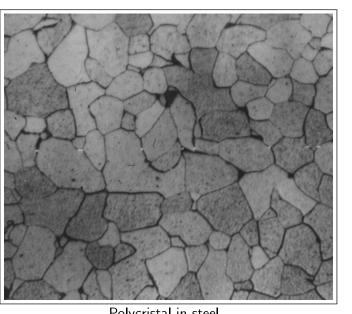
◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○

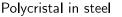
Main types of data and of models

Examples of regionalized data and corresponding types of models:

- Dispersions of small particles in a matrix (non metallic inclusions in steel,...), modelled by realizations of **stochastic point processes**
- Granular structures (polycrystals), assimilated to random **tessellations of space** (each class corresponding to a grain)
- Two phase (porous media) or multiphase structures (composite materials with several components) may be simulated by **random** sets (binary), or multicomponent random sets

Introduction





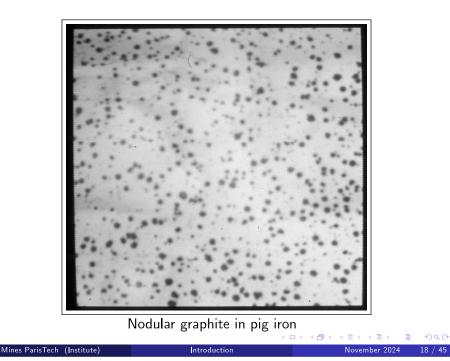
Introduction

・ロト ・ 日本 ・ モト ・ モト 3 November 2024 19 / 45

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

November 2024

17 / 45



Metallurgical coke イロト イヨト イヨト イヨト

Introduction

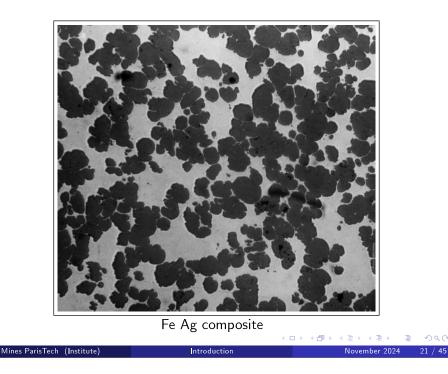
Mines ParisTech (Institute)

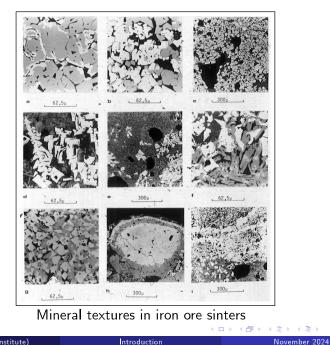
Sac

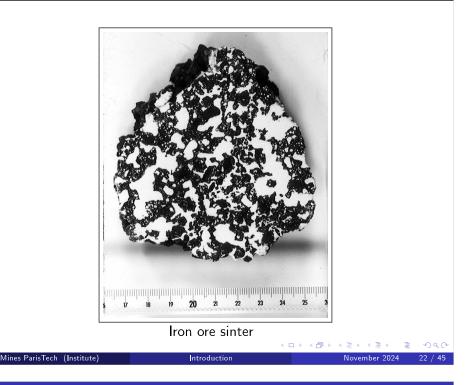
3

November 2024

Mines ParisTech (Institute)







Main types of data and of models

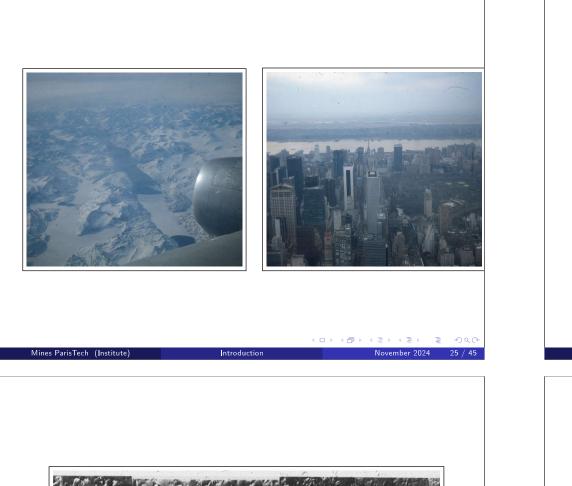
- Rough surfaces (steel plate, fracture surface,...), chemical concentration mappings (X ray images obtained with an electron microprobe), and more generally grey level images (video images, secondary electron images in a scanning electron microscope,...) can be represented by random functions
- Multivariate data (multi species chemical mappings, components of a vector or of a tensor in every point x of space), modelled by multivariate random function models

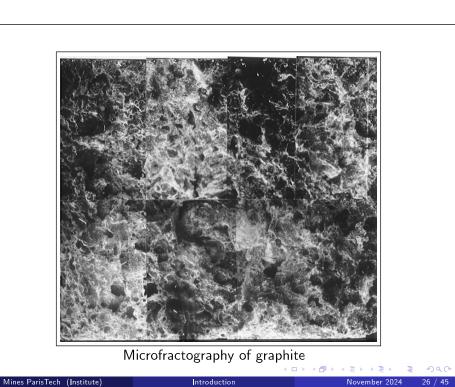
500

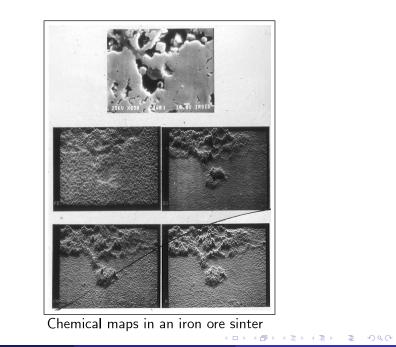
《日》 《圖》 《臣》 《臣》

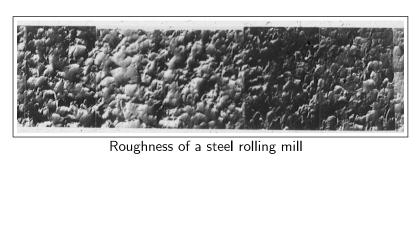
3

23 / 45









◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Mines ParisTech (Institute)

Main types of data and of models

- Sequential images (change of a microstructure during its formation, its deformations under loading, its degradation; successive grounds in a perspective view) associated to **sequential random sets or random functions**
- Data on a network connecting vertices (roads, porous medium, cracks,...) and their properties depending on connectivity, modelled by **random graphs**

ntroduction

• Arborescent data, modelled by random trees

Characterization of a random set model

Models derived from the theory of **Random Sets** by **G. MATHERON**. For a random closed set A (RACS), characterization by the CHOQUET capacity T(K) defined on the compact sets K

$$T(K) = P\{K \cap A \neq \emptyset\} = 1 - P\{K \subset A^c\} = 1 - Q(K)$$

Construction of random structures

To build **random structures** are required:

- a set of events and their combination (σ algebra)
- e.g. open sets on a topological space (Borel σ algebra)
 - a probability

Mines ParisTech (Institute

Characterization of a random function model

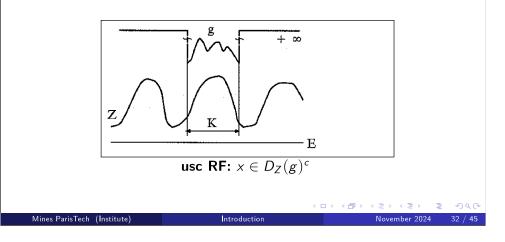
For an **upper semi continuous random functions (usc RF)** Z(x) defined in R^n , characterization by the **CHOQUET capacity** T(g) defined on the lower semi continuous functions (lsc) g with compact support K

Introduction

・ロッ ・ 一 マット・ モリン

3

$$T(g) = P\{x \in D_Z(g)\}; D_Z(g)^c = \{x, Z(x+y) < g(y), \forall y \in K\}$$



Mines ParisTech (Institute

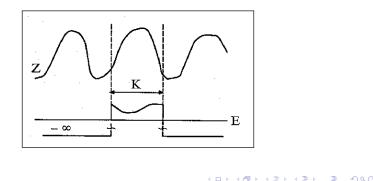
November 2024 31 / 45

イロト イポト イヨト イヨト

Characterization of a random function model

For a lower semi continuous random functions (Isc RF), characterization by the functional P(g) defined on the upper semi continuous functions (usc) g with compact support K

$$P(g) = P\{x \in H_Z(g)\}; H_Z(g) = \{x, Z(x+y) \ge g(y), \forall y \in K\}$$



ntroduction

Construction of Random Structure Models

Main steps:

Mines ParisTech (Institute

- Choice of basic assumptions
- Computation of the functionnal T(K)

Characterization of a random model

- The CHOQUET capacity of a RACS is equivalent to the distribution function of a random variable
- Two models (RACS, usc RF, lsc RF) with the same functionnal T(K)
 , T(g), P(g) cannot be distinguished (theoretically as well as experimentally)
- The functionnal T(K), T(g), P(g) connects theory and experimentation; it is used to estimate the parameters of a model and to test its validity

Introduction

Construction of Random Structure Models Choice of basic assumptions

- **Genetic models**: construction from elementary processes and geometrical modes of interaction
- Definition of a RF as a solution of Stochastic partial differential equations (e.g. **Reaction-Diffusion models)**

November 2<u>024 35 / 4</u>

3

November 2024

Mines ParisTech (Institute

Construction of Random Structure Models

Choice of basic assumptions

- Prior general properties satisfied by a class of models:
 - stationarity
 - independent increments
 - infinite divisibility
 - Markov property (lack of memory)
 - stable distribution after transformation,...
- Asymptotic limit of families of models: Gaussian RF ("Central limit " theorem); Boolean RF obtained by the supremum ∨ of independant RF

Introduction

Construction of Random Structure Models Calculation of the CHOQUET capacity

For a given model, the functionnal T is obtained:

- by theoretical calculation
- by estimation

Mines ParisTech (Institute

- on simulations
- on real structures (possible estimation of the parameters from the "experimental" *T* , and tests of the validity of assumption)

Construction of Random Structure Models Calculation of the CHOQUET capacity

Determination of the functional T(K), T(g), P(g) as a function of

• the assumptions

Mines ParisTech (Institute

- the parameters of the model
- the compact K or the function g

Construction of Random Structure Models Calculation of the CHOQUET capacity

• The functions T(K) (K being variable) are **consistent** (which is not the case of any prior analytical model)

Introduction

After specification and validation of the model from available data, possible predictive implementation of its properties (such as *T(K)* for compacts *K* not used during the identification step). Examples: 3D properties deduced from 2D observations (stereology); change of support by ∨ or ∧ in the case of a change of scale in fracture statistics

November 2024

November 2024

General properties of the proposed models

- Most random structure models defined in the **Euclidean space** R^n :
 - more general than stochastic processes limited to the 1D space R, where the order relation is used;
 - different from discrete models defined on a grid, even if the discrete counterpart of the euclidean models is easily defined
- Models depending on a few number of parameters, not to ask too much from the available data, and for realistic experimental identification and test

Chiu S. N., Stoyan D., Kendall W. S., & Mecke J. (2013). Stochastic geometry and its applications, John Wiley & Sons.

Introduction

- Choquet G. (1969) Cours d'analyse, Tome II, Topologie, Masson, Paris.
- Jeulin D. (1991) Modèles morphologiques de structures aléatoires et de changement d'échelle, Thèse de Doctorat d'Etat ès Sciences Physiques, University of Caen.
- Jeulin D. (ed) (1997) Proceedings of the Symposium on the Advances in the Theory and Applications of Random Sets (Fontainebleau, 9-11 October 1996), World Scientific Publishing Company,
- Jeulin D., Ostoja-Starzewski, M. (eds) (2001) Mechanics of Random and Multiscale Microstructures, CISM Lecture Notes N° 430, Springer Verlag, Wien.
- Jeulin D. (2021) Morphological models of random structures, Springer Verlag.

General properties of the proposed models

- Mostly stationary and ergodic version, to allow a statistical inference from a single realization
- Good stereological properties, for access from slices or projections
- Facilities for simulations (and often for conditional simulations)
- Approach based on the Choquet capacity extended to convolutional neural networks (CNN) in the context of Deep Learning, for the discrimination of various point processes (Mohammadi et al.)

Introduction

- Matheron G. (1965) Les variables régionalisées et leur estimation, Masson, Paris.
- Matheron G. (1967) Eléments pour une théorie des milieux poreux, Masson, Paris.
- Matheron G. (1969), Théorie des ensembles aléatoires, Cahiers du Centre de Morphologie Mathématique, fasc. 4, edited by Paris School of Mines.
- Matheron G. (1975) Random Sets and Integral Geometry, J. Wiley,
- Matheron G. (1989) Estimating and Choosing, Springer Verlag, Berlin.

Mines ParisTech (Institute

200

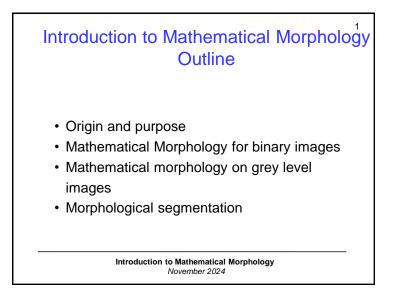
Mines ParisTech (Institute

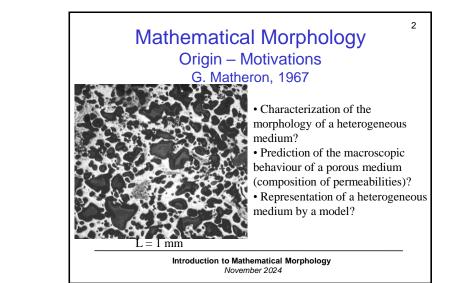
Mohammadi M., Velasco-Forero S., Willot F., Sangalli M., Walter T., & Angulo J. (2024). Choquet Capacity networks for random point process classification,in Proceedings CMDS14, p. 229, F. Willot, J. Dirrenberger, S. Forest, D. Jeulin, A. V. Cherkaev (eds), Springer Verlag.
Serra J. (1982) Image analysis and Mathematical Morphology, vol 1, Academic Press.

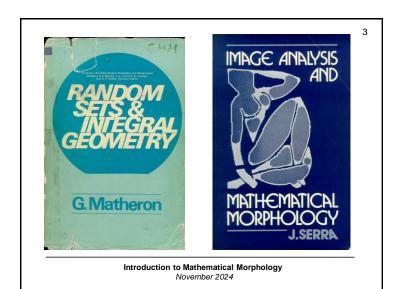
Serra J. (ed.) (1988) Image analysis and Mathematical Morphology, vol 2, Academic Press.

