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A B S T R A C T

The simulation of geological facies in an unobservable volume is essential in various geoscience applications.
Given the complexity of the problem, deep generative learning is a promising approach to overcome the
limitations of traditional geostatistical simulation models, in particular their lack of physical realism. This
research aims to investigate the application of generative adversarial networks and deep variational inference
for conditionally simulating channelized reservoir in underground volumes. In this paper, we review the
generative deep learning approaches, in particular the adversarial ones and the stabilization techniques that
aim to facilitate their training. We also study the problem of conditioning deep learning models to observations
through a variational Bayes approach, comparing a conditional neural network model to a Gaussian mixture
model. The proposed approach is tested on 2D and 3D simulations generated by the stochastic process-based
model Flumy. Morphological metrics are utilized to compare our proposed method with earlier iterations
of generative adversarial networks. The results indicate that by utilizing recent stabilization techniques,
generative adversarial networks can efficiently sample complex target data distributions.
1. Introduction

The spatial distribution of lithofacies in the subsurface is needed in
a wide range of geoscientific applications such as petroleum engineer-
ing (Caers, 2005), hydro-geology (Kitanidis, 1997), geophysics (Linde
et al., 2015), in situ recovery of minerals (Langanay et al., 2021),
geothermal resources assessment (Focaccia et al., 2016), carbon dioxide
storage (Zhong and Carr, 2019), where it is required as an input
for the fluid flow simulations of physico-chemical processes. As the
information about these properties is generally scarce and uncertain,
coming from a few well logs or core drillings (‘‘hard’’ data), undirect
geophysical data or geological qualitative information about the area
(‘‘soft’’ data), geoscientists often resort to probabilistic models to ac-
count for possible scenarios and characterize the related uncertainties.
These models need to meet several conditions to be useful in prac-
tice: they need to be fast to generate a great number of geological
facies simulations, honour the available data and exhibit geological
consistency. They also necessitate being easily embedded into a data
assimilation framework to incorporate other sources of data, e.g. fluid
flow simulation results.

Geostatistics has aimed for decades to develop such models (Chilès
and Delfiner, 2012). Object based or boolean models (Chiu et al.,
2013), initially proposed to describe the distribution of grains and
pores on a microscopic scale in reservoir rocks (Matheron, 1966) then
materials (Jeulin, 2021), have been used at a macroscopic scale to
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characterize the main geological bodies, such as channels and lenses
in a reservoir (Dubrule, 1989). While powerful algorithms have been
developed to generate conditional realizations of these models (Lan-
tuéjoul, 2002), the lack of flexibility induced by the parameterization
of the objects makes them difficult to handle and their geological
realism questionable. Later on, plurigaussian models have been pro-
posed (Matheron et al., 1987; Armstrong et al., 2001) to allow for
more flexibility in the simulated bodies. The conditioning is made easy
through the Gibbs sampler (Geman and Geman, 1984) but the inference
of the model is not straightforward. In particular, the separation of
the variability offered by the model between the facies proportions
and the underlying Gaussian random function is not unique and hence
must be cautiously carried out (Armstrong et al., 2001). Moreover,
since the structure of the variability is driven by that of the latter
two components, the realizations may fail to reproduce complex ge-
ological patterns. At the beginning of the century, the multiple-point
approach (Strebelle, 2002) arose as a potential method to generate ge-
ologically realistic conditional realizations. Based on the reproduction
of features found in a training image, this method allows to reproduce
virtually any texture and has been successfully applied to a large variety
of problems (Mariethoz and Caers, 2014).

Meanwhile, sedimentologists have developed numerical models that
attempt to reproduce the physics of the sediment deposition pro-
cesses (Jacod and Joathon, 1971). As an example of such models,
vailable online 3 June 2024
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the Flumy Model (Flumy-Userguide, 2022) generates 3D sedimentary
deposits, taking into account processes such as avulsion, aggradation
and migration. Due to their genetic nature, these models simulate
realistic reservoirs. However, the generation is computer intensive. Fur-
thermore, there exist, at the moment, no satisfactory way to condition
the realizations to hard data (Bubnova, 2018; Troncoso, 2022).

Generative adversarial networks are a class of deep learning algo-
rithms (Goodfellow et al., 2014) that exhibit great results in learning
to generate fake realizations of complex multivariable distributions
hardly distinguishable from real realizations (Arjovsky and Bottou,
2017) and have been applied in generating realistic pictures such as
face images (Brock et al., 2019; Zhu et al., 2020) and art images (Karras
et al., 2019). These models can be, despite these good results, hard
to train, as discussed in Arjovsky and Bottou (2017) and research to
improve the GAN method is still ongoing. Current improvements have
come in the form of changing the architecture to generate images at
different resolutions (Karras et al., 2017; Karnewar et al., 2019) or
to use a Wasserstein loss (Arjovsky et al., 2017; Arjovsky and Bottou,
2017).

Given their seemingly limitless possibilities, geoscientists are using
these models increasingly. One of the first successes in the domain was
the reconstruction of porous media, using a deep convolutional variant
of the algorithm trained on segmented volumetric images of porous
media (Mosser et al., 2017). Reproduction of semi-straight and mean-
dering channelized structures was done with a convolutional Wasser-
stein GAN model (Chan and Elsheikh, 2019). Later research showed the
models could do it while having the flexibility to generate conditional
simulations (Dupont et al., 2018). This method was extended to 3D
volumes with a modified contextual loss (Zhang et al., 2021). Another
method of conditioning applied Bayesian conditions, making use of
Markov chain Monte Carlo (MCMC) methods to sample the posterior
distribution. This method was successfully used with Variational Auto-
Encoders models (Laloy et al., 2017) and later GANs (Laloy et al.,
2018). Additionally, the progressive growing of GAN method also
demonstrated good performances when used to generate geological
facies (Song et al., 2021).

The main objective of this work is to develop a deep generative
model capable of generating subsurface sedimentary facies simulations.
These simulations must be realistic in the sense that they exhibit the
same properties as the original dataset. Second, we want to be able
to condition the model to observations. We present methods that aim
to overcome the limitations of traditional geostatistical techniques and
numerical process-based models. Throughout this paper, we offer a
comprehensive overview of these methods, providing both theoretical
background and practical guidelines. The main contributions of this
paper are: (i) a stable generative architecture that combines recent
development in the stabilization of GANs, namely the multiscale ar-
chitecture trained with the Wasserstein loss with adapted activation
functions; (ii) a new conditioning method to generate simulations given
observations. This new conditioning method leverages a variational
Bayes approach, approximating the conditional posterior using a Gaus-
sian mixture model. Additionally, we propose a Conditional Generative
Adversarial Network (CGAN) framework to modulate the simulated
realizations according to different input parameter values.

We first introduce deep adversarial networks, before expanding on
their improved versions and the architecture details for non-conditional
generation. We then present two variational approaches to solve the
conditioning problem, one from earlier literature using a neural net-
work (Chan and Elsheikh, 2019), and a new method using a Gaussian
Mixture. Both of which can be used in 2D and 3D. In the last section,
we apply this model to generate Flumy-like stationary realizations of
channelized reservoir in 2D and 3D, conditioning them to punctual
data values, as well as showing the applicability of Conditional GANs
(CGANs) to parameterized simulations, before concluding.
2

t

2. Stable stationary GAN

In the past few years, Generative Adversarial networks (Goodfellow
et al., 2014), a sub-class of deep generative learning models, have been
popular for being able to learn the approximation of complex, high-
dimensional probability distribution using a large set of realizations
thereof. These methods have seen a great amount of success in the
generation of images such as pictures of faces and art (Arjovsky and
Bottou, 2017; Brock et al., 2019; Zhu et al., 2020; Karras et al., 2019).
Deep generative models have also increasingly been used to analyse
spatial or spatio-temporal phenomena, making use of the flexibility
of neural networks to learn complex data distributions (Mosser et al.,
2017; Chan and Elsheikh, 2019; Laloy et al., 2018; Sun et al., 2023a;
Liu et al., 2022; Zhang et al., 2022; Chen et al., 2022).

Generative Adversarial networks (GAN) consist of two separate
neural networks, called the discriminator and the generator. These
networks are trained by competing against each other. The goal is for
the generator to sample synthetic data that are indistinguishable from
training data, while the discriminator tries to distinguish between real
and synthetic data. The generator produces synthetic data 𝑥 by sam-
pling from a Gaussian prior distribution and transforming it through
a function 𝐺(𝑧, 𝜃𝐺), where 𝑧 is a realization of the input distribution
and 𝜃𝐺 are the parameters of the generator. Through 𝐺, the model
thus defines the synthetic data distribution 𝑝𝜃 . The generator tries to
fool the discriminator into asserting its generated examples as real.
The discriminator assigns a probability value to each datum it receives
as an input. Formally, it defines a family of functions 𝐷(𝑥, 𝜃𝐷) from
the realization space to the interval [0, 1], where 𝑥 is a data point and
𝜃𝐷 are the parameters of the discriminator. The closer 𝐷(𝑥, 𝜃𝐷) is to
1, the higher the probability that 𝑥 was sampled from the training
data distribution 𝑝𝑟(𝑥). A sigmoid function usually serves as its last
activation function to ensure that the output of the discriminator is a
valid probability.