	<	ロ * * 母 * * 声 * * 声 * のへの
Mines ParisTech (Institute)	Introduction	November 2024 45 / 45

Introduction to mathematical Morphology and to morphological segmentation of images



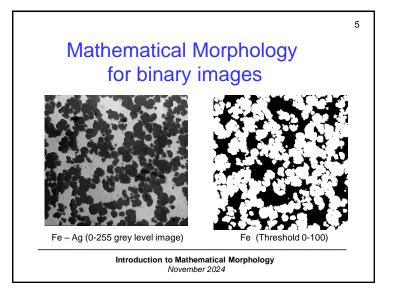


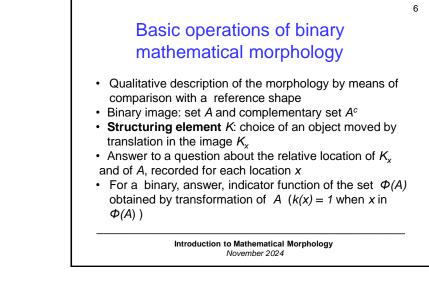


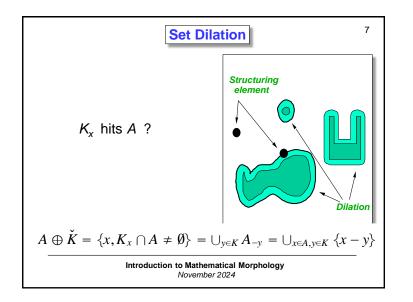
Mathematical morphology analysis

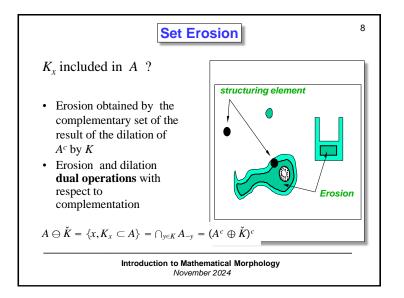
- Initial motivation: how to quantify complex porous media?
- Spatial arrangement from **Covariance**, **sizing by morphological opening** (G. Matheron, J. Serra)

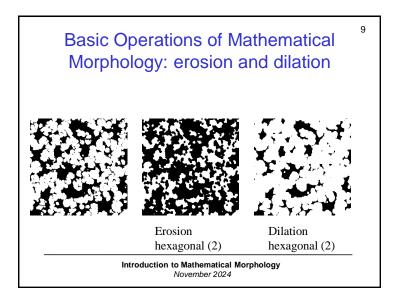
Introduction to Mathematical Morphology November 2024

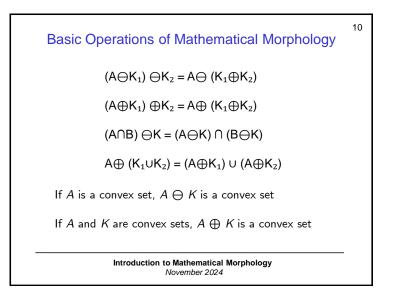


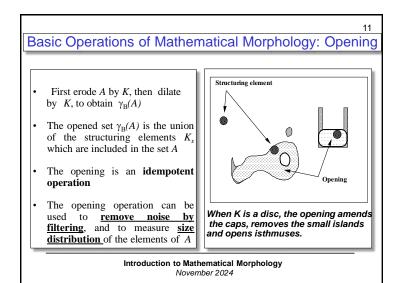


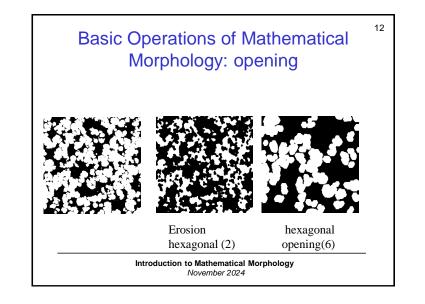


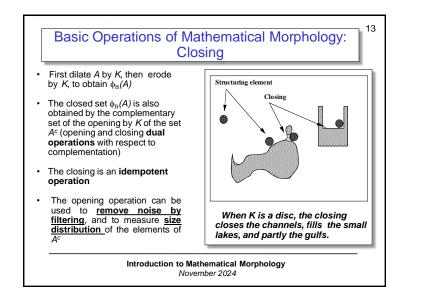


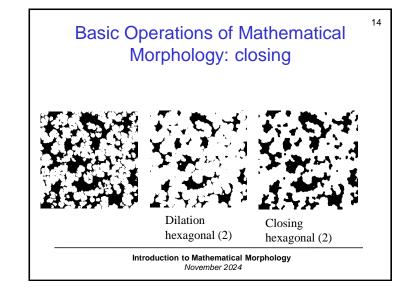


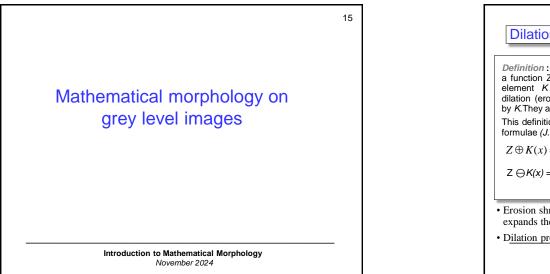


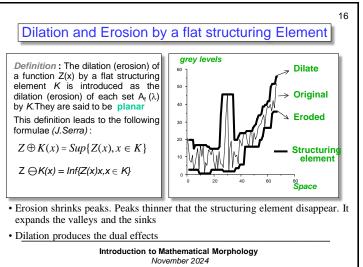


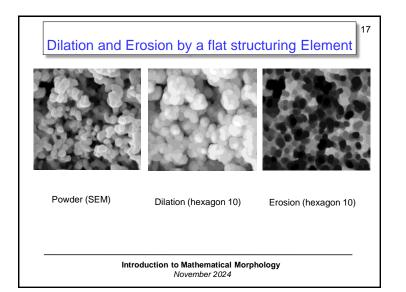


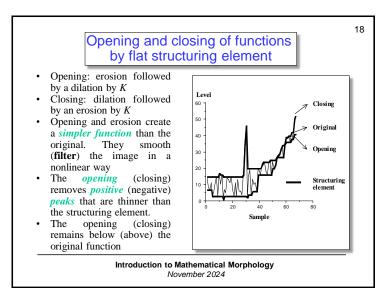


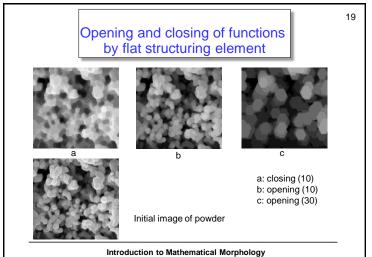


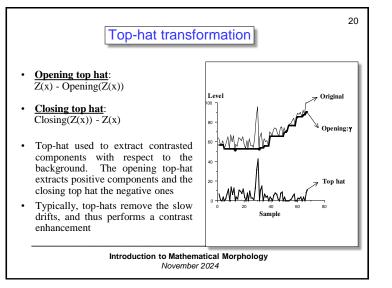




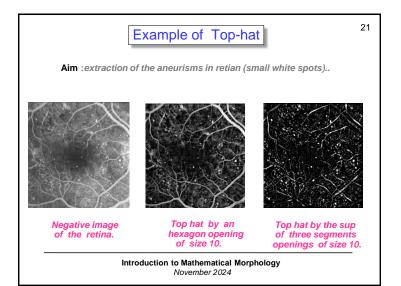


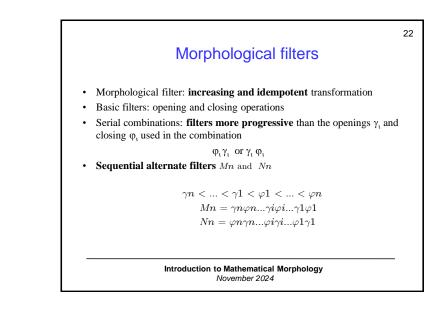


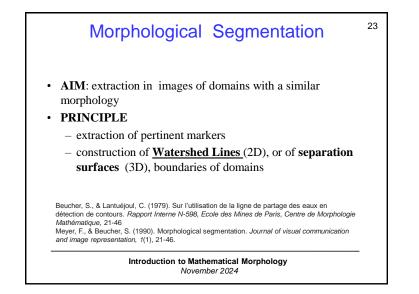


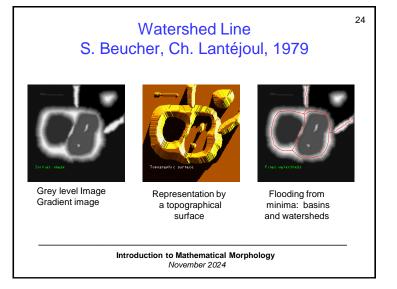


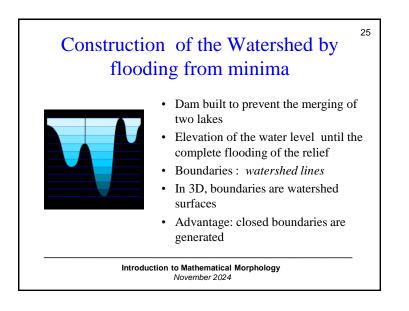
November 2024

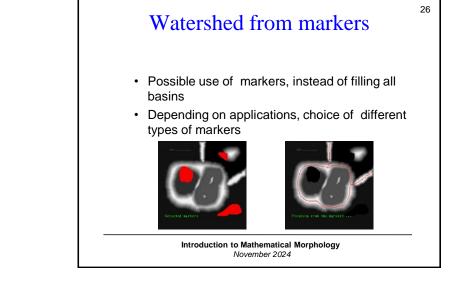


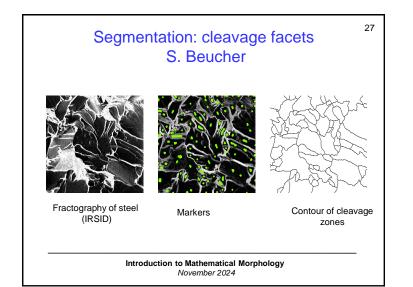












microtomographic images of granular materials with the Stochastic watershed

28

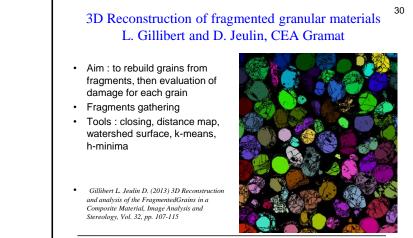
(J. Angulo & D. Jeulin, M. Faessel)

Use of random markers and estimation of contour probabilities, to generate a hierarchy

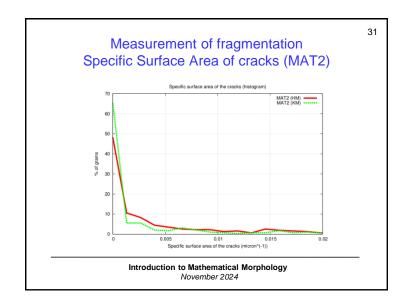
Angulo, J., & Jeulin, D. (2007, October) Stochastic watershed segmentation. In ISMM (1) (pp. 265-276) Faessel, M., & Jeulin, D. (2010). Segmentation of 3D microtomographic images of granular materials with the stochastic watershed. Journal of microscopy, 239(1), 17-31.

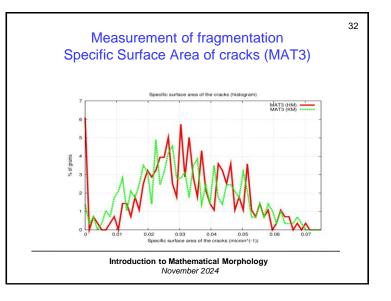
Introduction to Mathematical Morphology November 2024



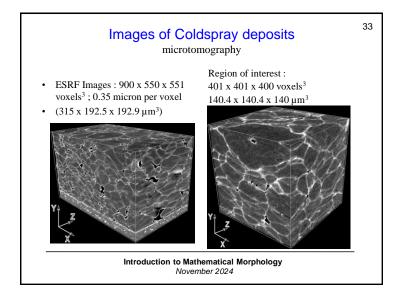


Introduction to Mathematical Morphology November 2024





8



35

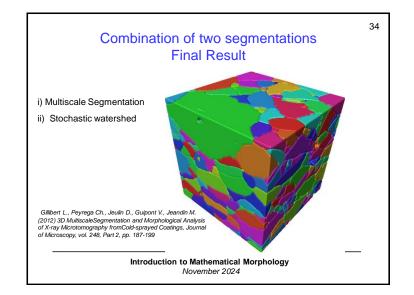
A ball Bx(r) with radius r and centre x is **maximal** for the set $A \iff$ there is no other ball $Bx\prime(r1)$ $(r1 \ge r)$, such that $Bx(r) \subset Bx\prime(r1) \subset A$

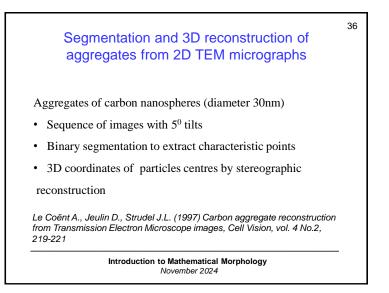
The **skeleton** of a set A according to a family of balls B(r) is the union of centres of all its maximal balls (namely its **medial** axis)

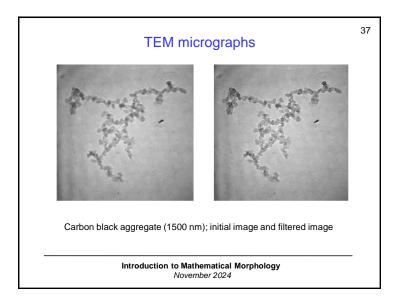
- skeleton of a disc: its centre
- In the continuous case, the skeleton preserves the connectivity
- On digitized images special algorithms to preserve the

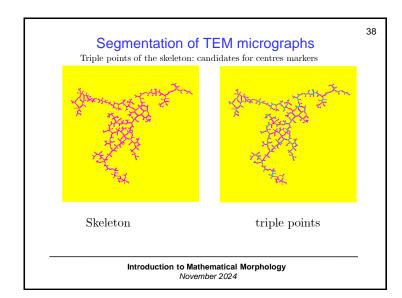
connectivity, like sequences of homotopic thinnings

Introduction to Mathematical Morphology November 2024









Basic Books	3
Matheron G. (1967) Eléments pour une théorie des milieux poreux, Masson, Paris	
Matheron G. (1975) Random Sets and Integral Geometry, J. Wiley	
Serra J. (1982) Image analysis and Mathematical Morphology, vol 1, Academic Press	
Serra J. (ed.) (1988) Image analysis and Mathematical Morphology, vol 2, Academic Press	
Coster M., Chermant J. L (1985) <i>Précis d'analyse d'images</i> , CNRS. <i>Paris</i> Soille, P. (1999) <i>Morphological Image Analysis: Principles and Applications</i> , Springer Verlag	
Najman L., Talbot, H. (eds.) (2013) Mathematical morphology: from theory to applications. John Wiley & Sons	
Chiu S. N., Stoyan D., Kendall W. S., Mecke J. (2013) Stochastic geometry and its applications, John Wiley & Sons	
Jeulin D. (2021) Morphological models of random structures, Springer Verlag	
Introduction to Mathematical Morphology	

November 2024

10

Morphological measurements for random structures

Morphological measurements

November 202

Mines ParisTech (Institute)

Introduction

Microstructure of materials: heterogeneity

Qualitative and quantitative Analysis of the morphology (images analysis) 11 Construction of probabilistic models of structures for porous or multicomponent media \mathbb{T} Understanding and prediction of the behaviour of materials in service

Morphological measurements

Quantitative characterization of a random structure Main criteria

- Basic measures (volume fraction V_V , surface area S_V , integral of mean curvature $M_V,...) \rightarrow$ stereology
- Size distribution (2D-3D)
- Distribution in space:
 - Clustering
 - Scales
 - Anisotropy
- Connectivity

November 2024

Principle of morphological Measurements

Two steps (J. Serra):

Mines ParisTech (Institute

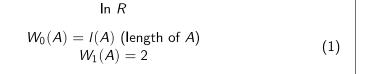
- morphological transformation Φ applied to the structure (use of image analysis)
- measurement performed on the transformed object

Choice of measures and transformations according to morphological criteria

Morphological measurements

Basic measurements and Minkowski functionals

In integral geometry, it is shown that in R^n , n+1 measures satisfy the constraints: the de Minkowski functionals, noted W_i , with W_i homogeneous and of degree n - i: $W_i(\lambda A) = \lambda^{n-i} W_i(A)$



Principle of morphological Measurements

Experimental access \rightarrow **constraints** for allowed measurements:

- invariance by translation
- continuity (with respect to the mesh and to the sampling grid)
- local knowledge (study of the structure from bounded measure fields)
- additivity (averages)

Mines ParisTech (Institute)

stereological properties (2D-3D)

Measurements and transformations respecting these constraints

Basic measurements and Minkowski functionals

 $\ln R^2$

Morphological measure

$$W_0(A) = A(A) \text{ (area of the set } A)$$

$$2W_1(A) = L(A) \text{ (perimeter of } A)$$

$$2W_2(A) = 2\pi N(A) \text{ (connectivity number in } R^2)$$
(2)