The models are trained as a zero-sum game, in which the payoff
of the discriminator is denoted 𝑣(𝜃𝐺 , 𝜃𝐷) and that of the generator is
𝑣(𝜃𝐺 , 𝜃𝐷). Both models will attempt to maximize their own payoff,
eaning that the optimal model for both will optimize the following
in–max equation:

rgmin
𝜃𝐺

argmax
𝜃𝐷

𝑣(𝜃𝐺 , 𝜃𝐷) = argmin
𝜃𝐺

argmax
𝜃𝐷

E𝑥∼𝑝𝑟 log 𝐷(𝑥)+E𝑥∼𝑝𝜃 log(1−𝐷(𝑥))

(1)

Despite the initial successes, early literature authors identified how
trenuous it is to train GANs using the original architecture (Goodfellow
t al., 2014), with the need for extensive hyper-parameters tuning (Ar-
ovsky et al., 2017; Arjovsky and Bottou, 2017). The models may suffer
rom the vanishing gradient phenomenon (Hochreiter, 1991). Another
uspected cause is the demonstrated fact that support of 𝑝𝑟 lies on
ow-dimensional manifolds (Narayanan and Mitter, 2010), that 𝑝𝜃 is
nlikely to cover at the early steps of the training. This makes the loss
unction saturated, which also causes the gradient to vanish.

A proposed strategy to make the support overlap more likely con-
entrate on reducing the effect of the curse of dimensionality. Karras
t al. (2017) tried to stabilize the outputs of the generator and speed-
p convergence by making a GAN model progressively grow. They
uilt more and more detailed image generators, starting with a 4 × 4
enerator, and then adding layers during training. Intuitively, this helps
ith the overlap problem, since the distributions will match first on

ower resolutions where the overlap is more likely to be non-negligible.
rogressively Growing GAN have already been used for Geological
acies simulation, both in 2D and 3D (Song et al., 2022).

Multi-Scale GANs (Karnewar et al., 2019) relies on similar theoret-
cal ideas to the progressive growing of GAN (Karras et al., 2017), but
iffer from the original method as the models do not grow throughout

raining. The model stays the same and learn at different scales from
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start to end. Thus the generator simulates the realization at different
scales while the discriminator assesses its realism at each scale. The real
and generated realizations at different scales are concatenated through
these connections to the activation features of the discriminator at the
corresponding scale.

The advantage over the progressive growing of GANs is a simpler
implementation, as well as allowing gradient circulation in the model
at all scales all along the training, preventing the vanishing gradient
problem.

Instead of making the overlap more likely, another popular method
avoids the problem completely by resorting to a different loss function.
The Wasserstein-1 distance, a distance measure between two probabil-
ity distributions, has been proposed in Arjovsky et al. (2017). This loss
can be computed using its dual form named Kantorovich–Rubinstein
dual (see Appendix C.1 for details). This approach requires however
the discriminator to be 1-Lipschitz (Appendix C.1). To enforce this
condition, we use a Spectral Normalization (Miyato et al., 2018):

𝑊𝑆𝑁 = 𝑊
𝜎(𝑊 )

(2)

where 𝜎(𝑊 ) is the spectral norm of parameters 𝑊 .
We also change the activation functions following the recommen-

ations made by Anil et al. (2018). We use non-monotonic, 1-Lipschitz
ounded functions or gradient preserving functions such as GroupSort,
pflu (Zhu et al., 2021) and the Swish activation functions (Ramachan-
ran et al., 2018) normalized to have unit gradient norm. Further-
ore, to ensure that our model is entirely translation invariant, as we
odel stationary processes, our models are entirely convolutional. This
odel’s design allows for the generation of images of variable size by

djusting the input noise. This aspect is similar to previous work on
tationary GANs (Jetchev et al., 2016; Long et al., 2015; Laloy et al.,
018). The generation of non-stationary phenomena is out of scope for
his work, however the model can be modified for such a purpose, such
s in Abdellatif et al. (2023).

. Variational Bayes conditioning

Our objectives are not only to propose a stable deep generative
odel that simulates realistic reservoirs, but also a way to condi-

ion this generator to observations. We describe here two competing
pproaches based on a variational Bayes framework.

Once trained to optimality, the GAN framework provides a gener-
tor 𝐺 that can simulate new realizations with the same properties as
he training dataset, as such we can consider that using the generator
amples 𝑥. Applications, in resource prospecting for example, require

sampling realizations knowing partial information about 𝑥. In geology,
this partial information can come from boreholes or seismic imaging.
We denote the partial information 𝑥⋆. Its conditional distribution with
respect to 𝑥, also called observation process, is modelled by specifying
the conditional density 𝑝(𝑥⋆|𝑥). When generating realizations through
the generator, 𝑥 = 𝐺(𝑧), with 𝑧 the input of the generator, we can
instead consider 𝑝(𝑥⋆|𝑧), where 𝑥⋆ is a set of 𝑁 observations. We
recall that 𝑧 is a standard Gaussian random vector with independent
components, that defines the prior distribution 𝑝(𝑧). Therefore, the
conditioning problem consists in obtaining the distribution 𝑝(𝑧|𝑥⋆) by
using the Bayes formula:

𝑝(𝑧|𝑥⋆) =
𝑝(𝑥⋆|𝑧)𝑝(𝑧)

𝑝(𝑥⋆)
(3)

(𝑥⋆) = ∫ 𝑝(𝑥⋆|𝑧)𝑝(𝑧)𝑑𝑧 (4)

The computation cost of this integral is exponential in the dimension
f the problem. Consequently, instead of computing it exactly, we will
se methods that allow us to ignore the normalizing constant. Monte-
arlo Markov Chains (MCMC) methods are usually used to sample

rom such a distribution. Previous methods have successfully applied
3

𝑞

CMC complementary to GANs for geological simulations to sample
onditional distributions (Laloy et al., 2018). However, they can be
low to converge and may encounter difficulties to explore several
osterior modes. Ensemble methods have also been successfully applied
o condition geological models (Canchumuni et al., 2019; Fossum et al.,
022, 2024).

Variational methods change the sampling problem into an opti-
ization problem, which is solved through gradient descent. To do

o, we limit our research to a family of parametric distributions ,
defined on the same probability space as 𝑝(𝑧|𝑥⋆), the real latent dis-
tribution. We search for the member of this family that minimizes
the Kullback–Leibler Divergence between itself and the real distrib-
ution:

𝑞∗𝜃 (𝑧|𝑥
⋆) = arg min

𝑞𝜃 (𝑧|𝑥⋆)∈
𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) ∥ 𝑝(𝑧|𝑥⋆)
)

(5)

An inference model with parameters 𝜃 is used to define the para-
etric distribution 𝑞𝜃 . See Fig. 1 for an overview of the conditioning
ethod. The inference model can be any kind of parametric model that

pproximate a distribution, we simply use the term inference model as a
laceholder. This workflow for the conditioning problem allows the use
f common optimization methods, to estimate the parameters 𝜃 of the
nference model. Moreover, once trained, the variational approximation
an be used to sample new realizations of the posterior distribution,
llowing us to generate any number of conditional realizations.

.1. Neural network inference model

In Chan and Elsheikh (2017) and Chan and Elsheikh (2019), the au-
hors use an inference neural network 𝐼𝜃 , such that the family of para-
etric distribution  is described by the set of all the functions defined

y the neural network 𝐼 applied to a given set of random variables.
ccording to the Universal Approximation Theorem (Pinkus, 1999;
idger and Lyons, 2019), by choosing a neural network deep and/or
ide enough, we can learn an approximation of the true posterior
istribution 𝑝(𝑧|𝑥⋆).

The neural network defines the parametric distribution 𝑞𝜃 by trans-
forming �̂�, a standardized Gaussian vector with independent compo-
ents, into 𝑧|𝑥⋆. The model is a simple Multi-Layer Perceptron, with
ense layers and Selu activation functions (Klambauer et al., 2017).
he input latent space and output space are of the same dimension.

The inference neural network 𝐼𝜃 is parameterized by 𝜃, which are
he weights of the linear layers. It needs to be trained such that its
eights 𝜃 are optimal. The optimal weights 𝜃∗ minimize the Kullback–
eibler divergence between the parametric distribution and the real
osterior distribution:
∗ = argmin

𝜃
𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) ∥ 𝑝(𝑧|𝑥⋆)
)

= argmin
𝜃

E
𝑧∼𝑞𝜃

(

log 𝑝(𝑧|𝑥⋆)
)

− E
𝑧∼𝑞𝜃

(

log 𝑞𝜃(𝑧|𝑥⋆)
)

= argmin
𝜃

𝐇(𝑞𝜃 , 𝑝) −𝐇(𝑞𝜃),

(6)

here 𝐇(𝑞𝜃 , 𝑝) is the negative cross-entropy between the training data
istribution 𝑝 and the variational distribution 𝑞𝜃 . If we have 𝐶 different
ossible values for 𝑥, then the negative cross-entropy is defined as
ollows:
𝐶

𝑖
𝑝(𝑥𝑖) log(𝑞𝜃(𝑥𝑖)) (7)

In our application, the observations 𝑥⋆ are vertical wells, which
re locations in the realization where the category of the facies is
nown. If we assume that observations are independent realizations
f multinomial variables with probabilities given by the generator, we
an compute the negative cross-entropy by using the multi-class cross-
ntropy. 𝐇(𝑞𝜃) is the Shannon Entropy of the probability distribution

𝜃 . Hence, minimizing Eq. (6) amounts to minimizing the cross-entropy
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Fig. 1. Following the workflow from (Chan and Elsheikh, 2019), we use a secondary model that will transform a random vector �̂� into the conditioned variable 𝑧|𝑥⋆.
between the two distributions while keeping the entropy of the varia-
tional distribution high. The latter ensures that the model maximizes
the variability of the posterior distribution.

Since we consider that the observations are independent from a
multinomial distribution and 𝑝(𝑧) is the multivariate standard normal
distribution, we can use Bayes’ rule to compute 𝐇(𝑞𝜃 , 𝑝) as follows:

𝐇(𝑞𝜃 , 𝑝) = E𝑧∼𝑞𝜃 − log 𝑝(𝑧|𝑥⋆)

= E𝑧∼𝑞𝜃

[

−
𝑁
∑

𝑖=1
log 𝑝(𝑥⋆𝑖 |𝑧) +

1
2
‖𝑧‖2

] (8)

with 𝑁 the number of individual conditioning observation points
𝑥⋆1≤𝑖≤𝑁 . The expectation is intractable, because we can only sample
𝑝(𝑥⋆𝑖 |𝑧) through the generator. As such we use a Monte-Carlo estimator
over a batch of 𝑀 generated samples 𝑧𝑚 = 𝐼(�̂�) to estimate it:

𝐇(𝑞𝜃 , 𝑝) =
1
𝑀

𝑀
∑

𝑚=1

[

−
𝑁
∑

𝑖=1
log 𝑝(𝑥⋆𝑖 |𝑧𝑚) +

1
2
‖𝑧𝑚‖

2
]

(9)

The second term of (6), namely the entropy 𝐇(𝑞𝜃) requires also an
approximation since we have access to 𝑞𝜃 only through its realizations.
𝐇(𝑞𝜃) can be approximated through the Kozachenko–Leonenko estima-
tor (L.F. Kozachenko, 1987), see Appendix C.4 for more details. The
approximate loss function is hence defined as follows:

𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) ∥ 𝑝(𝑧|𝑥⋆)
)

≈ − 𝑑
𝑀

𝑀
∑

𝑚=1
log(𝑑𝑘𝑛𝑛(𝑧𝑚)) +

1
𝑀

𝑀
∑

𝑚=1

[

−
𝑁
∑

𝑖=1
log 𝑝(𝑥⋆𝑖 |𝑧𝑚) +

1
2
‖𝑧𝑚‖

2
]

(10)

with 𝑑𝑘𝑛𝑛(𝑧𝑚) the distance from sample 𝑧𝑚 to its 𝑘th neighbour. Fol-
lowing (Chan and Elsheikh, 2019), we set 𝑘 =

√

𝑀 . We use this
approximation of the divergence to train the model using Algorithm
1.

Algorithm 1 Training neural network conditioning
1: 𝑁 observations 𝑥0,𝑀 ∈ N the batch size
2: repeat
3: Draw 𝑀 samples from �̂� ∼  (0, 𝐼𝑑 )
4: Apply inference model: 𝑧 = 𝐼𝜃(�̂�) ⊳ 𝑧 ∼ 𝑞𝜃(𝑧|𝑥⋆)
5: Apply generator neural network: 𝑥 = 𝐺(𝑧) ⊳ 𝑥 ∼ 𝑞𝜃(𝑥|𝑥⋆)
6: Update 𝐼𝜃 using gradient step on 𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) || 𝑝(𝑧|𝑥⋆)
)

⊳
See Eq. (10)

7: until Convergence

3.2. Gaussian mixture inference model

The previous approach may suffer from mode collapse, which is an
optimization error where the algorithm only approximates one mode
4

of a multimodal distribution. Indeed, the Kullback–Leibler divergence
is blind to isolated modes (Wenliang and Kanagawa, 2020). We propose
to alleviate this problem by using a Gaussian mixture inference model
in the variational approach.

We choose a number of Gaussian components 𝐾. Each component
𝑖 = 1,… , 𝐾 is defined by its mean 𝜇𝑖 and its covariance matrix 𝛴𝑖,
as well as a non-negative weight 𝜋𝑖. The weights 𝜋𝑖 sum to 1. The
parametric distribution is then defined as 𝑞𝜃(𝑧) =

∑𝐾
𝑖=1 𝜋𝑖𝑓𝜇𝑖 ,𝛴𝑖

(𝑧), where
𝑓𝜇,𝛴 is the Gaussian density with mean 𝜇 and covariance 𝛴.

Similarly to the inference network method, a standardized Gaussian
vector with independent components �̂� is sampled. Then a random
component of the mixture 𝑖 is chosen using the mixture weights. The
mean and covariance of the chosen component are finally applied to
the initial standard Gaussian random vector with independent compon-
ents:

𝑧 = 𝜇𝑖 + 𝛴1∕2
𝑖 × �̂�, (11)

where 𝛴1∕2
𝑖 is e.g. the Cholesky decomposition of 𝛴𝑖.

To train the parameters of the components we use again the Kullb-
ack–Leibler divergence as an objective function. This means that we
cannot guarantee that it will find every modes of the distribution.
However, in our experiments, we have found that by selecting enough
components in the mixture and initializing them randomly, this method
exhibits a greater degree of diversity than the neural network infer-
ence model. Choosing a large number of components increases the
complexity of the model, as well as the time it takes to train it.

The Kullback–Leibler divergence is decomposed in the same manner
as above. We keep 𝜃 as the notation for parameters, noting that 𝜃𝑖 =
(𝜋𝑖, 𝛴𝑖, 𝜇𝑖) and 𝜃 = (𝜃1, 𝜃2,… 𝜃𝐾 ). Since we are working with Gaus-
sian Mixtures we can compute the entropy using the approximation
proposed by Furuya et al. (2022):

𝐇(𝑞𝜃) ≈ �̃�(𝑞𝜃)

= −
𝐾
∑

𝑖=1
𝜋𝑖 ∫  (𝑧|𝜇𝑖, 𝛴𝑖) log(𝜋𝑖 (𝑧|𝜇𝑖, 𝛴𝑖))𝑑𝑧

= 𝑚
2
+ 𝑚

2
log 2𝜋 + 1

2

𝐾
∑

𝑖=1
𝜋𝑖 log |𝛴𝑖| −

𝐾
∑

𝑖=1
𝜋𝑖 log𝜋𝑖

(12)

The cross-entropy is also weighted by the components used to generate
the simulations of the current batch. During an iteration, we sample 𝑀
generated Gaussian vectors 𝑧𝑚. Each 𝑧𝑚 is generated by sampling one
random mixture component with parameters (𝜋𝑚, 𝛴𝑚, 𝜇𝑚). Finally, the
Kullback–Leibler divergence is approximated as follows:

𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) ∥ 𝑝(𝑧|𝑥⋆)
)

≈ −�̃�(𝑞𝜃) +
1
𝑀

𝑀
∑

𝑚=1
𝜋𝑚

[

−
𝑁
∑

𝑖=1
log 𝑝(𝑥⋆𝑖 |𝑧𝑚) +

1
2
‖𝑧𝑚‖

2
]

(13)
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Fig. 2. Diagram of the stationary conditional generator, where the input parameters 𝜙 are two scalar values in a vector (Net to Gross and Sand Body Extension), which are then
projected into an embedding space before computing convolution kernels that are used in the network.
We use this approximation of the divergence to train the model using
Algorithm 2.