N(A): difference between the number of connected components of A and the number of holes it contains

イロト 不得下 不足下 不足下

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト … ヨ …

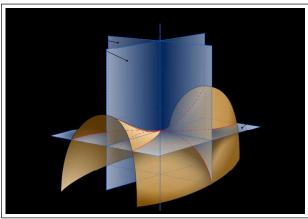
Mines ParisTech (Institute

Morphological measurements

500

In R^3 $W_0(A) = V(A)$ (volume of the set A) $3W_1(A) = S(A)$ (surface area of A) $3W_2(A) = M(A) = \frac{1}{2} \int_{\partial A} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) dS$ (integral of the mean curvature) (3) $3W_3(A) = 4\pi(N-G) = N(A) = \int_{\partial A} \left(\frac{1}{R_1R_2}\right) dS$ (integral of the total curvature, or connectivity number in R^3) (日) (日) (日) (日) (日) (日) Mines ParisTech (Institute Morphological measurement

Basic measurements and Minkowski functionals



Principal curvatures (Wikipedia)

Morphological measurements

3

Basic measurements and Minkowski functionals

 R_1 and R_2 : principal radii of curvature in any point of the boundary ∂A of Α

(N-G): difference between the number of connected components of A, N and its genus G

Genus of A : maximal number of closed curves to be drawn on its boundary ∂A without disconnecting it into two parts: 0 for a sphere and 1 for a torus

Connectivity numbers

Mines ParisTech (Institute

Connectivity numbers in R^2 and in R^3 : topological characteristics describing the connectivity of an object

in R^2 , N(A) is obtained by the difference between two **convexity numbers** C(A) and $C(A^c)$:

$$N(A) = C(A) - C(A^{c}) = \frac{1}{2\pi} \left(\int_{R>0} d\alpha - \int_{R<0} d\alpha \right)$$
(4)

R : radius of curvature in every point of ∂A and $d\alpha = \frac{ds}{R}$ rotation of the normal along the boundary, according to the arc ds

ヘロト 人間 ト 人口 ト 人口 ト

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

= nac

Connectivity numbers

Mines ParisTech (Institute

in R^3 , connectivity number related to the rotation of the normal to the boundary ∂A by:

$$N(A) = \frac{1}{4\pi} \left(\int_{R_1 R_2 > 0} d\omega - \int_{R_1 R_2 < 0} d\omega \right)$$
(5)

Specific Measurements and Stereology

Stereological relationships (Crofton) for Slices $V_{V} \qquad S_{V} \qquad M_{V} \qquad N_{V} - G_{V}$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ $V_{V} = \overline{A}_{A} \qquad S_{V} = \frac{4}{\pi} \overline{L}_{A} \qquad M_{V} = 2\pi \overline{N}_{A}$ $\uparrow \qquad \uparrow \qquad \uparrow$ $A_{A} \qquad L_{A} \qquad N_{A}$ R^3 R^2 $A_A = \overline{L}_L \qquad L_A = \pi \overline{N}_L$ Î R N

Morphological measurements

Morphological criteria

Basic Specific Measurements in R^3

For a random set A, the functionals W_i are random variables. For a stationary random set (porous medium, mineralogical texture), with average properties invariant by translation, specific values, given per unit volume

- volume fraction V_V
- specific surface area S_V
- integral of the mean curvature M_V or of the total curvature $N_V G_V$ estimation from slices (1D or 2D)

Morphological measurements

Measures on RCS

Mines ParisTech (Institute)

For a closed random set, every measure μ must be a random variable $\mu(A)$ Example: 0

$$\mu(A) = \int \mathbf{1}_A(x) \mu(dx)$$

where $1_A(x)$ is the indicator function of A ($1_A(x) = 1$ if $x \in A$) and μ is a positive measure

 $1_A(x)$ is **measurable**: $\mu(A)$ is a random variable with expectation $E[\mu(A)]$

$$E[\mu(A)] = \int P\{x \in A\}\mu(dx)$$

= nac

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

November 2024

Measures on RCS

Application to the Lebesgue measure : $\mu(dx) = dx$ In R^n , volume

$$\mu_n(A) = \int \mathbf{1}_A(x) dx = W_0(A)$$

For a random closed set,

$$E[\mu_n(A)] = \int P\{x \in A\} dx$$

Morphological measurements

- 32

Mines ParisTech (Institute)

Counting

Measurements estimated from images sampled on a **grid of points**, usually regular (square, or hexagonal in the plane), related to a graph

- To every node x of the grid is given the value 1 if x ∈ A, and 0 if x ∈ A^c (complementary set of A)
- Number of summits v of the grid in $A \rightarrow area$ in R^2 or volume in R^3
- **Number of intercepts** *N*(01) in a given direction → estimation of the number of chords generated by *A* in this direction

Estimation of the volume fraction of RCS

If the random closed set is not bounded, one can study $A \cap B$, where B is a bounded domain:

$$E[\mu_n(A \cap B)] = \int_B P\{x \in A\} dx$$

If the random closed set is **stationary**, $P\{x \in A\} = p$ and then

$$E[\mu_n(A \cap B)] = \int_B p dx = p \mu_n(B)$$

For every B in R^k ($0 < k \le n$)

$$p = \frac{E[\mu_k(A \cap B)]}{\mu_k(B)}$$

 $V_V = A_A = L_I$

Morphological measurements

And

Counting

Mines ParisTech (Institute)

- **Connectivity Numbers** estimated by counting from the Euler relations
- In the plane, *N*, *v*, the number of faces (*f*) and the number of edges (*e*) are related by:

$$N = v - e + f \tag{6}$$

On a hexagonal or a square grid, (6) is deduced from counting the following configurations (where * means "not tested"):

$$N(A) = N \begin{pmatrix} 00\\1 \end{pmatrix} - N \begin{pmatrix} 0\\11 \end{pmatrix} \text{ on the hexagonal grid } C_6$$

$$N(A) = N \begin{pmatrix} 10\\00 \end{pmatrix} - N \begin{pmatrix} *1\\10 \end{pmatrix} \text{ on the square grid } C_8$$
(7)

Mines ParisTech (Institute)

= nac

Morphological measurements

Counting

In R^3 , the Euler relation is expressed as a function of previous properties and of the number of blocks (*b*):

$$N - G = v - e + f - b \tag{8}$$

For an isotropic structure sampled on a cubic grid, specific connectivity number estimated from relation (8):

$$N_V - G_V = -\lim_{a \to 0} \left(\frac{C(0) - 3C(a) + 3P\binom{11}{11} - P(C)}{a^3} \right)$$
(9)

where C is the cube with side a and C(h) is the covariance of the random set ${\cal A}$

Morphological measurements

Minkowski Tensors

Mines ParisTech (Institute

Tensors $W_1^{0,2}$ and $W_2^{0,2}$ invariant by translation

Scalar measurement of anisotropy obtained from the ratio of the smallest and the largest eigenvalues

Tensor $W_0^{2,0}$ related to the inertia tensor I(A) used in to characterize particles of complex shapes and their orientations. The inertia tensor can be estimated for objects of any shape, I_d being the identity matrix:

$$I_{ij} = \int (-x_i x_j + \delta_{ij}) dV$$

$$I(A) = -W_0^{2,0}(A) + I_d tr(W_0^{2,0}(A))$$

Similarly $W_1^{2,0}$ is related to the tensor of inertia of a mass uniformly distributed over ∂K . Furthermore,

$$S(A) = 3tr(W_1^{0,2}(A))$$

Minkowski Tensors

Symmetric tensors generated from symmetric tensor products of vector x and the normal vector n on ∂A

Restricting to tensors of rank two provides quadratic normal tensors (eigen vectors give information on local orientation)

In \mathbb{R}^3 , noting $G_1 = 1$, $G_2 = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$, and $G_3 = \frac{1}{R_1} \frac{1}{R_2}$,

$$W_0^{2,0} = \int_A x \otimes x dV$$

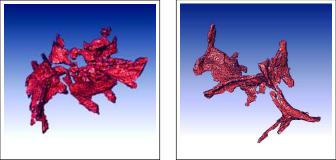
$$W_v^{r,s} = \frac{1}{3} \int_{\partial A} G_v x^r \otimes n^s dS$$
(10)

with $\nu = 1, 2, 3$ and (r, s) = (2, 0), (1, 1), (0, 2). Obviously from definition of Eqs (10),

$$W_{\nu}^{r,s}(\lambda A) = \lambda^{3+s-\nu} W_{\nu}^{r,s}(A)$$

Jensen E. B. V., Kiderlen M. (eds.) (2017) Tensor valuations and their

Minkowski Tensors and Inertia features of particles with complex shapes



Microtomography of Intermetallic particles in an aluminium alloy

Reduced principal moments obtained from normalization of the principal components of inertia ($\lambda_1 \ge \lambda_2 \ge \lambda_3$). For any set *A* (even non connected) :

 $\lambda_1 + \lambda_2 + \lambda_3 = 1; \ \lambda_i \leq 0.5 \ (i = 1, 2, 3); \ \lambda_2 \geq 0.5(1 - \lambda_1)$

vember 2024 24 / 100

Mines ParisTech (Institu<u>te)</u>

Morphological measurements

Inertia features of particles with complex shapes

- Any object A represented by a point in the plane λ_1 , λ_2 located inside a triangle typical of the shape
- For convex 3D objects, the summits of the triangle represent the three most distant types of mass distribution: spherical, flat, and thread type
- Between these summits there is a continuous change of shape. On the edges of the triangle, objects show typical shapes: prolate ellipsoid, oblate ellipsoid, and planar ellipse
- Orientation of the main axis of inertia (parallel to the eigen vector corresponding to the eigen value λ_1) allows us to study the in situ distribution of orientations of particles, and their evolution during during rolling
- Parra-Denis E., Barat C., Jeulin D., Ducottet C. (2008) 3D complex shape characterization by statistical analysis: Application to aluminium alloys. Materials characterization, 59(3), 338-343 Morphological measurements Mines ParisTech (Institute) November 2024

Basic Operations of Mathematical Morphology

Dilation and erosion of A by K:

i) K hits A?
$$(K \cap A \neq \emptyset)$$
?
ii) K included in A $(K \subset A)$? (11)

イロト イポト イヨト イヨト

$$A \oplus \check{K} = \{x, K_x \cap A \neq \emptyset\} = \bigcup_{y \in K} A_{-y} = \bigcup_{x \in A, y \in K} \{x - y\}$$
(12)

$$A \ominus \check{K} = \{x, K_x \subset A\} = \bigcap_{y \in K} A_{-y} = (A^c \oplus \check{K})^c$$
(13)

 $K_x = \{x + y, y \in K\}$: translated of K to point x; K obtained by transposition of K: $\check{K} = \{-x, x \in K\}$

Basic Operations of Mathematical Morphology

Qualitative description of the morphology of objects: spherical or elongated pore, polyhedral grain...

- Structuring element: choice of an object K (compact set, like a point, sphere, segment) implanted in every point x of the euclidean space R^n
- Answer to a question on the mutual location of K_x and of the studied set A, for every point x
- For a **binary answer**, **indicator function** of $\Phi(A)$ obtained by transformation of the set A (k(x) = 1 for $x \in \Phi(A)$, else k(x) = 0)

Basic Operations of Mathematical Morphology

Symbols \oplus and \ominus : Minkowski addition and substraction :

$$A \oplus K = \bigcup_{x \in A, y \in K} \{x + y\} = \bigcup_{y \in K} A_y = \bigcup_{x \in A} K_x$$
(14)

$$A \ominus K = \cap_{y \in K} A_y = (A^c \oplus K)^c \tag{15}$$

Mines ParisTech (Institute

A D N A B N A B N A B N

Mines ParisTech (Institute

Steiner Formulae

Relation between the Minkowski functionals of a convex set A dilated by a convex set K and the functionals of A and of K:

$$E\{W_{i}(A \oplus \check{K})\} = \frac{1}{C_{0n}} \sum_{k=0}^{k=n-i} {n-i \choose k} W_{k+i}(A) W_{n-k}(K)$$
(16)

where $E\{W_i(A \oplus \check{K})\}$ is the average value of $W_i(A \oplus \check{K})$ over the rotations of K around the origin O.

Morphological measurements

K: ball with radius r, (polynomials with degree n - i)

Mines ParisTech (Institute)

For
$$A \subset R^3$$
 and for $K \subset R^2$, $M(K) = \frac{\pi}{2}L(K)$ and
 $E\{V(A \oplus \check{K})\} = V(A) + \frac{L(K)}{8}S(A) + \frac{M(A)}{2\pi}A(K)$
 $E\{S(A \oplus \check{K})\} = S(A) + \frac{M(A)L(K)}{4} + 2A(K)$
(18)

For $A \subset R^3$ and for $K \subset R$ (for instance the segment: K = I)

Morphological measurements

$$E\{V(A \oplus \check{K})\} = V(A) + \frac{1}{4}S(A)$$
(19)

Steiner Formulae

For
$$A \subset R^3$$
 and for $K \subset R^3$
 $E\{V(A \oplus \check{K})\} = V(A) + \frac{M(K)}{4\pi}S(A) + \frac{M(A)}{4\pi}S(K) + V(K)$
 $E\{S(A \oplus \check{K})\} = S(A) + \frac{M(A)M(K)}{2\pi} + S(K)$ (17)
 $E\{M(A \oplus \check{K})\} = M(A) + M(K)$
More Paristed (Instate) 2000
Constraints 2000
Constr

S

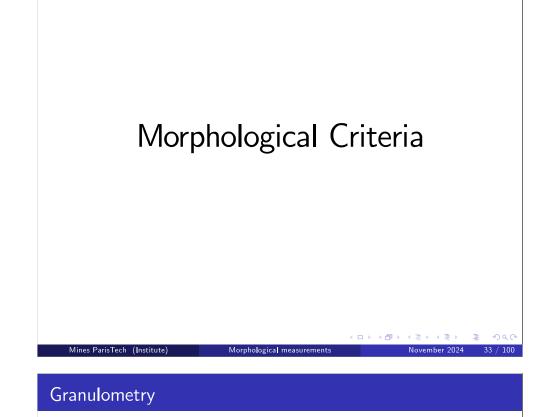
3

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

November 2024

29 / 100

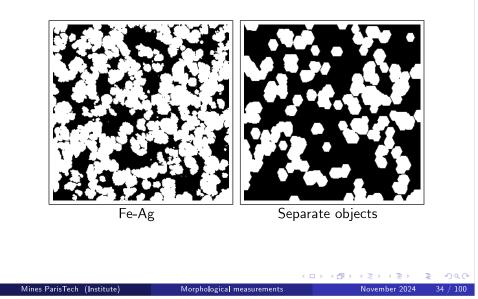


Size Distribution

- diameters of de cavities
- crack lengths
- Areas of objects
- Any increasing criterion $W: A \subset B \Longrightarrow W(A) \le W(B)$

Access from 1D or 2D slices (spherical shape, or at least convex) Size Distribution of any media (including connected networks) by **morphological opening** (erosion followed by a dilation) by convex structuring elements

Granulometry



Granulometry

Axiomatic of granulometries

Definition (G. Matheron) A granulometry is a family of set transformations Φ_{λ} depending on a positive parameter λ (the size), satisfying the following properties:

i) $\Phi_{\lambda}(A) \subset A$ (Φ_{λ} is anti-extensive)

ii) if $A \subset B$, $\Phi_{\lambda}(A) \subset \Phi_{\lambda}(B)$ (Φ_{λ} is increasing)

iii) $\Phi_{\lambda} \circ \Phi_{\mu} = \Phi_{\mu} \circ \Phi_{\lambda} = \Phi_{\lambda \lor \mu}$ (absorption for the composition)

As a consequence of axiom iii), applied to $\lambda = \mu$, the transformation Φ_{λ} must be **idempotent:**

$$\Phi_{\lambda} \circ \Phi_{\lambda} = \Phi_{\lambda}$$

- 32

イロト 不得 トイヨト イヨト

Granulometry

Size distribution by opening by convex sets

Openings of the set A by λK , ($\lambda > 0$), for a **convex set** K, noted K_{λ} :

$$\Phi_{\lambda}(A) = (A \ominus \check{K}_{\lambda}) \oplus K_{\lambda}$$

Transformation to be applied to any set (isolated particles, or connected medium):

$$\Phi_{\lambda}(A) = A_{\mathcal{K}_{\lambda}} = \{ x \in A; \exists y \in A \text{ with } \mathcal{K}_{\lambda,y} \subset A \}$$
(21)

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

November 2024

 $A_{K_{\lambda}}$ is the set of points of A covered by K_{λ} translated in space, while remaining included in A

Morphological measurements

Granulometry

Mines ParisTech (Institute)

Size distribution by closing by convex sets

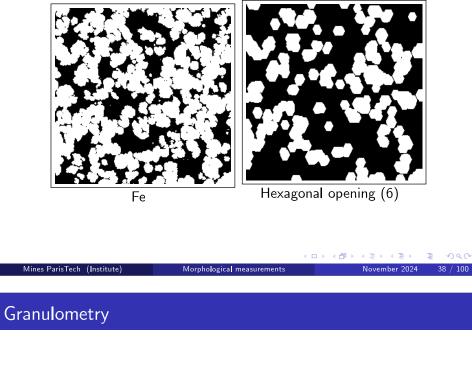
The closing operation is dual of the opening:

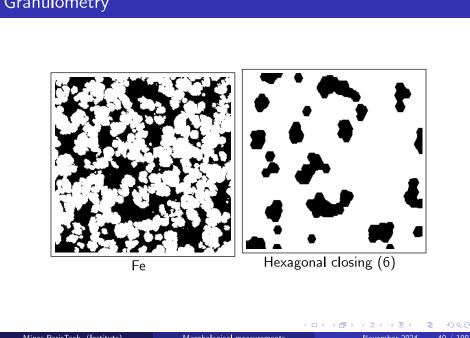
$$A^{K_{\lambda}} = (A \oplus \check{K}_{\lambda}) \ominus K_{\lambda} = (\Phi_{\lambda}(A^{c}))^{c}$$
(22)

3

By closing A by compact convex sets K, size distribution of the set A^c . The size distribution for a given granulometry is obtained from measures: counting numbers, or measure of a volume in the space R^n

Granulometry





Two dimensional Granulometry

Openings or closings, followed by the measurement of an area (or volume for extension to 3D)

Cumulative measure distribution, from openings by convex structuring elements:

$$G(\lambda) = \frac{P\{x \in A\} - P\{x \in A_{K_{\lambda}}\}}{P\{x \in A\}}$$
(23)

From equation (23) are deduced in R^2 the moments of the area S of the largest K containing x and included in A. For a disc with radius r:

Morphological measurements

$$E\{S\} = 2\pi \int_0^\infty (1 - G(r)) r \, dr$$

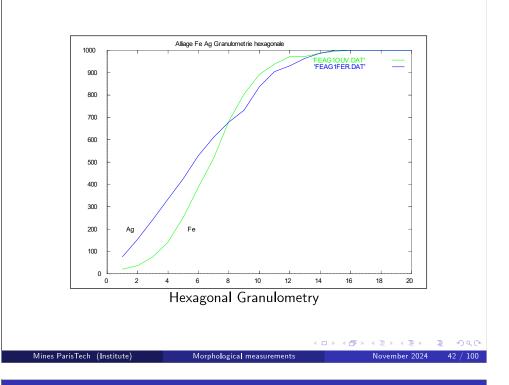
$$E\{S^n\} = 2n\pi \int_0^\infty (1 - G(r)) r^{2n-1} \, dr$$
(24)

Mines ParisTech (Institute

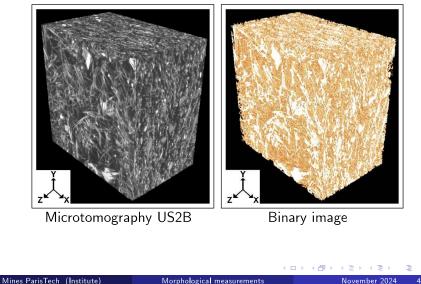
November 2024

3D Granulometry of a fibrous medium

Project Silent Wall. Peyrega Ch., Jeulin D., Delisée Ch., Malvestio J. (2009) 3D Morphological modelling of a random fibrous network, Image Analysis and Stereology, Vol. 28, pp.129-141



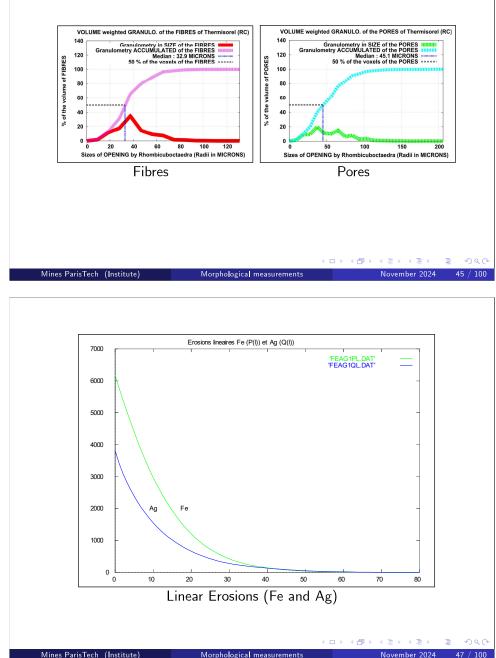
3D Granulometry of a fibrous medium



3

・ロト ・ 日本 ・ 日本 ・ 日本

3D Granulometry of a fibrous medium



Linear granulometry

Available from linear erosions (depends on the orientation of /) For a stationary random set A

$$P(I) = P\{I \subset A\}; Q(I) = P\{I \subset A^c\}$$

P(I) and Q(I) have a derivative. We have:

$$P\{x \in A_{I}\} = P(I) - IP'(I)$$
(25)

$$P\{x \in A_{l}^{c}\} = Q(l) - IQ'(l)$$
(26)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

November 2024 46 / 100

since -P'(I) and -Q'(I) are specific numbers of intercepts of A and of A^{c} , with lengths larger than I

Morphological measurements

Linear granulometry

Mines ParisTech (Institute)

 $P\{x \in A_l\}$ gives access to the **measure distribution** of intercepts, G(l)(with the density g(I) when it exists), every chord having a weight proportional to its length , (the probability for x to belong to a chord with length larger than I)

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ = 臣 = のへで

Linear granulometry

Measure Granulometry For A^c (similar result for A after replacing Q(I) by P(I)):

$$1 - G(I) = \frac{Q(I) - IQ'(I)}{Q(0)}$$
(27)

$$g(l) = \frac{lQ''(l)}{Q(0)}$$

Average measure intercept, L^*

Morphological measurements

$$L^* = \frac{2}{Q(0)} \int_0^\infty Q(I) \, dI \tag{28}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

November 2024

49 / 100

Mines ParisTech (Institute)

Linear granulometry

Measure and number Size distributions

Two types of linear size distributions: g(I) is proportional to f(I) and to I (eqs (27,29)). Example $f(I) = a \exp(-aI)$ (exponential distribution), $g(I) = a^2 I \exp(-aI)$ (gamma distribution); then, $\overline{L} = \frac{1}{2}$ and $L^* = \frac{2}{2}$

For applications, choice of the most appropriate type of distribution

Linear granulometry

When -Q'(0) is finite (specific number of intercepts), **number size distribution of intercepts** \rightarrow counting the intercepts after length classification

Distribution function F(I) and density (histogram) f(I):

$$1 - F(I) = \frac{\text{number of d'intercepts with length} \ge I}{\text{total number of intercepts}} = \frac{Q'(I)}{Q'(0)}$$

$$f(I) = \frac{-Q''(I)}{Q'(0)}$$
Average "number" intercept \overline{L}

$$\overline{L} = \frac{-Q(0)}{Q'(0)}$$
(30)

Size distribution of objects

For isolated objects, size distribution obtained from the distribution of a measurement (area,diameter) made on every object (and correction of edge effects by means of the Miles-Lantuejoul correction)

∃ \(\lambda\) \(\lambda\) \(\lambda\)

イロト イポト イヨト イヨト

Size distribution of spheres

Estimation of the distribution of diameters of a population of spheres in R^3 from data obtained on sections: basic stereological problem ("unfolding problem")

Sometimes used for estimating a size distribution of objects with a non spherical shape (grains of a polycrystal seen in section)

Basic relations between properties in R^3 (number of spheres $N_V^{(3)}$ and distribution of diameters in number $F_3(D)$) and induced properties in R^2 (average number of discs $N_V^{(2)}$, distribution of diameters in number $F_2(D)$) and in R (average number of chords $N_V^{(1)}$ and distribution of lengths in number $F_1(D)$)

Morphological measurements

Spatial Arrangement

Mines ParisTech (Institute)

Scales, clusters, or preferential associations between component of a microstructure:

- covariance
- distance function
- anisotropy

Size distribution of spheres

From R to R^3 :

$$N_{V}^{(3)} = \frac{2}{\pi} N_{V}^{(1)} F_{1}^{\prime\prime}(0)$$

$$1 - F_{3}(D) = \frac{1}{D} \frac{F_{1}^{\prime}(D)}{F_{1}^{\prime\prime}(0)}$$

$$i + 1 \ (i = 1, 2);$$
(31)

From dimension *i* to i + 1 (i = 1, 2):

$$N_{V}^{(i+1)} = \frac{N_{V}^{(i)}}{\pi} \int_{0}^{\infty} \frac{F_{i}'(h)}{h} dh$$

$$N_{V}^{(i+1)}(1 - F_{i+1}(D)) = \frac{N_{V}^{(i)}}{\pi} \int_{D}^{\infty} \frac{F_{i}'(h)}{\sqrt{h^{2} - D^{2}}} dh$$
(32)

Specific numerical techniques (regularization of an ill-posed problem)

Morphological measurements

Spatial Arrangement: Covariance

Mines ParisTech (Institute)

Covariance C(x, x + h) of a random set A

$$C(x, x+h) = P\{x \in A, x+h \in A\}$$
(33)

For a **stationary** random set, C(x, x + h) = C(h)If in addition A is **ergodic**, C(h) is estimated from the volume fraction of $A \cap A_{-h}$:

$$C(h) = V_V(A \cap A_{-h}) = V_V(A \ominus \check{h})$$
(34)

November 2024 55 / 10

ヘロト 人間ト ヘヨト ヘヨト

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Morphological measurements

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

November 2024

Spatial Arrangement: Covariance

Estimation of the covariance from images (like plane sections) inside a mask X, by means of the **geometrical covariograms** of the sets $A \cap X$ ($K_{A \cap X}(h)$) and X ($K_X(h)$):

$$C^{*}(h) = \frac{A((A \cap X) \cap (A \cap X)_{-h})}{A(X \cap X_{-h})} = \frac{K_{A \cap X}(h)}{K_{X}(h)}$$
(35)

Spatial Arrangement: Covariance

Properties of the covariance of a random set in R^3

Morphological measurements

- $C(0) = P\{x \in A\} = p$
- C(h) = C(-h)

Mines ParisTech (Institute

- $\frac{2}{\pi} \int_{0}^{2\pi} \left(\frac{\partial C(h, \alpha)}{\partial h}\right)_{h=0} d\alpha = S_V(A)$ when the partial derivative remains finite.
- If C(0) − C(h) ≃ h^β for h → 0, with 0 < β < 1, the boundary of A has a non integer Haussdorf dimension d = 3 − β (A is a fractal set)
- C(∞) = p² (the covariance of a stationary and ergodic random set reaches a sill)

Spatial Arrangement: Covariance

Result of the erosion by $\{x, x + h\}$, which depends on vector h (by its modulus |h| and its orientation α) characteristic of the size and of the arrangement of connected objects building the set $A \rightarrow$ variations of C(h) with h

Covariance Q(h) of A^c (with Q(0) = q = 1 - p):

$$Q(h) = P\{x \in A^{c}, x + h \in A^{c}\} = 1 - 2C(0) + C(h)$$
(36)

The covariance characterizes simultaneously the two sets (A, A^c) , while the two granulometries of (A, A^c) bring additional information

Morphological measure

Spatial Arrangement: Covariance

Mines ParisTech (Institute

Properties of the covariance of a random set in R^3

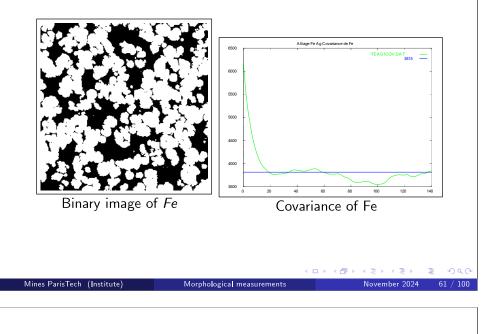
- For the orientation α, C(h) reaches a sill at the distance a_α, or range (characteristic length scale of the structure): C(a_α) = C(∞) = V_V(A)² = p²
- Presence of various scales → inflections of the experimental covariance (nested structures, like clusters, clusters of clusters, etc.)
- Periodicity in images \rightarrow periodicity of the covariance
- Anisotropic structures studied by roses of directions, from the derivative of the covariance in h = 0

Mines ParisTech (Institute)

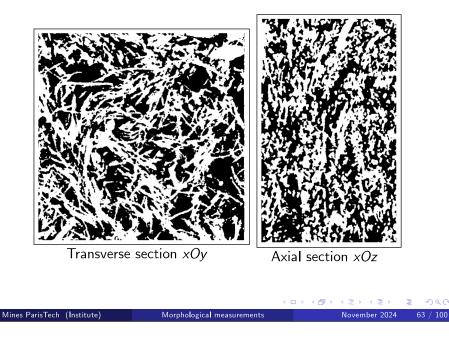
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 - ∽0.00

lovember 2024 59 / 100

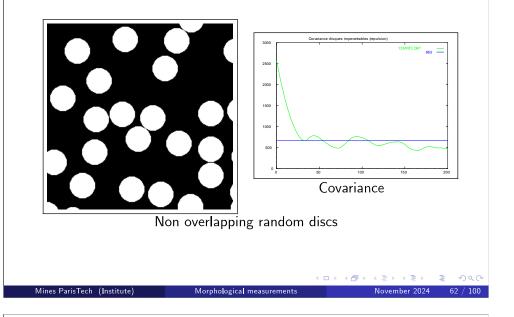
Spatial Arrangement: Covariance



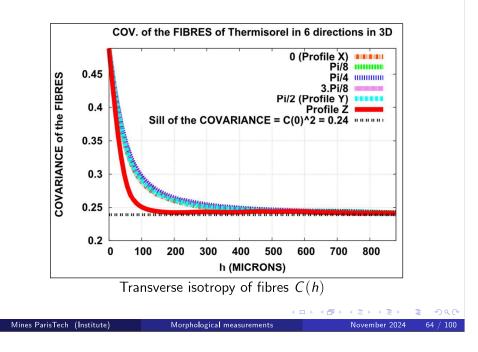
Covariance of a fibrous medium



Spatial Arrangement: Covariance



Covariance of a fibrous medium



Random Functions: Characterization by the spatial law

RF Z(x) $(E \rightarrow \overline{R})$ characterized for all $m \in N$ by (Kolmogorov):

$$F(x, z) = P\{Z(x_1) < z_1, ..., Z(x_m) < z_m\}$$

where $x \in E^m$ and $z \in \overline{R}^m$ (37)

4 **11 N 4 11 N 4 11 N 4 1**1

- For $x = x_1$ and $x = \{x_1, x_2\}$, uni and bivariate distributions
- restriction to countable sets of points $\{x_1, x_2, ..., x_m\}$ in the space E