Algorithm 2 Training Gaussian mixture conditioning
1: 𝑁 observations 𝑥0,𝑀 ∈ N the batch size, 𝐾 ∈

N the number of Gaussian mixture components
2: repeat
3: Draw 𝑀 samples �̂� ∼  (0, 𝐼𝑑 )
4: for 𝑖 ← 1,𝑀 do ⊳ Note that the for loop is in practice

parallelized
5: Draw mixture component 𝜃𝑘 =

(

𝜋𝑘, 𝛴𝑘, 𝜇𝑘
)

using weights (𝜋1, ...𝜋𝐾 )
6: Apply inference model: 𝑧𝑖 = 𝜇𝑘 + 𝛴1∕2

𝑘 × �̂�𝑖 ⊳ 𝑧𝑖 ∼ 𝑞𝜃𝑘 (𝑧𝑖|𝑥
⋆)

7: Apply generator neural network: 𝑥𝑖 = 𝐺(𝑧𝑖) ⊳
𝑥𝑖 ∼ 𝑞𝜃𝑘 (𝑥𝑖|𝑥

⋆)
8: end for
9: Update 𝜃 = (𝜃1, ..., 𝜃𝐾 ) using gradient step on

𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) || 𝑝(𝑧|𝑥⋆)
)

⊳ See Eq. (13)
10: until Convergence

It should be noted that in this algorithm, we distribute the batch
among the different components by performing a weighted sampling
based on the weights (𝜋1,… , 𝜋𝐾 ) from the previous step. This approach
is adopted for efficiency in Monte Carlo estimation of the posterior.
However, it is worth mentioning that other choices would also be
valid. For instance, sampling each component equally could be an other
legitimate alternative.

4. Parameterized generative model

The GAN framework can be upgraded such that it can be param-
eterized with some extra information 𝜙 (Mirza and Osindero, 2014).
In the original paper, 𝜙 is a set of complementary information about
the desired simulation, such as a class labels or physical parameters.
This complementary information is inputted to both the generator and
the critic. As such, the generator learns how to generate a realization
𝑥 = 𝐺(𝑧|𝜙) and the critic learns to give a probability 𝐷(𝑥|𝜙) that the
realization is real and corresponds to parameters 𝜙. Consequently, the
loss function in this new framework becomes:

𝑣(𝜃𝐺 , 𝜃𝐷) = E log 𝐷(𝑥|𝜙) + E log(1 −𝐷(𝑥|𝜙)) (14)
5

𝑥∼𝑝𝑟 𝑥∼𝑝𝜃
The problem with the original conditional GAN is that it is not
translation invariant, because the architecture includes fully connected
layers. Instead, we developed a stationary conditional GAN framework.
Our approach does not change the output of linear layers but learns
instead different convolution kernels for each pair of input parameters.

This is done by adding a linear layer that will transform the pa-
rameters to an embedding space, which is then given to a transposed
convolution layer. The outputs of these two layers are convolution
kernel 𝜙 ∈ RN×N that can be applied depth-wise to feature matrices.
Thus, the convolution kernels 𝜙 define a convolutional layer with
weights dependent on input 𝜙 (see Fig. 2). These layers and their
parameterized filters are present in the generator and the critic. Thus,
both networks now have a second input in addition to their normal
input. These two layers are trained alongside the generator and critic
with the same gradient.

5. Application

In this section, we apply the generative models described earlier,
to reproduce reservoir model simulations generated with Flumy, a
process-based model for meandering channelized reservoir, similarly
to Sun et al. (2023b). Every model and metric used for our experiments
are coded in Python and the Tensorflow library is used to design the
deep learning models. The models are trained with Graphical Process-
ing Units from Google Colaboratory resources. In order to evaluate the
quality of the simulations generated by the different GAN architectures
tested, we compute and compare morphological properties such as
facies proportions and connected components size distribution between
GAN simulations and training dataset. The gstlearn (gstlearn, 2023)
Python package from MINES Paris is used for this purpose. We then
test the best model on the task of conditioning.

5.1. Flumy

Flumy is a stochastic process-based model used to simulate the
geometry of heterogeneous reservoirs generated by meandering chan-
nelized systems in both fluvial and turbidites environments (Lopez,
2003a,b; Flumy-Userguide, 2022; Grimaud et al., 2022). Flumy com-
bines first-order hydraulic equations to track the evolution of channels
and stochastic algorithms simulating chute cutoff, levee breaching,
avulsions and associated deposits. See Fig. 3 for a visual overview
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Fig. 3. Overview of Flumy’s main simulated processes for Fluvial systems (Flumy-Userguide, 2022).
of Flumy’s simulated processes. Flumy generates 3D reservoir models
following a user-defined multi-sequence scenario.

Conditioning to existing subsurface datasets, while possible (Bub-
nova, 2018; Troncoso, 2022), is difficult and the method lacks of
flexibility. Furthermore, inference computational cost is high, making
it a choke-point for workflows where realizations must be simulated
many times.

5.2. Experimental setup

Experiments are conducted using a dataset generated using the
Flumy model. See Appendix F for more details on the Flumy parameters
used to generate the training dataset.

The 2D GAN models are trained using a dataset containing 3000
horizontal slices extracted from 150 Flumy reference simulations hav-
ing 4 facies (Channel Lag, Point Bar, Levee and Overbank) at a 10 m
resolution (2D realization size is 64 × 128 pixels). The 3D GAN models
are trained using a dataset containing 3000 3D blocks extracted from
1500 Flumy reference simulations with a vertical discretization step of
0.5 m, having the same 4 facies at a 50 m horizontal resolution (3D
realization size is 16 × 32 × 64 pixels). Realizations are represented as
matrices, and at each position, the type of geological facies is a cate-
gorical vector of facies indicators. Consequently, in our dataset, there
are only 4 different values a pixel can take (i.e. [1,0,0,0], [0,1,0,0],
[0,0,1,0] or [0,0,0,1]).

Later in the application we test a CGAN model (Mirza and Osindero,
2014) for parameterized simulations. For this part of the application,
we use other Flumy simulations which are variations around the default
Fluvial scenario (see Flumy-Userguide, 2022). Each Flumy simulation
is tuned by setting a specific value of the two following key parameters:
the required proportion of sand (aka. Net to Gross or NG) and the
required mean Sand Body Extension Index (ISBX). Then, the 2D CGAN
model is trained using a dataset of horizontal slices extracted from the
different parameterized Flumy simulations with 9 facies (Channel Lag,
Point Bar, Sand Plug, Crevasse Splay I, Crevasse Splay II Channels,
Crevasse Splay II, Levee, Overbank, Mud Plug) at a 10 m horizontal
resolution (2D realization size is 64 × 128 pixels).
6

5.3. Channelized reservoir simulations results

5.3.1. 2D
Initially, we test the Multi-Scale Wasserstein GAN with Spectral

Normalization and GroupSort, whose architecture is given in Ap-
pendix A on 2D simulations. In these tests, the generator architecture
stays mostly the same, with two (3, 3) convolution operations at each
level, LeakyReLU activation functions, and a final Softmax activation
function. Furthermore, multi-scale generators require a pixelwise skip-
connection at each level too. The critic architecture reflects the one of
the generator, with two (3, 3) convolutions operations at each levels. To
reflect the skip connection in the generator, our critic returns a score
at each level, with a (3, 3) convolution from which the mean value is
our level score. The GroupSort operation is used everywhere after every
convolution in the critic, with the exception of the outputs convolution.

For comparison purposes, we also train a Multi-Scale GAN with
the vanilla GAN loss, and only the addition of a Gaussian noise to
stabilize it. We also train two vanilla Wasserstein GAN, one model with
the GroupSort activation and Spectral Normalization, and the second
model with LeakyReLU and Gradient Penalty. The fourth architecture
is similar to the one used in Liu et al. (2023), with the exception that
they use Attention layers (Vaswani et al., 2017), and did not use the
GroupSort activation function. The detail of these architectures are
summarized in Table 1.

Given the subjective nature of human visual assessment, we chose
to quantify the quality of the non-conditional simulations using mor-
phological metrics calculated from 1000 simulations per model. The
distribution of connected component sizes by facies for multiple 2D
models is depicted in Fig. 5 and compared to the training data. A
Wasserstein-1 loss is computed, between each of these distributions and
the real distribution (Table 2). The mean proportion of each geological
facies for the 2D models is also shown in Fig. 4. We can see on these
figures that the distribution of smaller features (‘‘Sand, Channel lag’’,
‘‘Silts, Levees’’ and ‘‘Shale, Overbank’’) are correctly predicted for most
models except for the Wasserstein GAN with spectral normalization.

However, the ‘‘Sand, Point bar’’ prediction has a very high distance
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Table 1
Summary of the architecture details as well as the hyper-parameters used to train our showcased 2D models. Here ‘‘lr
gen./disc.’’ refers to the two learning rates used respectively for the generator and the discriminator (or critic). The green
row indicates our recommended architecture.

Name Loss Multiscale Disc. Lipschitz constraint Disc. activ. func. Epochs lr gen./disc.

MS-GAN MinMax ✓ ✗ LeakyReLU 0.2 100 5𝑒−4∕5𝑒−4

W-GAN-GP Wasserstein ✗ Gradient Penalty LeakyReLU 0.2 150 5𝑒−4∕1𝑒−4

W-GAN-SN Wasserstein ✗ Spectral Norm. Group Sort 200 5𝑒−3∕5𝑒−4

MW-GAN-SN Wasserstein ✓ Spectral Norm. Group Sort 200 5𝑒−3∕5𝑒−4
Fig. 4. Comparison of the proportions of different facies for our 2D models.
Table 2
To compare the connected components size distribution in 2D, shown in Fig. 5, the Wasserstein-
1 distance between the model and the training data distributions is computed. The green row
is our recommended architecture.

Model Sand, Channel lag Sand, Point bar Silts, Levee Shale, Overbank

MS-GAN 0.64 126.64 0.39 2.67
W-GAN-GP 0.11 16.47 0.29 0.90
W-GAN-SN 0.75 143.33 1.39 6.09

MW-GAN-SN 0.97 14.21 0.33 1.68
value as seen in Table 2. We did not find any explanation for this
phenomenon.

The metrics comparison for the different models shown in Figs. 5
and 4 suggest that models utilizing Wasserstein or Multi-Scale tech-
niques are able to generate simulations with the same characteristic
features as the input dataset. In Fig. 5, the distributions of the con-
nected components size of each geological facies for different models
are compared against training data. We can see from the comparison
that our proposed method MW-GAN-SN is only the second best when
reproducing the morphology of most facies except the ‘‘Sand, Point
bar’’. We acknowledge that in 2D, a simple model seems more efficient.
However, when we started to generate 3D blocks (see next section), we
were not able to reach the convergence while training any other model
except the latter.

Furthermore, the model generates unique simulations which are
not copies from the dataset. This can be seen in Fig. 6, where we
visually compare generated realizations to their nearest neighbour, in
the Euclidean space, from the Flumy dataset.

5.3.2. 3D
Once established the robustness of the 2D model, we extend the

analysis to 3D simulations (Fig. 7). The architecture design of the 3D
model is identical to 2D architecture, with the exception that the 2D
7

Table 3
Hyper-parameters used to train our showcased 3D model.

3D Model MW-GAN-SN-NormSwish

Epochs 200
Learning rate generator/discriminator 1𝑒−3∕1𝑒−3

convolutions becomes 3D convolutions and the activation function is a
normalized Swish. The hyper-parameters used to train 3D models are
showcased in Table 3.

We evaluate the 3D model using the same metrics as in 2D. Those
are pictured in Figs. 9 and 8.

Training 3D models proved to be more challenging. Ultimately
only a combination of Wasserstein with the non-monotonic, 1-Lipschitz
and gradient preserving activation function GroupSort, and Multi-Scale
techniques was successful. Both visual and morphological evaluations
of the resulting 3D model demonstrate its ability to generate geolog-
ical structures that are consistent with the input dataset. The visual
evaluation, shown in Fig. 7, reveals geological patterns found both in
the Flumy simulations and the GAN simulations, specifically, the ‘‘V’’
pattern of sand in vertical sections and the elongated sand channels in
horizontal slices. We also can notice the small scattered shale lenses
in both Flumy simulations and GAN simulations. This is a good sign



Computers and Geosciences 190 (2024) 105638F. Bhavsar et al.
Fig. 5. Distribution of connected components size of each geological facies for different models against training data. To make visualization more relevant, each connected
component size is itself weighted by its volume.
Fig. 6. Comparison of the generated realizations (on the left) to their nearest
counterparts in the training dataset (on the right) using Euclidean distance.

that the models captures the features from the input dataset. However,
we can notice that the generated sand channels are not as horizontally
continuous as the ones generated by Flumy.

5.4. Parameterized model results

In order to capture the large range of possible geometries in chan-
nelized reservoir models, Flumy proposes two key parameters: the
Net to Gross (sand proportion) and the sand bodies extension (lateral
extension of point bars). Using these two parameters, the user can
generate a large variety of different reservoirs (see Flumy-Userguide,
2022).
8

We evaluate here the CGAN approach described in Section 4. The
dataset consists of 8000 Flumy realizations from multiple distributions,
corresponding to different parameter values. The generator is given
random parameter values within the range of the real parameters when
trained, allowing it to interpolate between parameter values not present
in the training data.

The simulations generated with Flumy using a range of ISBX and
NG values used to train our CGAN experiments are Pictured in Fig. 10.
Fig. 11 displays simulations of the trained CGAN model. As can be seen
from the above figures, the CGAN model can be modified to learn the
relationship between parameters and output realizations. The generator
learns to account for these parameters, making it a useful feature for
those wishing to use it as a proxy for Flumy.

5.5. Conditional generation

5.5.1. 2D
Conditional generation can be tested by sampling Flumy simula-

tions, randomly selecting vertical well locations and masking the rest.
In 2D, wells are pixels in the realization where the category of facies
is known. Similarly to the non-conditional methodology, we first test
the method in two-dimension and only after in three-dimension. We
evaluate how strictly the constraints are satisfied using the percentage
of correctly generated values at the well. The average percentage of
successfully predicted observations shown in Fig. 13, seems to indicate
that the neural network model is slightly better than the mixture
of Gaussians models at honouring the conditioning observations (see
Fig. 12).

However, assessing the extent to which the estimated posterior
captures the variability of the real posterior is non-trivial. Instead,
we judge how well it is captured by our network by comparing it
to rejection sampling. We generate thousands of simulations with the
non-conditional generator. We reject any realization that do not fulfil
the given conditions. We then sample 2500 simulations using the two
inference models. We finally compare the probability at each pixel
of every facies category between the two methods. This is shown in
Fig. 14.

The results showcased highlight that the inference neural network
does not seem to explore the whole domain of possible conditional
realizations. In the top row, the probabilities of the first facies are
only close to one in the immediate neighbourhood of the conditional



Computers and Geosciences 190 (2024) 105638

9

F. Bhavsar et al.

Fig. 7. Visual comparison of 3D volumes generated with our Multi-Scale Wasserstein GAN (top) and the Flumy 3D volume (bottom). Aerial views are accompanied by cross-section
views.

Fig. 8. Comparison of the proportion of different facies for our models.
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Fig. 9. Distribution of connected components size of each geological facies for the 3D model against training data. To make visualization more relevant, each connected component
size is itself weighted by its volume.
Fig. 10. Realizations generated with Flumy by varying two parameters: the Net to Gross (NG, e.g. the required Sand Proportion) and the Sand Body Extension (ISBX). Flow
direction is from left to right. The goal of the parameterization is to capture the relationship between the realizations and the input parameters.
Fig. 11. After training, the CGAN model can generate new realizations, taking into account the parameters it was inputted with.
points, and there are a few pixels with a zero probability. This indicates
that the sand channels have no particular trajectories in the rejection-
sampling conditional distribution. However, the learned approximation
10
of the conditional distribution exhibits over-confidence on a small set
of sand channel trajectories, which are almost always sampled (in red
in the sand facies probability maps). To address this issue, as mentioned
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Fig. 12. Example of conditional simulations (boxes, red for an error, green for a correct prediction). Top simulations were conditioned with 32 pixels sampled in a grid-like pattern
from a Flumy simulation (leftmost). Bottom simulations were conditioned with 15 pixels sampled in a uniform random pattern from another Flumy simulation (leftmost).
Fig. 13. Comparison of the percentage of success using our two conditioning methods.
in Section 3.2, the neural network model is replaced by a Gaussian
Mixture. As can be seen in Fig. 14 and Appendix E, this method
generates a probability map closer to that of the rejection method.
Indeed, the sand channels do not seem to be constrained to a limited
number of trajectories.

5.5.2. 3D
Both conditioning methods are also applicable in 3D, where obser-

vation wells correspond to a line of voxels from the top of the volume
to the bottom. Two conditional realizations are shown in Fig. 15 along
with the original data. In 3D, the differences between the two methods
are more blatant. First, the neural network method exhibits, on average,
a better match to the conditioning data compared to the mixture
method, as shown in Fig. 16. This is a clear advantage of the large
expressive power offered by deep learning algorithms. However, the
difference in variability is also more pronounced in higher dimension,
as seen in Fig. 17. This highlights the advantage of the mixture model to
capture a broader range of variations. We have found that 10 is an ade-
quate number of components, enough to exhibit diversity while keeping
computation cost as low as possible. Indeed, the main disadvantage
of the Gaussian mixture is the training time. Indeed, the covariance
matrix of each component is of size 𝑑 × 𝑑, with 𝑑 the dimension of the
11
latent space. The algorithm also needs a huge batch size to ensure that
every components of the mixture is sufficiently trained at each iteration
(e.g., 350 in our experiments).