Random Functions: Characterization by moments

To study physical properties of random media, use of the correlation functions

Central correlation function deduced from the set covariance in the case of a two phase composite with properties $Z = Z_1$ when $x \in A$ and $Z = Z_2$ when $x \in A^c$:

$$\overline{W}_{2}(h) = E\{(Z(x+h) - E(Z))(Z(x) - E(Z))\}$$

$$= (Z_{1} - Z_{2})^{2}(C(h) - p^{2}) = (Z_{1} - Z_{2})^{2}(Q(h) - q^{2})$$
(40)

Useful to solve sampling problems (estimation variance and statistical RVE) for any RF Z(x)

Random Functions: Characterization by moments

Covariance C(x, x + h) and central correlation function $\overline{W}_2(x, x + h)$

$$C(x, x + h) = E\{Z(x)Z(x + h)\}$$

$$\overline{W}_2(x, x + h) = E\{Z(x)Z(x + h)\} - E\{Z(x)\}E\{Z(x + h)\}$$
(38)

Central correlation function of order $m \overline{W}_m(x)$, with $x \in E^m$:

$$\overline{W}_m(x) = E\{(Z(x_1) - E\{Z(x_1)\})...(Z(x_m) - E\{Z(x_m)\})\}$$
(39)

Integral range and estimation variance

Stationary RF Z(x), with expectation $E\{Z\}$, and point variance D_7^2

- Size of a RVE (representative volume element) for Z(x)
- variance $D_Z^2(V)$ of the average of Z(x) in the volume V $(\bar{Z}(V) = \frac{1}{V} \int_V Z(x) dx)$:

$$D_Z^2(V) = \frac{1}{V^2} \int_V \int_V \overline{W}_2(x-y) \, dx dy, \qquad (41)$$

= nac

For V ≫ A₃ (for finite A₃), to first order in 1/V, A₃ being the Integral Range

$$D_Z^2(V) = D_Z^2 \frac{\Lambda_3}{V}$$
$$A_3 = \frac{1}{D^2[Z]} \int_{R_3} \overline{W}_2(h) \ dh$$

Mines ParisTech (Institute

500

A D N A B N A B N A B N

Mines ParisTe

Mines ParisTech (Institute)

Mines ParisTech (Institute

Morphological measurements

Statistical RVE

Volume V made of $k = V/A_3$ subvolumes in which the average values of the RF Z(x) are uncorrelated random variables

Absolute error ϵ_{abs} and relative error ϵ_{rela} of the average value obtained for n independant realizations of volume V, deduced from the confidence interval (to 95%)

$$\epsilon_{abs} = \frac{2D_Z(V)}{\sqrt{n}}; \ \epsilon_{rela} = \frac{\epsilon_{abs}}{E\{Z\}} = \frac{2D_Z(V)}{E\{Z\}\sqrt{n}}$$
(42)

RVE: volume V (obtained for instance for n = 1 realization in the ergodic case) for which $E\{Z\}$ is estimated with a given relative precision (for instance $\epsilon_{rela} = 1\%$). Applied to the volume fraction (with $Z(x) = 1_A(x), E\{Z\} = p$ and $D^2[Z] = p(1-p)$, to a stress field $\sigma(x)$ or a strain field $\varepsilon(x) \rightarrow \mathbf{RVE}$ of effective properties

Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D. (2003). Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of solids and structures, 40(13-14), 3647-3679 Mines ParisTech (Institute Morphological measurements

Spatial Agencement: Cross Covariances

Multicomponent random set with components A_i (i = 1, 2, ..., m)

Separate study for every covariance $C_{ii}(h)$, and mutual associations from the cross covariances $C_{ii}(h)$:

$$C_{ij}(x, x+h) = P\{x \in A_i, x+h \in A_j\}$$
(43)

Stationary and ergodic multicomponent random set:

$$C_{ij}(h) = V_V(A_i \cap A_{j-h}) \tag{44}$$

Statistical RVE

Mines ParisTech (Institute

Example: $2\sigma_E(V)$ and $2\sigma_E(S)$ (\rightarrow interval of variation $q \pm 2\sigma$ of q = 1 - p expected for observations) of a cube with volume $V = L^3$ and of a square of area $S = L^2$ for a Boolean model of spheres with diameter a with a/L = 0.1

q	0.05	0.1	0.2	0.3	0.5
$2\sigma_E(V)$	0.0054	0.00865	0.0134	0.0167	0.02
$2\sigma_E(S)$	0.021	0.032	0.049	0.0603	0.071

Morphological measure

Spatial Agencement: Cross Covariances

Estimation of cross covariances image analysis from cross geometrical covariograms of the sets $A_i \cap X$ ($K_{A \cap X}(h)$) and X ($K_X(h)$):

$$C_{ij}^{*}(h) = \frac{A((A_{i} \cap X) \cap (A_{j} \cap X)_{-h})}{A(X \cap X_{-h})} = \frac{K_{A_{i} \cap X, A_{j} \cap X}(h)}{K_{X}(h)}$$
(45)

Mines ParisTech (Institute

Spatial Agencement: Cross Covariances

Every $C_{ij}(h)$ brings its own information on the mutual association of the pair (A_i, A_j) .

Morphological measurements

Morphological properties of cross covariances similar to those of covariances (case when the A_i build a space tessellation, such as $P\{x \in A_i \cap A_i\} = 0$)

Spatial Agencement: Cross Covariances

For orientation α , $C_{ij}(h)$ reaches its sill at distance $a_{ij\alpha}$, or **range**: $C_{ij}(a_{ij\alpha}) = C_{ij}(\infty) = p_i p_j$ For $h \ge a$ the events $\{x \in A_i\}$ and $\{x + h \in A_j\}$ are uncorrelated

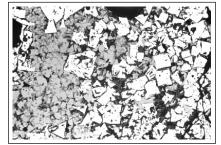
Spatial Agencement: Cross Covariances

Properties of the cross covariance of a random set in R^3

Morphological measure

イロト 不通 ト イヨト イヨト

∃ <200</p>



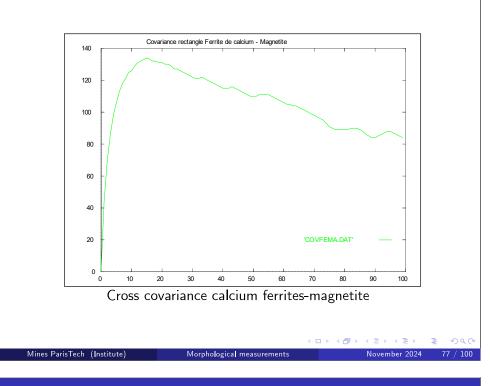
Micrograph of an iron ore sinter (with decreasing reflecting power: Hematite, magnetite, calcium ferrites , slag, pores)

Mines ParisTech (Institute

・ロト ・ 同ト ・ ヨト ・ ヨト

Mines ParisTech (Institute

ヘロト 人間ト ヘヨト ヘヨト



Spatial Agencement: Cross Covariances

Characterization of multicomponent textures from surface areas of contact

• Indexes of coordination $i_c(ij)$, symmetrical in i and j:

$$i_c(ij) = \frac{S_{V_{ij}}}{S_{V_i}} \frac{S_V}{S_{V_i}}$$
(47)

with $S_V = \sum_{j=1}^{j=m} S_{V_j}$ (total surface area of contact of the medium)

• Compare p_{ij} to $\frac{1}{m-1}$ and $i_c(ij)$ to $\frac{m}{m-1}$, to test a mutual attraction or a repulsion between components i and j

Spatial Agencement: Cross Covariances

Characterization of multicomponent textures from surface areas of contact

Behavior in h = 0 of the cross covariances $C_{ij}(h) \rightarrow$ specific surfaces area of contact $S_{V_{ij}}$:

Distribution of contacts of the component A_i with the components A_j (j ≠ i), or transition probability from A_i to A_j for a random point over ∂A_i:

$$p_{ij} = \frac{S_{V_{ij}}}{S_{V_i}} \tag{46}$$

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

= nac

In general,
$$p_{ij
eq} p_{ji}$$
 , as $S_{V_i}
eq S_{V_i}$

Spatial arrangement from distance distributions

Clustering

- Distribution of distances of any point *x* outside objects to their boundary (estimated by the volume fraction measurements after dilation by balls with increasing radius)
- Distances of any point x located in one component (phase of a composite) to boundaries of another component (cracks)
- Construction of zones of influence of objects (or Voronoï cells); estimation of the distribution of its area (or of its inverse, equivalent to an intensity) → 2D-3D transition to be done from models

Mines ParisTech (Institute

For a random set A and a ball with radius r, B(r):

$$T(B_x(r)) = P\{x \in A \oplus B(r)\}$$

 $T(B_x(r))$ allows us to estimate the distribution of the random variable R(x, A), or distribution of the first point of contact, where the symbol \lor means the upper bound (sup):

$$R(x, A) = \forall \{r; B_x(r) \subset A^c\}$$
$$F_x(r) = P\{R(x, A) \le r \mid x \in A^c\} = \frac{T(B_x(r)) - T(x)}{1 - T(x)}$$

Morphological measurement

Spatial arrangement from distance distributions

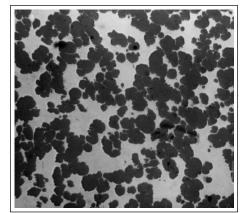


Image of a two-phase alloy Fe (black) Ag (grey)

Morphological measurements

Spatial arrangement from distance distributions

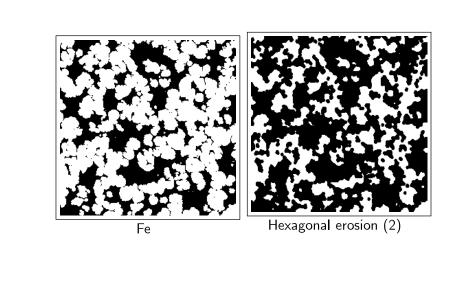
For a stationary random set A,

Mines ParisTech (Institute

$$T(r) = 1 - F(r) = \frac{1 - P\{x \in A \oplus B(r)\}}{1 - p}$$
(48)

The moments of F(r) allow us to summarize this distribution. For a **fractal** random set *A* (with irregular boundaries with non integer dimension *d*), F(r) behaves as r^{β} when $r \to 0$ with $d = n - \beta$

Morphological measur

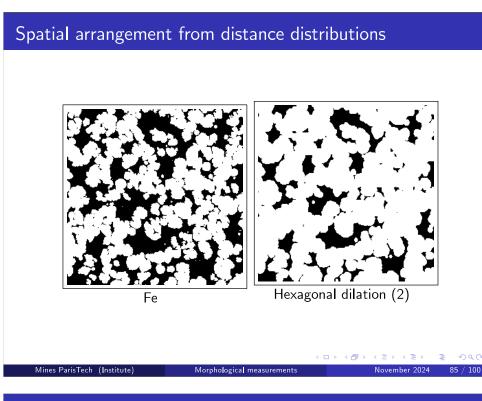


Mines ParisTech (Institute)

3

November 2024

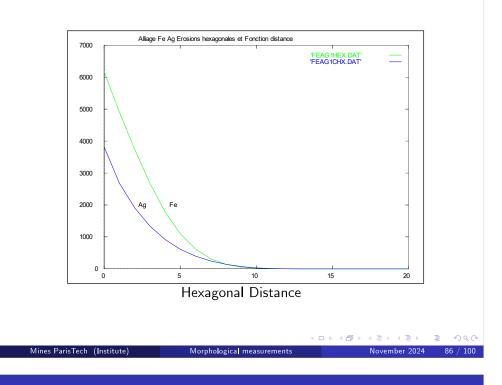
Mines ParisTech (Institute



Spatial arrangement: increasing neighbourhoods

For **multi component systems**, possible generalization of cross-covariances $C_{ij}(h)$ to degenerate components (with dimension d < n), as cracks, boundaries, or points, for which covariances are equal to zero

Comparison of microstructure in neighborhoods with increasing sizes of a given component, to the overall microstructure \rightarrow measurement of specific properties after dilation by balls with increasing radius



Spatial arrangement: increasing neighbourhoods

$$\Phi_j(k,r) = P\{x \in (A_k \oplus B(r)) \cap A_j\}$$
(49)

$$\rho_j(k,r) = \frac{\Phi_j(k,r)}{P\{x \in (A_k \oplus B(r))\} - p_k} \frac{1 - p_k}{p_j}$$
(50)

When $\rho_j(k, r) > 1$, a preferential association is expected between components A_k and A_j , on scale r

For $\rho_j(k,r) < 1,$ a repulsion effect is detected between the two components at this scale

Mines ParisTech (Institute)

3

Morphological measurements

Spatial arrangement: increasing neighbourhoods

The functions $\Phi_i(k, r)$ and $\rho_i(k, r)$ are related to the distributions of distances:

• of a random point x in A_k^c to the boundary of A_k :

$$F(k,r) = P\{d(x,A_k) < r \mid x \in A_k^c\} = \frac{P\{x \in (A_k \oplus B(r))\} - p_k}{1 - p_k}$$
(51)

• of a random point x in A_i to the boundary of A_k :

$$F_{j}(k,r) = P\{d(x,A_{k}) < r \mid x \in A_{j}\} = \frac{\Phi_{j}(k,r)}{p_{j}}$$
(52)

We have

$$\rho_j(k,r) = \frac{F_j(k,r)}{F(k,r)}$$
(53)

Mines ParisTech (Institute

Spatial arrangement: increasing neighbourhoods

Morphological measurements

Distance to	a random point in	Measure
component A_i	crack A_k	$\frac{S_V((A_i \oplus B(r)) \cap A_k)}{S_V(A_k)}$
crack A_k	component A_i	$\frac{V_V((A_k \oplus B(r)) \cap A_i)}{V_V(A_i)}$
points E_k	component A_i	$\frac{A_{A}((E_{k} \oplus B(r)) \cap A_{i})}{A_{A}(A_{i})} $ (54)
(in <i>R</i> ²) component <i>A_i</i> (in <i>R</i> ²)	points E_k	$\frac{N_A((A_i \oplus B(r)) \cap E_k)}{N_A(E_k)}$
Mines ParisTech (Institute)	Morphological measur	< □ ▶ < ⑦ ▶ < 클 ▶ < 클 ▶ 是 の Q ements November 2024 91 / 10

Spatial arrangement: increasing neighbourhoods

For structures in R^3 , probability P estimated by the volume fraction V_V Other information obtained by replacing the measure V_V by other specific properties as the surface area S_V , or the connectivity number N_A

Mines ParisTech (Institute

Spatial arrangement: Anisotropy

Morphological measurement

- Directional Measurements : variation with orientation of the covariance or of the histogram of chord lengths
- Roses of orientation, obtained by counting in the direct space or by directional filtering in the Fourier plane \rightarrow characterization of damage with respect to a coordinate system (orientation off the applied stress, or crystallographic orientation)

Connectivity

Important morphological aspect for the prediction of physical properties of composites with components presenting a high contrast (microcracks, voids)

- Connectivity number N in R^3 : topological measurements describing the overall connectivity of a given medium
- Heterogeneous propagation phenomena, based on paths across a specimen (**percolation** effect) \rightarrow determination of a **geodesic distance** (length of shortest paths)

Morphological measurements

Connectivity: Geodesic Distance

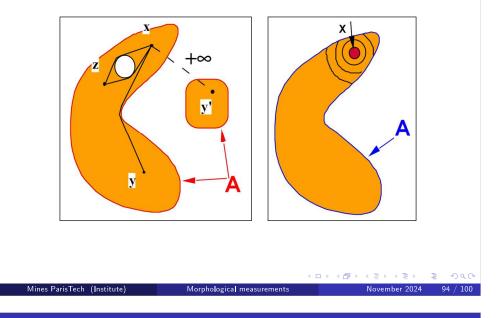
Propagation phenomena, with different propagation velocities in heterogeneous media:

- propagation of light in optics (principle of Fermat)
- sound in acoustics

Mines ParisTech (Institute

- fluid in a porous medium
- diffusion of a constituent
- advance of a crack front