6. Conclusion

In this paper, we introduced a deep generative model and a method
to condition it to observations. Our non-conditional architecture in-
tegrates several recent elements from the literature: Wasserstein loss,
Multi-Scale generation, non-monotonic 1-Lipschitz bounded activation
functions. These elements make the model robust enough to capture
the characteristics of datasets generated with a stochastic process-
based model, Flumy. Theoretical and empirical analyses support the
proposed approach effectiveness in simulating conditional channelized
reservoirs. Our experimental results indicate that this approach is suc-
cessful, in 2D and 3D, as an alternative to Flumy to generate conditional
geological facies configurations. The model can be adapted to generate
simulations with different parameters, using a CGAN parameterization.

It should be noted that we limited most of our experiments to a
specific scenario with a high Net to Gross having 4 facies. Further
experimentation needs to be performed to establish the applicability of
the conditioning method to more complex Flumy scenarios. However,
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Fig. 14. After the inference model is trained, we can generate any number of realizations. Here we generate 2500 realizations, we compute at each coordinate the probability of
occurrence for each facies. We visualize the result (left), as well as sampling two simulations for each methods (right). We compare rejection sampling with the generator, neural
network conditioning model and Gaussian mixture conditioning model probabilities.
Fig. 15. Conditional simulations with both methods trained in 3D (bottom) compared to the original Flumy volume (top) where the observations were sampled. For each model
three slices are shown: The upper one is an horizontal slice of the volume, on the bottom left and bottom right, the vertical sections 𝐴-𝐴′ and 𝐵′-𝐵, respectively.
we believe that the robustness of the non-conditional architecture
choices makes the method applicable to other datasets.

We compared our novel Gaussian Mixture-based conditioning met-
hod, to the previous Neural Network-based approach. The Gaussian
Mixture inference model improves on the Neural Network by better
approximating multi-modal distributions. Thus, it shows more variabil-
ity in the generation of conditioned realizations. This comes at the
cost of a higher percentage of inconsistencies with the observations.
Nevertheless, the user can easily discard the realizations that do not
12
honour the conditioning data. Both variational conditioning methods
are adaptable such that future research could focus on conditioning to
seismic imagery or history matching. Seismic imagery seems the most
natural continuation when considering the similarity between seismic
proportion maps and low resolution realizations. However, to improve
the method, the inference model should be capable of taking advantage
of the expressive power and speed of neural networks while being
able to have the variability of mixtures. Both approaches could also be
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Fig. 16. Boxplot comparing the distribution of the percentage of success, per well, using our two conditioning methods in 3D. Success is defined by whether an observation (a
conditioning voxel) has the correct value in the conditioned simulation. The central line of the boxes are the median of the set, blue and white squares are the mean and diamonds
are outliers.
Fig. 17. Identically to the 2D case, we can generate any number of simulations in 3D. Here we generate 150 realizations, we compute at each coordinate the probability of each
facies occurring, and we visualize the results of a selected horizontal slice of the 3D volume.
improved by using a prior model (the non-conditional generator) with
more expressive power.
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Code availability section

A stable deep adversarial learning approach for geological facies
generation.

The source codes are available for downloading at the link: https:
//github.com/Pumafi/stable-gan-for-geol-facies-gen/tree/main.

Contact: ferdinand.bhavsar@minesparis.psl.eu
Hardware requirements: A GPU with CUDA library installed is

highly recommended. 16 GB of System RAM, as well as GPU RAM, is
recommended for 3D codes.

Program language: Python
Software required: see requirements.txt
Program size: 57.1 MB (+1.2 GB of data on the git repository)

Appendix A. Final model architecture

This section describes the architecture we recommend to implement
our method. It combines a Multi-Scale architecture with Spectral Nor-
malization, and is trained using the Wasserstein loss. This architecture
is adapted both to 2D and 3D generation (see Fig. 18).

https://github.com/Pumafi/stable-gan-for-geol-facies-gen/tree/main
https://github.com/Pumafi/stable-gan-for-geol-facies-gen/tree/main
https://github.com/Pumafi/stable-gan-for-geol-facies-gen/tree/main
mailto:ferdinand.bhavsar@minesparis.psl.eu
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Fig. 18. Diagram of the final MW-GAN-SN-GroupSort model adapted from pre-existing methods and tests.
Table 4
Approximate running time for each models, in seconds per epoch.

Model name Seconds per epoch Epochs

2D MSGAN Gaussian Noise 80 100
2D WGAN Gradient Penalty 15 150
2D WGAN SN with GroupSort 140 200
2D MSWGAN SN with GroupSort 90 200
3D MSWGAN SN with NormSwish 230 200

Appendix B. Training time

In this section, we provide the approximate running time for each
model, in seconds per epoch. The models were trained using Nvidia T4
GPUs from Google Colaboratory. The architectures presented were not
meant to be computationally optimal, and training could be accelerated
by improving the models and using recent optimization techniques (see
Table 4).

Appendix C. Mathematics

C.1. Wasserstein-GAN and Kantorovich–Rubinstein duality

An efficient method to fix the vanishing gradient problem is to
resort to an other loss function. The Wasserstein-1 distance, a dis-
14
tance measure between two probability distributions, has been pro-
posed (Arjovsky et al., 2017). Unlike the Jensen–Shannon divergence,
the derivative of the Wasserstein distance is never constant, such that
there is always a useable gradient, making it an ideal candidate to
improve the robustness of the networks. It was first defined for optimal
transport problems, under the name Earth-Mover distance, to define
the minimum effort to move an earth-pile to a hole. There are infinite
transport plans to move the earth-pile, but not all are optimal. By
changing the earth-pile and hole to probability distributions and the
transport plans to joint distributions, we derive a loss function to
train a GAN (Arjovsky et al., 2017). Our distributions are the ones
defined by the generator model with parameters 𝜃 and the training data
distribution. They are respectively named 𝑝𝜃 and 𝑝𝑟 and are defined on
the same probability space 𝑀 .

A transport plan is noted 𝛾(𝑥, 𝑦). It is a joint distribution with 𝑝𝜃 and
𝑝𝑟 as marginals. The Wasserstein distance is defined as the expectation
of the euclidean distance between pairs of random variables following
this joint distribution:

𝑊 (𝑝𝑟, 𝑝𝜃) = inf
𝛾∈𝛱

𝐄
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1 (15)

We cannot study all joint probability distributions to find the opti-
mum, as the optimization problem is too complex. Instead, we use the
simpler form of the Kantorovich–Rubinstein dual (Villani, 2003, 2008).
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Theorem C.1.1. Let 𝑝𝑟 and 𝑝𝜃 be two probability distributions defined on
a probability space 𝑀 . Let 𝛱 be the set of all joint distributions such that
𝑟 and 𝑝𝜃 are the marginal distributions. Let 𝛾 be an element of 𝛱 and let
𝑥, 𝑦) be realizations of 𝛾. The Wasserstein divergence between 𝑝𝑟 and 𝑝𝜃
an be expressed in the following dual form:

1(𝑝𝑟, 𝑝𝜃) = inf
𝛾∈𝛱

𝐄
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1 = sup
𝑓

𝐿𝑖𝑝(𝑓 )≤1

𝐄
𝑥∼𝑃𝑟

𝑓 (𝑥) − 𝐄
𝑦∼𝑃𝜃

𝑓 (𝑦) (16)

where the supremum is taken over all functions 𝑓 that are 1-
ipschitz, which is the property that for any 𝑥 and 𝑦, 𝑓 (𝑥) + 𝑓 (𝑦) ≤

‖𝑥 − 𝑦‖1.

We take the Lagrangian associated with the constrained equation,
ith Lagrange multipliers 𝑓, 𝑔 ∶ 𝑀 ←←→ R (continuous in 𝑀) (Villani,

2003, 2008), using the constraints on the transport plan:

(𝛾, 𝑓 , 𝑔) = 𝐄
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1 + ∫𝑀

(

𝑃𝑟(𝑥) − ∫𝑀
𝛾(𝑥, 𝑦)𝑑𝑦

)

𝑓 (𝑥)𝑑𝑥

+ ∫𝑀

(

𝑃𝜃 − ∫𝑀
𝛾(𝑥, 𝑦)𝑑𝑥

)

𝑔(𝑦)𝑑𝑦
(17)

When 𝑃𝑟(𝑥) = ∫𝑀 𝛾(𝑥, 𝑦)𝑑𝑦 and 𝑃𝜃(𝑦) = ∫𝑀 𝛾(𝑥, 𝑦)𝑑𝑥 then we have
(𝛾, 𝑓 , 𝑔) = 𝐄‖𝑥 − 𝑦‖1.

However when 𝑃𝑟(𝑥) ≠ ∫𝑀 𝛾(𝑥, 𝑦)𝑑𝑦 or 𝑃𝜃(𝑦) ≠ ∫𝑀 𝛾(𝑥, 𝑦)𝑑𝑥 then
sup (𝛾, 𝑓 , 𝑔) = +∞.

Therefore, the optimization problem is equivalent to a min–max
problem:

𝑊1(𝑃𝑟, 𝑃𝜃) = inf
𝛾∈𝛱

𝐄
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1 = inf
𝛾

sup
𝑓,𝑔

(𝛾, 𝑓 , 𝑔) (18)

We can write the Lagrangian in the following form:

(𝛾, 𝑓 , 𝑔)

= 𝐄
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1 + ∫𝑀

(

𝑃𝑟(𝑥) − ∫𝑀
𝛾(𝑥, 𝑦)𝑑𝑦

)

𝑓 (𝑥)𝑑𝑥

+ ∫𝑀

(

𝑃𝜃 − ∫𝑀
𝛾(𝑥, 𝑦)𝑑𝑥

)

𝑔(𝑦)𝑑𝑦

= ∫𝑀×𝑀
‖𝑥 − 𝑦‖1𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + ∫𝑀

𝑃𝑟(𝑥)𝑓 (𝑥)𝑑𝑥 − ∫𝑀×𝑀
𝑓 (𝑥)𝛾(𝑥, 𝑦)𝑑𝑦𝑑𝑥

+ ∫𝑀
𝑃𝜃(𝑦)𝑔(𝑦) − ∫𝑀𝑒𝑠𝑀

𝑔(𝑦)𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

= 𝐄
𝑥∼𝑃𝑟

𝑓 (𝑥) + 𝐄
𝑦∼𝑃𝜃

𝑔(𝑦) + ∫𝑀×𝑀

(

‖𝑥 − 𝑦‖1 − 𝑓 (𝑥) − 𝑔(𝑦)
)

𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

(19)

The Strong Duality theorem states that if an optimization problem
is linear, and the primal and dual form both are realizable, i.e. their
constraints are not incompatible, then the optimum of both forms are
equal. We can use this theorem because we are in a linear optimization
problem and constraints are compatible. Therefore, we rewrite the
equation and switch sup and inf .

𝑊1(𝑃𝑟, 𝑃𝜃) = inf
𝛾

sup
𝑓,𝑔

(𝛾, 𝑓 , 𝑔) = sup
𝑓,𝑔

inf
𝛾

(𝛾, 𝑓 , 𝑔) (20)

If ‖𝑥 − 𝑦‖1 < 𝑓 ∗(𝑥) + 𝑔∗(𝑦), the inf of the Lagrangian goes to −∞,
while if ‖𝑥 − 𝑦‖1 ≥ 𝑓 ∗(𝑥) + 𝑔∗(𝑦), then inf

𝛾
(𝛾, 𝑓 , 𝑔) = 0. Therefore we

can write:

inf
𝛾 ∫𝑀×𝑀

(

‖𝑥− 𝑦‖1 −𝑓 (𝑥) − 𝑔(𝑦)
)

𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

⎧

⎪

⎨

⎪

⎩

0 si ‖𝑥 − 𝑦‖1 ≥ 𝑓 (𝑥) + 𝑔(𝑦)

−∞ else
15

(21)
Working on this Lagrangian allows us to ignore the constraints on
𝛾:

∫𝑀×𝑀

(

‖𝑥−𝑦‖1−𝑓 (𝑥)−𝑔(𝑦)
)

𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∫𝑀×𝑀
𝐹 (𝑥, 𝑦)𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (22)

With 𝐹 (𝑥, 𝑦) = (‖𝑥 − 𝑦‖1 − 𝑓 (𝑥) − 𝑔(𝑦)), 𝐹 (𝑥, 𝑦) ∶ 𝑀 × 𝑀 ←←→ R, 𝐹
continuous on its domain as the sum of continuous functions.

If there is a (𝑥, 𝑦) such that 𝐹 (𝑥, 𝑦) < 0 then, because 𝐹 is continuous,
there exist an interval 𝐼 ∈ 𝑀 × 𝑀 where the function takes negative
values. This interval is the neighbourhood of (𝑥, 𝑦).

Let us take 𝐹 such that on interval 𝐼 the function takes values in
[−𝜖,−𝜖∕2], 𝜖 > 0, and takes the value 0 on the rest of its domain. We
can then write:

∫𝑀×𝑀
𝐹 (𝑥, 𝑦)𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

= ∫(𝑀×𝑀)∕𝐼
𝐹 (𝑥, 𝑦)𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + ∫𝐼

𝐹 (𝑥, 𝑦)𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

= ∫𝐼
𝐹 (𝑥, 𝑦)𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

≤ −𝜖∕2∫𝐼
𝛾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

(23)

By giving 𝛾(𝑥, 𝑦) an arbitrarily large value on 𝐼 , we make this
integral tend towards −∞. Therefore, when ‖𝑥 − 𝑦‖1 < 𝑓 ∗(𝑥) + 𝑔∗(𝑦),
the inf of the Lagrangian tends towards −∞. We then rewrite this part
of the equation as a constraint on 𝑓 and 𝑔:

𝑊1(𝑃𝑟, 𝑃𝜃) = sup
𝑓,𝑔

‖𝑥−𝑦‖1≥𝑓 (𝑥)+𝑔(𝑦)

𝐄
𝑥∼𝑃𝑟

𝑓 (𝑥) + 𝐄
𝑦∼𝑃𝜃

𝑔(𝑦) (24)

The problem is now to find the optimal 𝑓 and the optimal 𝑔,
i.e. maximize this equation with constraint ‖𝑥 − 𝑦‖1 ≥ 𝑓 (𝑥) + 𝑔(𝑦).

We can show that 𝑔(𝑥) = −𝑓 (𝑥):

‖𝑥 − 𝑦‖1 ≥ 𝑓 (𝑥) + 𝑔(𝑦) (25)

Since we take the 𝑠𝑢𝑝 over all function 𝑓 and 𝑔 for which the condition
is true, we can determine that:

‖𝑥 − 𝑦‖1 = 𝑓 (𝑥) + 𝑔(𝑦) (26)

This equation is true ∀𝑥,∀𝑦, therefore when 𝑥 = 𝑦:

𝑓 (𝑥) + 𝑔(𝑦) = ‖𝑥 − 𝑦‖1 = 0 (27)

Therefore 𝑔(𝑥) = −𝑓 (𝑥), which gives the following formula:

𝑊1(𝑃𝑟, 𝑃𝜃) = sup
𝑓

‖𝑥−𝑦‖1≥𝑓 (𝑥)−𝑓 (𝑦)

𝐄
𝑥∼𝑃𝑟

𝑓 (𝑥) − 𝐄
𝑦∼𝑃𝜃

𝑓 (𝑦)

⇔ 𝑊1(𝑃𝑟, 𝑃𝜃) = sup
𝑓

𝐿𝑖𝑝(𝑓 )≤1

𝐄
𝑥∼𝑃𝑟

𝑓 (𝑥) − 𝐄
𝑦∼𝑃𝜃

𝑓 (𝑦)
(28)

We use this new formulation of the distance to replace the loss
function in the previously defined GAN architecture. The 1-Lipschitz
function 𝑓 of the formula is the function defined by our discriminator.
Therefore, two major changes are imposed on the architecture:

1. Since 𝑓 can take any value on R, the last sigmoid activation
function present in the original GAN architecture (Goodfellow
et al., 2014) is removed.

2. The discriminator is constrained to maintain its Lipschitz bound
inferior or equal to 1.

In the original Wasserstein GAN article (Arjovsky et al., 2017), the
1-Lipschitz constraint is enforced through gradient clipping. Gradient
clipping simply controls the Lipschitz norm of the model by re-scaling
the norm of the gradient to be at most 1. Any gradient norm ex-
ceeding this value is re-scaled accordingly. Later studies pointed out

that gradient clipping leads to the undesirable behaviour of capacity
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underuse, leading to the critic ending up learning extremely simple
functions (Gulrajani et al., 2017). These over-simplified functions are
a problem, as they might fail to represent the Wasserstein loss cor-
rectly. As such we leverage properties on the norm of the gradient
(see Appendices C.2 and C.3) and use Spectral Normalization (see
Section 2).