Connectivity: Geodesic Distance



Connectivity: Geodesic Distance

For a valued planar graph, calculation of distances to a source on the valued graph, the **geodesic distance** (or length of shortest paths)

- geodesic distance between W_s and W_d (or length of shortest paths linking the source and the destination)
- distribution of the geodesic distances in the image \rightarrow sequence of propagation of the front and estimation of the **tortuosity** of a network
- extraction of shortest paths connecting W_s and W_d
- Points not be accessed during the propagation are located at the distance $+\infty$ from the source \rightarrow detection of closed pores in a specimen

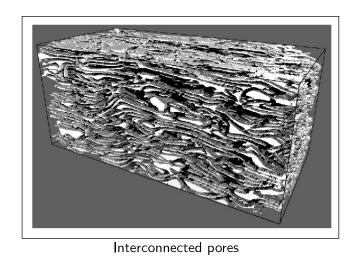
Applications: fracture of polycrystalline graphite, diffusion in polymers and in porous media, fracture of simulated random media at different scales (porous media, polycrystals), fluid flow between rough surfaces, sound propagation in porous media

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Mines ParisTech (Institute)

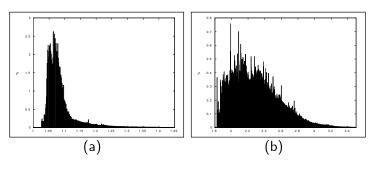
500

Connectivity of a porous medium



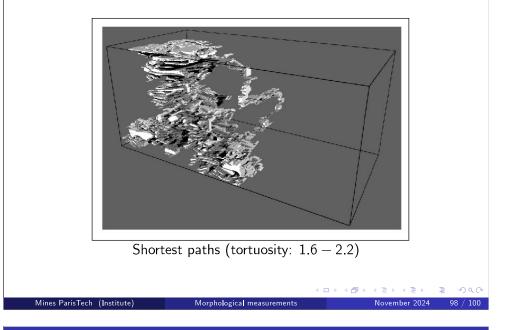
3D serial sections (L. Decker, D. Jeulin, I. Tovena; with CEA) Mines ParisTech (Institute) Morphological measurements November 2024 97 / 1

Connectivity: Geodesic Distance and Tortuosity



Distribution of the tortuosity of paths (cuboctahedron) in the x (a) and y (b) directions

Connectivity of a porous medium: Shortest paths



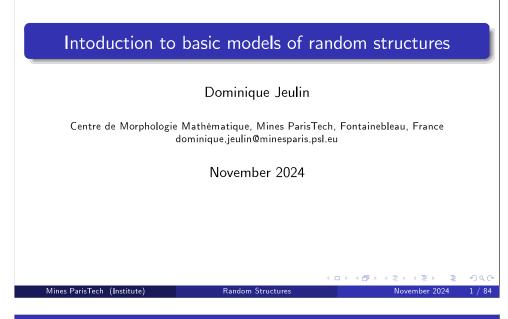
Conclusion

Morphological Characterization of a microstructure \rightarrow large number of parameters according to various criteria

Every type of measurement \rightarrow specific aspect of the structure

- Possible reduction of data by multivariate data analysis → texture learning
- Synthesis from probabilistic models
- Use of these morphological measurements to **predict the macroscopic behavior** of materials (change of scale models)

Introduction to basic models of random structures



Characterization of a random set

- Models derived from the theory of Random Sets by G.
 MATHERON
- For a random closed set *A* (RACS), characterization by the **CHOQUET capacity** *T*(*K*) defined on the compact sets *K*

$$T(K) = P\{K \cap A \neq \emptyset\} = 1 - P\{K \subset A^c\} = 1 - Q(K)$$

• In the Euclidean space *Rⁿ*, CHOQUET capacity and **dilation operation**

$$T(K_x) = P\{K_x \cap A \neq \emptyset\} = P\{x \in A \oplus \check{K}\}$$

3

Modelling random media

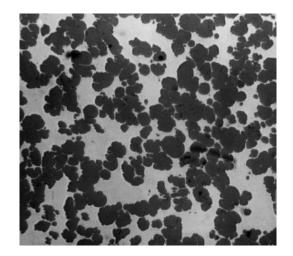
In materials, geological and biological structures: heterogeneous properties at various scales \rightarrow **probabilistic approach** \rightarrow estimation of spoiled or missing data, or physical properties of heterogeneous media

- Random structure characterization
- Introduction of the **variability** by random morphological models at the **micro scale**
- Prediction of the average **macroscopic** response of random media from their microstructure

Random Structures

Binary Morphology (Fe-Ag)

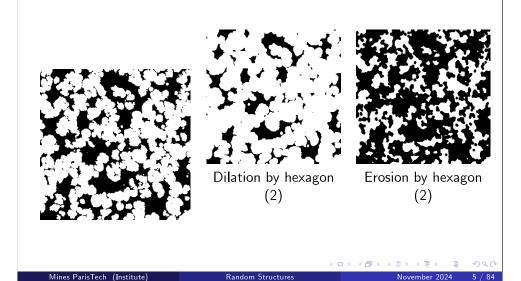
Mines ParisTech (Institute)



◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

November 2024

Basic Operations of Mathematical Morphology



Morphological interpretation

Experimental estimation of T(K) by image analysis, using realizations of A, and dilation operation

- General case: several realizations and estimation of a frequency for every point *x*
- For a stationary random set, $T(K_x) = T(K)$;
- For an **ergodic** random set, T(K) estimated from a single realization

$$T(K)^* = P\{x \in A \oplus \check{K}\}^* = V_V(A \oplus \check{K})^*$$

Every compact set K (points, ball...) brings its own information on the random set A

Morphological interpretation

Every compact set K brings its own information on the set A

• $K = \{x\}$ $T(x) = P\{x \in A\}$ $\ln R^3 T(x) = p = V_V(A)$ • $K = \{x, x + h\}$ $T(x, x + h) = P\{x \in A \cup A_{-h}\}$ $Q(x, x + h) = P\{x \in A^c \cap A^c_{-h}\}$

Q(x, x + h) is the covariance of A^c . It depends only on h for a stationary random set.

Random Structures

Useful to study the spatial distribution of *A*, to measure its scale (correlation length, integral range) or its anisotropy

Morphological interpretation

Spatial law of A

Mines ParisTech (Institute

• $K = \{x_1, x_2, ..., x_n\}$

$$T(K) = 1 - P\{x_1 \in A^c, x_2 \in A^c, ..., x_n \in A^c\}$$

- Cannot completely characterize the RACS A: T(K) = 0 for a stationary point process... (→ use of B(r), closed ball with radius r, undenumberable set of points)
- Can be used to estimate bounds of the effective physical properties

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Characterization of a random model

- The CHOQUET capacity of a RACS is equivalent to the **distribution function of a random variable**
- Two models (RACS, usc RF, lsc RF) with the same functional T(K), T(g), P(g) cannot be distinguished (theoretically as well as experimentally)
- The functional T(K), T(g), P(g) connects theory and experimentation; it is used to estimate the parameters of a model and to test its validity
- Possible predictive implementation (T(K) for K not used during the identification step). Examples: 3D properties deduced from 2D observations (stereology); change of support by ∨ or ∧ in the case of a change of scale in fracture statistics

Random Structures

General properties of the proposed models

- Most random structure models defined in the **Euclidean space** R^n :
 - more general than stochastic processes limited to the 1D space *R*, where the order relation is used
 - different from discrete models defined on a grid, even if the discrete counterpart of the euclidean models is easily defined
- Models depending on a few number of parameters, not to ask too much from the available data, and for realistic experimental identification and test

Calculation of the CHOQUET capacity

For a given model, the functional T is obtained:

- by theoretical calculation
- by estimation
 - on simulations
 - on real structures (possible estimation of the parameters from the "experimental" T , and tests of the validity of assumptions)

Point Processes

Mines ParisTech (Institute

Most simple kind of random structure \rightarrow very small defects isolated in a matrix

Random Structures

- Particular RACS \rightarrow Choquet capacity T(K)
- Probability generating function $G_K(s)$ of the random variable N(K) representing the number of points of the process contained in K

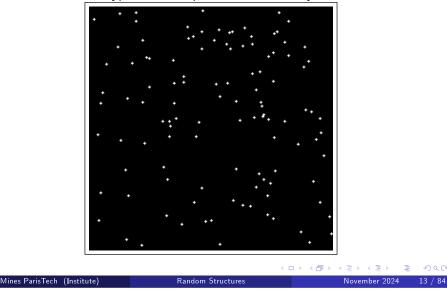
Mines ParisTech (Institute

3

(ロ) (同) (E) (E) (E) (O) (O)

Poisson Point Process

Prototype random process without any order



Poisson Point Process

As a random set, Choquet capacity of the Poisson point process

$$T(K) = 1 - Q(K) = 1 - P_0(K) = 1 - \exp(-\theta(K))$$
 (3)

In the stationary case

$$T(K) = 1 - \exp(-\theta \mu_n(K))$$
(4)

3

Poisson Point Process

Non homogeneous Poisson point process in \mathbb{R}^n with a regionalized intensity $\theta(x)$ ($x \in \mathbb{R}^n$; $\theta \ge 0$): the numbers $N(K_i)$ are **independent** random variables for any family of **disjoint** compact sets K_i N(K) is a Poisson random variable with parameter $\theta(K)$:

$$\theta(K) = \int_{K} \theta(dx) \tag{1}$$

$$P_n(K) = P\{N(K) = n\} = \frac{\theta(K)^n}{n!} \exp(-\theta(K))$$
(2)

Mines ParisTech (Institute)

< □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ ○
 Navember 2024 14 / 84

Cox Point Process

Mines ParisTech (Institute)

• Non homogenous intensity $\theta(x)$ generated by a positive random function (RF), useful to generate multi-scale random processes

Random Structures

- For any realization of this RF, generation of a Poisson point process with intensity $\theta(x)$
- Number of points in a domain *D*: for a given realization, Poisson distribution with average $\theta(D) = \int_D \theta(dx)$
- Conditionnaly to a given realization, or for a deterministic intensity $\theta(x)$, $T(K) = 1 \exp(-\theta(K))$

Cox Point Process

Probabilistic properties of the Cox point process derived from those of the Poisson point process by randomization of the random measure θ Let $\Phi_{\mathcal{K}}(\lambda)$ be the Laplace transform of the positive random variable $\theta(\mathcal{K})$

Proposition

The probability generating fonction of the Cox point process is given by

Random Structures

$$G_{\mathcal{K}}(s) = E\{\exp(\theta(\mathcal{K})(s-1))\} = \Phi_{\mathcal{K}}(1-s)$$
(5)

and the Choquet capacity of the Cox point process is

$$T(K) = 1 - G_K(0) = 1 - E\{\exp(-\theta(K))\} = 1 - \Phi_K(1)$$
(6)

Mines ParisTech (Institute)

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の Q @ Nevember 2024 17 / 24

Boolean Model

The **Boolean model** (G. Matheron) is obtained by implantation of random primary grains A' (with possible overlaps) on Poisson points x_k with the intensity θ : $A = \bigcup_{x_k} A'_{x_k}$ Any shape (convex or non convex, and even non connected) can be used

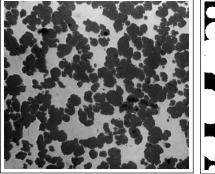
for the grain A'

Random sets and Random Functions Models

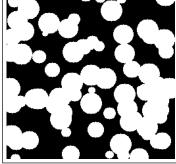
Starting from a point process, more general models, called grain models:

- The Boolean model
- The dead leaves model
- Random function models

Mines ParisTech (Institute) Random Structures



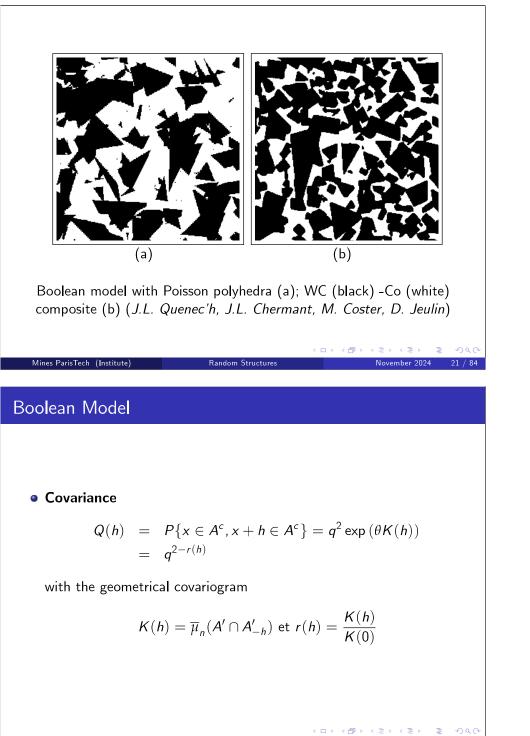
Fe (black) Ag (grey) alloy



Boolean spheres $V_v = 0.5$

November 2024 19 / 84

3



Random Structures

Boolean Model

Choquet capacity, with $q = P\{x \in A^c\}$:

$$T(K) = 1 - Q(K) = 1 - \exp\left(-\theta\overline{\mu}_n(A'\oplus\check{K})\right) = 1 - q \frac{\overline{\mu}_n(A'\oplus\check{K})}{\overline{\mu}_n(A')}$$
(7)

The number of primary grains hit by K follows a Poisson distribution with average $\theta \overline{\mu}_n(A' \oplus \check{K})$

Ex.: Covariance, Three points probability...

Percolation threshold obtained from simulations: 0.2895 ± 0.0005 for spheres with a single diameter

Random Structures

Boolean Model

Mines ParisTech (Institute)

• Three points Probability

$$Q(h_1, h_2) = P\{x \in A^c, x + h_1 \in A^c, x + h_2 \in A^c\} \\ = \exp\left(-\theta \overline{\mu}_n (A' \cup A'_{-h_1} \cup A'_{-h_2})\right) \\ = q^{3-r(h_1)-r(h_2)-r(h_2-h_1)+s(h_1,h_2)}$$

with

$$s(h_1, h_2) = rac{\overline{\mu}_n(A' \cap A'_{-h_1} \cap A'_{-h_2})}{K(0)}$$

Random Structures

November 2024

November 2024

Boolean Model

- convex primary grains \rightarrow application of the Steiner formula: $\overline{\mu}_n(A' \oplus \lambda \check{K})$ is a polynom with degree k in λ , where K is a convex set in R^k , with coefficients depending on the average Minkowski fonctionnals of A'
- Segment

Mines ParisTech (Institute

$$Q(I) = \exp\left(-\theta\overline{\mu}_n(A'\oplus I)\right) = \exp\left(-\theta(K(0) - IK'(0))\right)$$
$$= q^{1-lr'(0)}$$

Boolean Model: identification

Example of the covariance Q(h)

Random Structures

$$Q(h) = q^{2-r(h)}$$

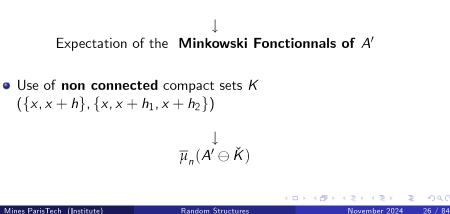
$$r(h) = \frac{K(h)}{K(0)} = 2 - \frac{\log\left(Q(h)\right)}{\log\left(q\right)}$$

One can estimate r(h) from the covariance for any kind of primary grain (convex or non convex)

Boolean Model: identification

Unknowns

- intensity θ
- random set A'
- Use of a family of compact **convex** sets K(I, C(r), H(r), B(r))



Boolean Model: examples of application

- Boolean model with spherical primary grains
 - Fe Ag Alloys (Th. Bretheau, D. Jeulin)
- Boolean model with **Poisson** primary grains
 - Porous media: formed coke (D. Jeulin)
 - WC-Co sintering (J.L. Quenec'h, M. Coster, J.L. Chermant, D. Jeulin)

Models with 2 parameters; identification from the covariance Q(h)

- Bretheau T., Jeulin D. (1989,. Caractéristiques morphologiques des constituants et comportement à la limite élastique d'un matériau biphasé Fe/Ag, Revue de Physique Appliquée, 24(9), 861-869.
- Quénec'h J. L., Chermant J. L., Coster M., Jeulin D. (1996) Example of application of probabilistic models: Determination of the kinetics parameters during liquid phase sintering, Microscopy Microanalysis Microstructures, 7(5-6), 573-580.

Mines ParisTech (Institute)

Random Structures

November 2024 27 / 8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

November 2024

Mines ParisTech (Institute)

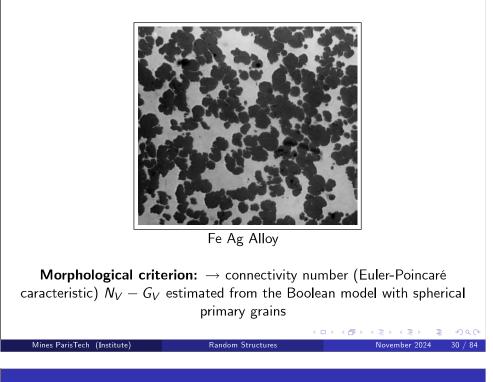
Fe Ag Alloys

- Influence of the **spatial distribution** of Fe and Ag on the macroscopic plastic behaviour of composites obtained from spherical powders (hot isostatic compression)
- Propagation of plastification fronts (Piobert-Lüders shear bands) for some compositions (percolation effect): propagation for continuous **paths** in phase Fe \rightarrow **connectivity problem** in R^3
- Microstructural data: 2D slices \rightarrow 3D data estimated from a probabilistic model in R^3

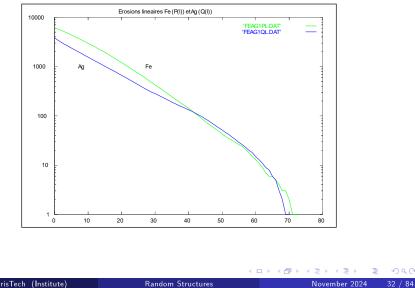
Random Structures

Mines ParisTech (Institute)

- Test of the Boolean model with convex primary grains from Q(I)(exponential function)
- Identification of the model from the Covariance Q(h) (stereological aspect)



Fe Ag Alloys



・ロト ・ 日 ・ ・ 三 ・ ・ 三 ・ ・ つ へ ()

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

November 2024

29 / 84

Mines ParisTech (Institute

Fe Ag Alloys

Spherical primary Grain \downarrow Population of spheres known from K(h) \downarrow Identification from a Boolean Model from its covariance Q(h)

For any sphere with diameter *a*:

$$\mathcal{K}(h) = \frac{\pi a^3}{6} \left(1 - \frac{3}{2} \frac{h}{a} + \frac{1}{2} \frac{h^3}{a^3} \right) = \frac{\pi}{6} \left(a^3 - \frac{3}{2} h a^2 + \frac{1}{2} h^3 \right) \text{ if } h \le a$$

= 0 if $h \ge a$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

November 2024

33 / 84

Fe Ag Alloys

Mines ParisTech (Institute)

Primary Grain: population of spheres

Random Structures

Geometrical covariogram of a population of spheres with random diameters following a discrete distribution $(p_i = P\{a = a_i\})$

$$\overline{K}(h) = \frac{\pi}{6} \left(\sum_{a_i > h} p_i a_i^3 - \frac{3}{2} h \sum_{a_i > h} p_i a_i^2 + \frac{1}{2} h^3 \sum_{a_i > h} p_i \right)$$

continuous diameter distribution f(x) (with cumulative distribution function F(x))

$$\overline{K}(h) = \frac{\pi}{6} \left(\int_{h}^{\infty} a^{3} f(a) \, da - \frac{3}{2} h \int_{h}^{\infty} a^{2} f(a) \, da + \frac{1}{2} h^{3} \int_{h}^{\infty} f(a) \, da \right)$$

Fe Ag Alloys

Spherical primary Grain

 $\left(\frac{\partial^3}{\partial h^3}K(h)\right)_{h=0} = \frac{\pi}{2}$

(true for any population of spheres) \downarrow

$$\theta = \frac{2}{\pi} \left(\frac{\partial^3}{\partial h^3} \log Q(h) \right)_{h=0}$$

 \rightarrow Numerical unstability

Random Structures

Mines ParisTech (Institute)

Fe Ag Alloys

Primary Grain: population of spheres

F(x) deduced from K(h) by an inversion relation, obtained from Q(h) and from $\overline{K}(h)$:

$$\frac{1}{2\pi h} \frac{\partial^2}{\partial h^2} \log Q(h) = \theta(1 - F(h))$$

 \rightarrow **Numerical unstability** \rightarrow use of prior distributions F(r): uniform, exponential, lognormal, Gamma,....

Mines ParisTech (Institute)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

November 2024

Boolean model: Connectivity

Connected morphology for a high intensity θ (possible overlaping grains)

Connectivity number in R^3 for the Boolean model

 $N_V - G_V$, for a 3D Boolean model with isotropic primary grains, with surface area $\overline{S}(A')$, and integral mean curvature $\overline{M}(A')$, (R.E. Miles):

$$N_{V}(A) - G_{V}(A) = q \left(\theta - \theta^{2} \frac{\overline{M}(A')\overline{S}(A')}{4\pi} + \frac{\pi}{6} \theta^{3} \left(\frac{\overline{S}(A')}{4}\right)^{3}\right)$$

Percolation threshold obtained from simulations: 0.2895 ± 0.0005 for spheres with a single diameter

Random Structures

Boolean model

Mines ParisTech (Institute

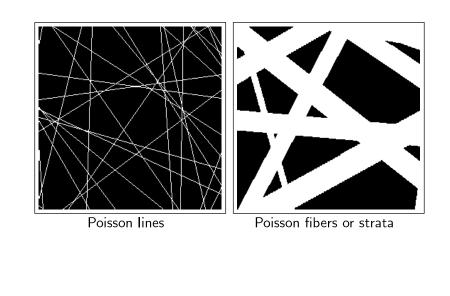
- Point process with a limited extent as a primary grain A', \rightarrow Neyman-Scott point process, with **clusters**
- Anisotropic models
- Replacing the Poisson points by **Poisson varieties** \rightarrow generate random sets models with fiber or strata textures (exemple, random fibers network of wood composites: Ch. Delisée, D. Jeulin, F. Michaud, F. Bos, P. Castera)
- Delisée Ch., Jeulin D., Michaud F. (2001) Caractérisation morphologique et porosité en 3D de matériaux fibreux cellulosiques, C.R. Académie des Sciences de Paris, t. 329, Série II b, pp. 179-185, 2001.

Random Structures

Boolean model: Connectivity

- Model fit in a limited range of composition (9-18% Ag)
- Change of composition obtained by the intensity θ , keeping constant the population of primary grains
- Theoretical calculation of $N_V G_V$ (use of the model in a predictive way)
- Domains of transition of $N_V G_V$ corresponding to changes of the rheological behaviour (behaviour of pure Fe or of pureAg)
- Same type of variation (positions of 0 and of extrema) expected for similar grains \rightarrow possible experimental control on powders with different sizes

Random Structures

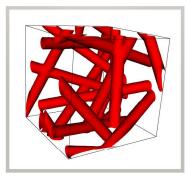


500

Mines ParisTech (Institute

Mines ParisTech (Institute

Boolean model on Poisson lines in 3D



Isotropic Poison fibres

- Faessel M., Jeulin D. (2011) 3D Multiscale Vectorial Simulation of Random Models, Proc. ICS 13, Beijing.
- Schladitz K., Peters S., Reinel-Bitzer D., Wiegmann A., Ohser J., Design of acoustic trim based on geometric modeling and flow simulation for non-woven, Computational Materials Science 38 (2006) 56–66.

 Scheditz K., Peters S., Reinel-Bitzer D., Wiegmann A., Ohser J., Design of acoustic trim based on geometric modeling and flow

 Simulation for non-woven, Computational Materials Science 38 (2006)

 56–66.

 Mines ParisTech (Institute)

 Random Structures

Multi Scale Models - Combination of basic random sets

Starting from the basic models \rightarrow more complex structures, such as superposition of scales, or fluctuations of the local volume fraction p of one phase

Union or intersection of random sets

$$A = A_1 \cap A_2$$

for two **independent** random sets A_1 and A_2

$$P(K) = P\{K \subset (A_1 \cap A_2)\} = P\{K \subset A_1\}P\{K \subset A_2\}$$

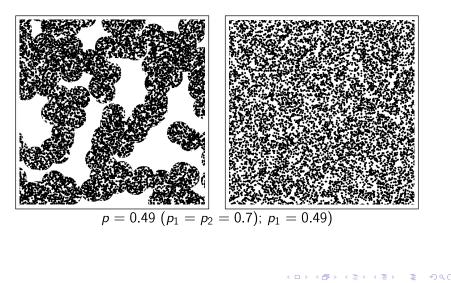
$$p = p_1 p_2$$

Multi Scale Models - Motivation

- Non-homogeneous dispersion of a charge in a matrix: arrangement of aggregates (like carbon black) at different scales
- Prediction of the effective properties of such composites (dielectric permittivity or the elastic moduli), from the properties of the two components (charge and matrix), and their spatial distribution
- General methodology, based on the theory of random sets : morphology summarized and simulated by multi-scale random models accounting for the heterogeneous distribution of aggregates. Identification of the model from image analysis

Random Structures

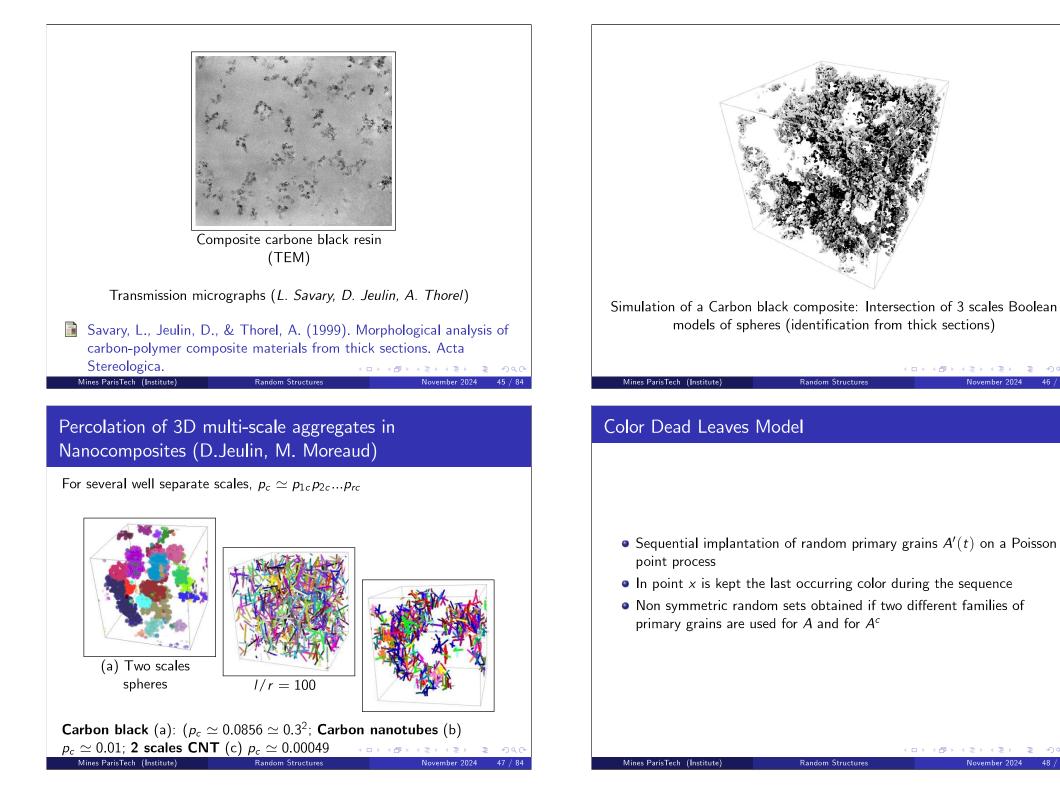
Multi Scale Models - Intersection of random sets



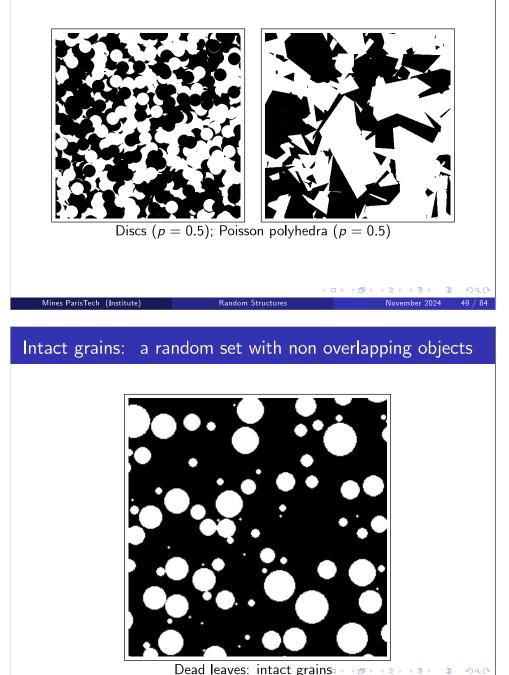
Mines ParisTech (Institute

Random Structures

ヘロト ヘポト ヘヨト ヘヨト



Color Dead Leaves Model



Color Dead Leaves Model

Covariances $C_{ii}(h)$ for primary grains A'_i independent on time t, implanted with a constant intensity θ_i (asymptotic value for $t \to \infty$)

$$C_{ii}(h) = \frac{P_i r_i(h) + 2P_i^2(1 - r_i(h))}{2 - r(h)}$$

where $r_i(h) = K_i(h) / K_i(0)$, $\theta K(h) = \sum_{i=1}^{i=n} \theta_i K_i(h)$ Volume fraction P_i

$$P_i = \frac{\theta_i K_i(0)}{\theta K(0)}$$

Intact grains: a random set with non overlapping objects

Random Structures

- Size distribution of grains of the random packing, given by the pdf $\varphi_{A'_i}$ of intact grains A'_i ($f_i(r)$ in the case of spheres), and volume fraction
- For a single type of convex grain (e.g. sphere with the radius *r*, or polyhedron) and a homogeneous model in *R*^{*n*}

$$P\{x \in A\} = \frac{1}{2^n}$$

volume fraction in space: 0.125 (0.25 in the plane, and 0.5 on the line)

• Multivariate distribution function of the centres of grains building a hard-core point process

Mines ParisTech (Institute)

Mines ParisTech (Institute

Random Structures N

Random Functions and Random Sets

For a **Random Function** Z(x),

- Continuous function too restrictive
- Semi-continuous (upper, lower) for which the changes of supports by \lor or by \land provide random variables:

 $Z_{\vee}(K) = \bigvee_{x \in K} \{Z(x)\}$

 $Z_{\wedge}(K) = \bigwedge_{x \in K} \{Z(x)\}$

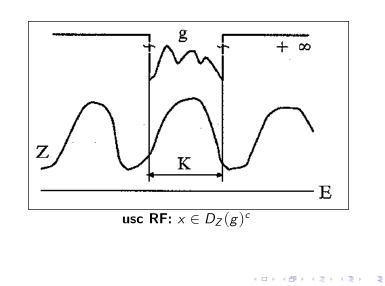
Applications to Fracture Statistics Models based on the weakest link assumption, and to the statistics of extremes

Random Structures

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

53 / 84

Characterization of a random function model



Characterization of a random function model

For an **upper semi continuous random functions (usc RF)**, characterization by the **CHOQUET capacity** T(g) defined on the lower semi continuous functions (lsc) g with compact support K

$$T(g) = P\{x \in D_Z(g)\}; D_Z(g)^c = \{x, Z(y) < g(y - x), \forall y \in K\}$$

Particular case: **spatial law** for a support K made of a finite number of points