C.2. Lipschitz norm of Kantorovich–Rubistein dual

Theorem C.2.1. Given 𝛾∗ the optimal transport plan minimizing:
inf
𝛾∈𝛱

E
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1. If 𝑓 ∗, the solution of the Kantorovich–Rubinstein dual
(also called optimal critic) is differentiable, then we have the following
equality:

𝑃 [𝑓 ∗(𝑥) − 𝑓 ∗(𝑦) = ‖𝑥 − 𝑦‖1] = 1 (29)

Thanks to Theorem C.1.1 we can write:

sup
‖𝑓‖𝐿≤1

E
𝑥∼𝑃𝑟

𝑓 (𝑥) − E
𝑦∼𝑃𝜃

𝑓 (𝑦) = inf
𝛾∈𝛱

𝐄
(𝑥,𝑦)∼𝛾

‖𝑥 − 𝑦‖1 (30)

Because of the Strong Duality theorem we know both optimal values
are equal, and we can write:

𝐄
(𝑥,𝑦)∼𝛾∗

[

𝑓 ∗(𝑥) − 𝑓 ∗(𝑦)
]

= 𝐄
(𝑥,𝑦)∼𝛾∗

‖𝑥 − 𝑦‖1

⇔ 𝐄
(𝑥,𝑦)∼𝛾∗

[

𝑓 ∗(𝑥) − 𝑓 ∗(𝑦)
]

− 𝐄
(𝑥,𝑦)∼𝛾∗

‖𝑥 − 𝑦‖1 = 0

⇔ 𝐄
(𝑥,𝑦)∼𝛾∗

[

𝑓 ∗(𝑥) − 𝑓 ∗(𝑦) − ‖𝑥 − 𝑦‖1
]

= 0

(31)

The expectation is zero, therefore the probability distribution is
centred. But since the function is 1-Lipschitz continuous, we can write
𝑓 ∗(𝑦)−𝑓 ∗(𝑥) ≤ ‖𝑦−𝑥‖1. Both properties are only possible if all the mass
of the probability distribution is at 0.

C.3. Optimal critic gradient

Theorem C.3.1. If 𝑓 ∗ ∶ R𝑛 ←←→ R, 𝑛 ∈ N, is the 1-Lipschitz optimal
critic that maximizes the Kantorovich–Rubinstein dual, then ‖∇𝑓 ∗(𝑥)‖1 =
1 almost everywhere.

Using the Frechet derivative generalization to vector-valued func-
tions we write the derivative of 𝑓 :

lim
‖𝑥−𝑦‖1∼0

𝑓 ∗(𝑥) − 𝑓 ∗(𝑦) − ⟨∇𝑓 ∗(𝑥), 𝑦 − 𝑥⟩
‖𝑥 − 𝑦‖1

= 0

⇔ lim
‖𝑥−𝑦‖1∼0

𝑓 ∗(𝑥) − 𝑓 ∗(𝑦)
‖𝑥 − 𝑦‖1

= lim
‖𝑥−𝑦‖1∼0

⟨∇𝑓 ∗(𝑥), 𝑦 − 𝑥⟩
‖𝑥 − 𝑦‖1

(32)

Using the Cauchy–Schwarz inequality we deduce a lower bound of
this derivative:

lim
‖𝑥−𝑦‖1∼0

𝑓 ∗(𝑥) − 𝑓 ∗(𝑦)
‖𝑥 − 𝑦‖1

= lim
‖𝑥−𝑦‖1∼0

⟨∇𝑓 ∗(𝑥), 𝑦 − 𝑥⟩
‖𝑥 − 𝑦‖1

≤
‖∇𝑓 ∗(𝑥)‖1.‖𝑦 − 𝑥‖1

‖𝑦 − 𝑥‖1
= ‖∇𝑓 ∗(𝑥)‖1

(33)

Thanks to Theorem C.2.1 we know that 𝑃
[

𝑓∗(𝑥)−𝑓∗(𝑦)
‖𝑥−𝑦‖ = 1

]

= 1.
Consequently 𝑃

[

‖∇𝑓 ∗(𝑥)‖1 ≥ 1
]

= 1, i.e. 1 is a lower bound of
the gradient almost everywhere. Since the function is 1-Lipschitz, the
upper bound of the gradient is also 1. The upper and lower bound of
the gradient are equal almost everywhere, therefore we proved that
‖∇𝑓 ∗(𝑥)‖1 = 1 almost everywhere.

Arjovsky and Bottou (2017) uses gradient penalty to enforce this
theorem locally on the critic. Enforcing it on the entirety of its domain
of definition require to make every component of the critic 1-Lipschitz
continuous. Linear and Convolutional layers can be constrained to es-
timating 1-Lipschitz function by using Spectral Normalization (Miyato
et al., 2018).
16
C.4. Kozachenko–Leonenko entropy estimator

Given a random variable �̃� with unknown probability distribution 𝑞𝜃
defined by our inference network 𝐼 , which we can sample. If we have

realizations �̃�𝑖0≤𝑖≤𝑀 , then for any �̃� we can compute the 𝑘 nearest
eighbours in the set of realization �̃�𝑖. We note the distance from �̃� to
he 𝑘th neighbour 𝑑𝑘𝑛𝑛(�̃�). 𝐵(�̃�, 𝑑𝑘𝑛𝑛(�̃�)) is smallest ball with �̃� as centre
ontaining its 𝑘 nearest neighbours. Its radius is 𝑑𝑘𝑛𝑛(�̃�).

If we take the assumption that 𝑞 is continuous and 𝑞(�̃�)∀�̃� ≈
(𝑦)∀𝑦∈𝐵(�̃�,𝑑𝑘𝑛𝑛(�̃�)), then we can estimate the empirical Shannon entropy
f 𝑞𝜃 using our 𝑀 realizations �̃�𝑖0≤𝑖≤𝑀 , thanks to the Kozachenko–
eonenko estimator (L.F. Kozachenko, 1987):

̂ (𝑞) = ≈ log(𝑀) − log(𝑘) + log(𝑉𝐵(,1)) +
𝑑
𝑀

𝑀
∑

𝑖=0
log(𝑑𝑘𝑛𝑛(�̃�𝑖)) (34)

Intuitively, what this formula means is that the closer is the 𝑘th
nearest neighbour from �̃�, the lower is the entropy of 𝑞𝜃(�̃�).

Only 𝑑
𝑀

∑𝑀
𝑖=0 log(𝑑𝑘𝑛𝑛(�̃�𝑖)) is optimized in this equation. Therefore,

we can replace the entropy in our loss function:

argmin
𝜃

𝐷𝐾𝐿

(

𝑞𝜃(𝑧|𝑥⋆) ∥ 𝑝(𝑧|𝑥⋆)
)

≈ argmin
𝜃

− 𝑑
𝑀

𝑀
∑

𝑖=0
log(𝑑𝑘𝑛𝑛(𝑧𝑖)) + E𝑧∼𝑞𝜃

[

−
𝑁
∑

𝑖=1
log 𝑝(𝑥⋆𝑖 |𝑧) +

1
2
‖𝑧‖2

]

(35)

Appendix D. Transition probabilities

In this section, we further analyse the MW-GAN-SN model by study-
ing the transition probabilities from one facies to another as a function
of the distance (see Fig. 19).

Appendix E. Kolmogorov–Smirnov test for conditioning

We extend the analysis of the two conditioning methods, neural
network and Gaussian mixture, using the Kolmogorov–Smirnov test.
We compare the sand facies probability distributions between our
conditional models and accept–rejects samples using the Kolmogorov–
Smirnov two-sample test at a significance level of 0.05. A 𝑝-value higher
than this threshold indicates that the null hypothesis holds and that
the two samples can be considered to be from similar distributions (see
Fig. 20).

Appendix F. Training data generation process

Training datasets have been generated using FLUMY v6.004, Proc-
ess-based channelized reservoir models, Copyright MINES PARIS PSL/
ARMINES, Free download from https://flumy.minesparis.psl.eu. The
non-conditional Flumy reference simulation used in this study aims at
reproducing channelized reservoirs made by a small aggrading turbidite
inside a canyon having a length of 1280 m, a width of 640 m and a
height of 640 m. The turbidite channel has a maximum thickness of
10 m, a constant width of 350 m and a large wavelength of 4000 m. The
erodibility coefficient is reduced to 1e−08 in order to slow down lateral
migration (low sinuosity). Aggradation events occur in average every
140 iterations with an intensity of 1 m thickness, a small horizontal
overbank extension of 928 m and a small levee width of 140 m.
Local avulsions are disabled and regional avulsions period is set to
110 iterations. This parameter set results in a simulation having a very
high sand proportion with elongated channel lag footprints along the
flow direction and some scattered shale lenses spread into the facies
block that can constitute flow barriers. Flumy reference parameters are
summarized in Table 5. All parameters that are not cited in this table
are kept to their default value.

https://flumy.minesparis.psl.eu
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Fig. 19. Transition Probabilities for the 2D MW-GAN-SN with GroupSort architecture. Direction 1 is the width direction, while the direction 2 is the height direction.

Fig. 20. Comparison of Kolmogorov–Smirnov tests for neural network and Gaussian mixture.
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Table 5
Flumy parameters used for our Flumy reference
simulation.
Parameter Value

Grid
Number of Nodes 128 × 64
Mesh 50 × 50 m
Block Thickness 640 m
Vertical Discretization 0.5 m

Channel
Maximum Depth 10 m
Width 350 m
Wavelength 4000 m
Erodibility Coefficient 1e-08 m/s

Overbank
Period (Poisson) 140it
Intensity (Normal) 140it
Extension 928 m

Avulsions
Local Period Never
Regional Period (Poisson) 110it
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