Random Structures

Characterization of a random function model

$$g(x_i) = z_i$$
 for x_i ($i = 1, 2, ..., n$), else $g(x) = +\infty$:

$$T(g) = 1 - P\{Z(x_1) < z_1, ..., Z(x_n) < z_n\}$$

1 - T(g) gives the spatial law. For $g(x_i) = z_i$, else $g(x) = +\infty$:

Mines ParisTech (Institute)

$$1 - T(g) = Q(g) = P\{Z(x) < z\}$$

3

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Mines ParisTech (Institute

Mines ParisTech (Institute

For the function g(x) = z if $x \in K$, and $g(x) = +\infty$ if $x \notin K$,

$$D_Z(g)^c = \{x, Z(y) < z, \forall y \in K\}$$

Therefore

Mines ParisTech (Institute

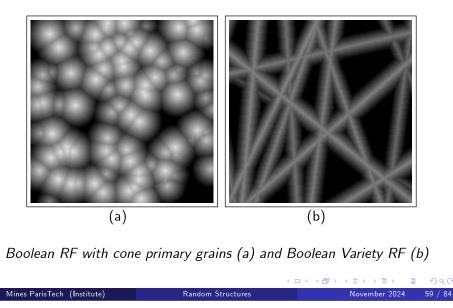
 $T(g) = P\{x \in D_Z(g)\} = 1 - Q(g) = 1 - P\{Z_{\vee}(K) < z\}$

The Choquet capacity gives the probability distribution of the RF Z(x)after a **change of support by** \lor over the compact set K

Random Structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Random Function Models: Boolean RF



Random Function Models Continuous version of random sets models

Boolean RF: random implantation of primary random functions on points of a Poisson point process The \cup operation for overlapping grains is replaced by the supremum (\vee) or by the infimum (\wedge)

Boolean random functions

Mines ParisTech (Institute

Choquet Capacity

Random Structures

Starting from a sequence of primary RF's implanted according to the supremum, the Choquet capacity of the BRF Z(x) is given by:

$$1 - T(g) = Q(g) = \exp\left(-\int_R \overline{\mu}_n(D_{Z'_t}(g)) \ \theta(dt)\right)$$

If $g(x_i) = z_i$ in points x_i (i = 1, 2, ..., n), else $g(x) = +\infty$, we get the spatial law for $A_{Z'_t}(z) = \{x, Z'_t(x) \ge z\}$

$$1 - T(g) = P\{Z(x_1) < z_1, ..., Z(x_n) < z_n\} = \exp\left(-\int_R \overline{\mu}_n (A_{Z'_t}(z_1)_{x_1} \cup ... \cup A_{Z'_t}(z_n)_{x_n}) \theta(dt)\right)$$

Mines ParisTech (Institute)

э.

Boolean random functions

Change of support by \vee

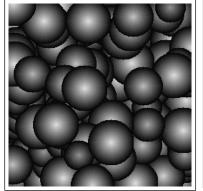
If g(x) = z for $x \in K$ and $g(x) = +\infty$ otherwise (K compact set), we get the change of support of Z(x) by operator \lor over the compact set K $(Z_{\lor}(K) = \lor_{x \in K} \{Z(x)\})$ In that case $D_{Z'_t}(g) = A_{Z'_t}(z) \oplus \check{K}$, and

$$P\{Z_{\vee}(K) < z\} = \exp\left(-\int_{R} \overline{\mu}_{n}(A_{Z'_{t}}(z) \oplus \check{K}) \ \theta(dt)\right)$$

Random Structures

Dead Leaves Random Functions

Mines ParisTech (Institute



Dead Leaves RF with cones

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

November 2024

61 / 84

Dead Leaves Variety

Dead Leaves Random Functions

- Sequential implantation of random primary functions $Z'_t(x)$ on a Poisson point process
- In point x is kept the last occurring value during the sequence

Mines ParisTech (Institute

Dead leaves and powders

Morphological analysis of powders with the help of the SEM, from the dead leaves model \rightarrow possible control of the quality of a product or of a process (*Ivan Terol & D. Jeulin in connexion with Pechiney, Calgon and Isover*)

Random Structures

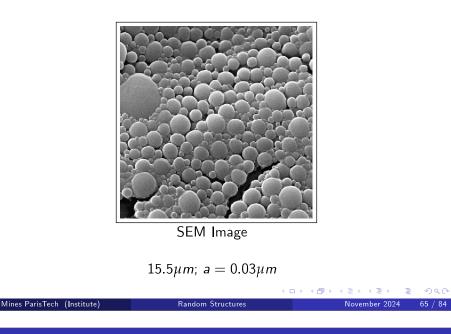
3

イロト イポト イヨト イヨト

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

November 2024

Size distribution of a spherical powder

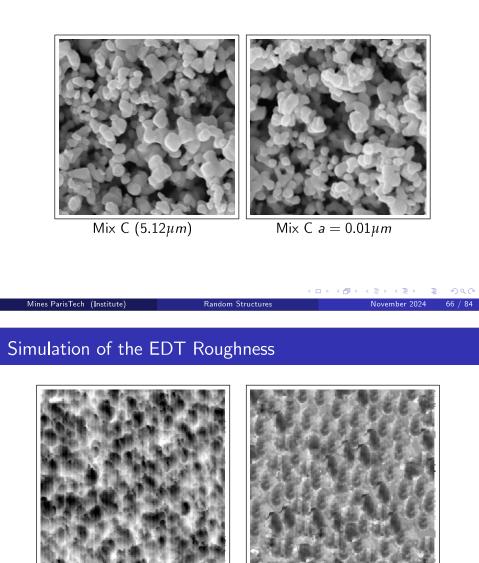


Roughness

Application of random functions and of signal processing, and from numerical image processing → plate users (steel, car industry) and mechanical parts users (tribology)

- **Theoretical models of random surfaces** (boolean functions, sequential alternate RF, reproducing depositions and abrasions)
- Application to steel products : modeling the EDT roughness and its transfer to the plate in skin-pass by simulation of the indentation (*P. Laurenge and D. Jeulin, in relation to IRSID*)

UO2 powder: composition



(IRSID) 1.28x1.28 mm²

Jeulin D., Laurenge P. (1996) Probabilistic model of rough surfaces obtained by electro-erosion, Mathematical Morphology and Its Applications to Image and Signal Processing, 289-296, and the second

Random Structures

Random Structures

November 2024 67 / 8

<□▶ <□▶ < □▶ < □▶ < □▶ = ○ ○ ○ ○

Mines ParisTech (Institu<u>te)</u>

November 2024

68 / 84

The Mosaic model

Mosaic or cell model (Miller, Hori, Matheron) built in two steps:

- random tessellation of space into cells C_i (Voronoï, Johson-Mehl, Poisson...)
- to every cell C_i is affected independently a realization of the random variable Z

イロト イポト イヨト イヨト

Parameters of this model: distribution function of Z and probabilistic properties of the tessellation (separation of the space and of the physical variables)

Random Structures

The Mosaic model

Mines ParisTech (Institute

 $s(|h_1|, |h_2|)$ is the probability that the three points $\{x\}$, $\{x + h_1\}$, $\{x + h_2\}$ belong to the same random cell A' (μ_d : Lebesgue measure in R^d , $\overline{\mu}_d$ its average over the realizations of A', and A'_h obtained by translation of A' by the vector h):

$$s(|h_1|, |h_2|, heta) = rac{\overline{\mu}_d(A' \cap A'_{h_1} \cap A'_{h_2})}{\overline{\mu}_d(A')}$$

. .

The Mosaic model

Centred Covariance \overline{W}_2

 $\overline{W}_2(h) = \overline{C}(h) = E\{(Z(x+h) - E(Z))(Z(x) - E(Z))\} = D^2[Z] r(h)$

where $D^2[Z]$ is the variance of the RV Z, and $r(h) = \frac{K(h)}{K(0)}$ is the probability that two points are in the same cell with the geometric covariogram K(h)

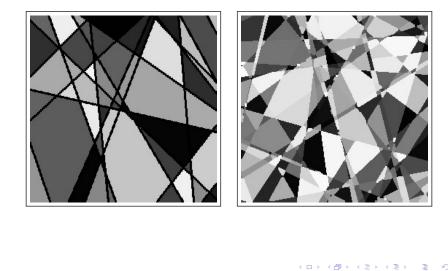
Third order moment \overline{W}_3

Random Structures

$$\overline{W}_{3}(h_{1}, h_{2}) = E\{(Z(x) - E\{Z\})(Z(x + h_{1}) - E\{Z\})(Z(x + h_{2}) - E\{Z\})\} = s(x, y, \theta)E\{(Z - E\{Z\})^{3}\}$$

The Poisson Mosaic model

Mines ParisTech (Institute



The Poisson Mosaic model

Poisson mosaic

Poisson random planes in R^3 (with the intensity λ), and Poisson lines in R^2 (with the intensity λ)

Cells: Poisson polyhedra and Poisson polygons. In R^2 we have:

$$r(h) = \exp(-2\lambda |h|)$$

$$s(h_1, h_2) = \exp(-\lambda (|h_1| + |h_2| + |h_2 - h_1|))$$

Random Structures

Reaction-Diffusion Models

Mines ParisTech (Institute

- Space-time dependent, multi-variate
- Coupling of a physical phenomenon of diffusion (transport) with a physical phenomenon of reaction (generation of species)
- Complex systems: generation of heterogeneous media, self-organization
- Random models: starting from a white noise as initial conditions

L. DECKER and D. JEULIN

Reaction-diffusion RF are solutions of stochastic PDE, modeling competion between chemical reactions between species, and transport by diffusion. \rightarrow Textures reproducing various morphologies (example: interconnected random set obtained by thresholding a simulation of the Ginzburg-Landau model)

Lack of knowledge of probabilistic properties

Decker L., Jeulin D. (1999) 3D spatial time structure simulations by reaction-diffusion models, Acta Stereologica.

Random Structures

Reaction-Diffusion Equations

Mines ParisTech (Institute

- *N* chemical species (components) : 1, 2, ..., *N*
- Variables = concentrations (densities) $Z_1(x, t), Z_2(x, t), ..., Z_N(x, t)$
- Set of N non linear partial differential equations :

$$\frac{\partial Z_i(x,t)}{\partial t} = D_i \Delta Z_i(x,t) + F_i(Z_1, Z_2, ..., Z_N)$$

• Example: for the reaction
$$X_1 + 3 X_2 \stackrel{k_3}{\leftarrow} 2 X_3 + X_4$$

 $F_1(Z_1, Z_2, Z_3, Z_4) = -k_a Z_1 Z_2^3 + k_b Z_3^2 Z_4$

Mines ParisTech (Institute

イロト 不得下 不足下 不足下

Ginzburg-Landau Model

- Reactive system with two species of concentrations $Z_1(x, y, z, t)$ and $Z_2(x, y, z, t)$, having a representation in the complex plane $Z(Z_1, Z_2)$
- Partial differential equations of reaction-diffusion:

$$\frac{\partial Z}{\partial t} = D\Delta Z + A Z - B |Z|^{2} Z$$
with
$$\begin{cases}
Z = Z_{1} + i Z_{2} \\
A = \alpha + i \gamma \\
B = \beta + i \delta
\end{cases}$$

• Genesis of a population of coupled and rotating spirals, delimiting convective cells

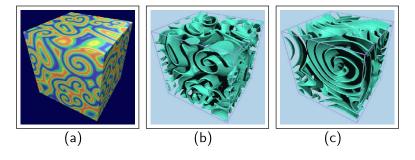
Random Structures

Change of scale in random media

Mines ParisTech (Institute

Applications of the models of random media to the **prediction of the macroscopic behavior of a physical system from its microscopic behavior**.

- Estimation of the effective properties (namely the overall properties of an equivalent homogeneous medium) of random heterogeneous media from their microstructure. From variational principles, **bounds** of the effective properties for linear constitutive equations
- Estimation of the effective behaviour from numerical simulations on random media
- Fracture statistics models



Reaction Diffusion model built from the simulation of Ginzburg-Landau equations; component $Z_1(a)$; binary images obtained by thresholding $(Z_1(x, t) > 0.9)$ after 2000 (b) and 10000 (c) iterations

Random Structures

Probabilistic models of structures

Mines ParisTech (Institute

- Tools of simulation to generate realizations of random and periodic structures (polycristals, multicomponents) → input in a finite element code (L. Decker & D. Jeulin)
- Estimation from 3D simulations of transport properties (permeability, coefficient of macroscopic diffusion) of heterogeneous media (e.g. porous media) (*L. Decker, D. Jeulin & I. Tovena*)
- Decker L., Jeulin D. (2000) Simulation 3D de matériaux aléatoires polycristallins, Revue de Métallurgie, 97(2), 271-175.
- Decker L., Jeulin D., Tovena I. (1998) 3D morphological analysis of the connectivity of a porous medium, Acta Stereologica.

500

- Estimation by FFT of dielectric properties (*D. Eyre, G. Milton, A. Delarue, D. Jeulin*) and of elastic and nonlinear properties (*H. Moulinec, P. Suquet, F. Willot*) of random media
- Delarue A., Jeulin D. (2002) Homogenization of dielectric properties of random nanocomposites, "Matériaux 2002" (Tours, 21-25 October 2002), N-12/02/MM, Paris School of Mines.
- Eyre D. J., Milton G. W. (1999) A fast numerical scheme for computing the response of composites using grid refinement, The European Physical Journal-Applied Physics, 6(1), 41-47.
- Moulinec H., Suquet P. (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites, Comptes Rendus de l'Académie des sciences. Série II.

 Willot F., Pellegrini Y. P. (2008) Fast Fourier Transform Computations and Build-Up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media, Continuum Models and Discrete Systems CMDS11 (ed. D. Jeulin and S. Forest), Presses Mines ParisTech.

- Chiu S. N., Stoyan D., Kendall W. S., & Mecke J. (2013). Stochastic geometry and its applications, John Wiley & Sons.
- Jeulin D. (1991) Modèles morphologiques de structures aléatoires et de changement d'échelle, Thèse de Doctorat d'Etat ès Sciences Physiques, University of Caen.
- Jeulin D. (ed) (1997) Proceedings of the Symposium on the Advances in the Theory and Applications of Random Sets (Fontainebleau, 9-11 October 1996), World Scientific Publishing Company.
- Jeulin D. (2000) Random texture models for material structures, Statistics and Computing, 10, 121-132.
- Jeulin D., Ostoja-Starzewski, M. (eds) (2001) Mechanics of Random and Multiscale Microstructures, CISM Lecture Notes N° 430, Springer Verlag, Wien.
- Jeulin D., Moreaud M. (2007) Percolation of random cylinder aggregates, Image Analysis and Stereology, 26(3), 121-127.
- Jeulin D. (2021) Morphological models of random structures. Springer Mines ParisTech (Institute) Random Structures November 2024 83 / 84

Conclusion

- Random models of structures → simulate complex morphology of microstructures
- Approach, based on measurements obtained by image analysis \rightarrow test and select appropriate models, estimate their parameters
- **Prediction** of **overall physical properties** of materials, and modeling **fracture statistics** behaviour
- Possible use in the synthesis of textures
- Simulations to feed deep learning tools like CNN (Convolutional Neural Network)

Matheron G. (1967) Eléments pour une théorie des milieux poreux, Masson, Paris.

Random Structures

- Matheron G. (1969), Théorie des ensembles aléatoires, Cahiers du Centre de Morphologie Mathématique, fasc. 4, edited by Paris School of Mines.
- Matheron G. (1975) Random Sets and Integral Geometry, J. Wiley.
- Matheron G. (1989) Estimating and Choosing, Springer Verlag, Berlin.
- Serra J. (1982) Image analysis and Mathematical Morphology, vol 1, Academic Press.
- Serra J. (ed.) (1988) Image analysis and Mathematical Morphology, vol 2, Academic Press.

Mines ParisTech (Institute

200