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Abstract—This study develops a scalable co-optimization strat-
egy for the joint bidding of cascaded hydropower, wind, and solar
energy units, treated as a unified entity in the day-ahead market.
Although hydropower flexibility can manage the stochasticity of
renewable energy, the underlying bidding problem is complex
due to intricate coupling constraints and nonlinear dynamics.
A decomposition in both scenario and spatial dimensions is
proposed, enabling the use of distributed optimization. The
proposed distributed algorithm is eventually a heuristic due to
non-convexities arising from the system’s physical dynamics. To
ensure a performance guarantee, trustworthy upper and lower
bounds on the global optimum are derived, and a mathematical
proof is provided to demonstrate their existence and validity. This
approach reduces the average runtime by up to 35% compared
to alternative distributed methods and by 57% compared to
the centralized optimization. Moreover, it consistently delivers
solutions, whereas both centralized and alternative distributed
approaches fail as the size of the optimization problem grows.

Index Terms—Trustworthy bounds, distributed optimization,
stochastic programming, cascaded hydropower, bidding strategy.

NOMENCLATURE

Indices and Sets
N Set of hydropower plants, indexed by n
Soc

n Set of inflow segments for the piecewise linear approx-
imation of asset n’s operational curve, indexed by i

T Set of time steps, indexed by t
Ω Set of scenarios, indexed by ω
k Index for iteration of the distributed algorithm
Physical Constants
g Acceleration due to gravity (m/s2)
w Water density (kg/m3)
Modeling Parameters
Hn Maximum hydraulic head of asset n (m)
Hn Minimum hydraulic head of asset n (m)
Pω Probability associated with scenario ω (-)
P

H

n Capacity of asset n (MW)
P̂ S
ω,t Solar farm output in scenario ω at time t (MW)

P̂W
ω,t Wind farm output in scenario ω at time t (MW)
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Qbr

n
Minimum barrage discharge of asset n (m3/s)

Q̂ext
n,ω,t Forecast of external inflow (from river and its tribu-

taries) to asset n in scenario ω at time t (m3/s)
Qin

n,i i-th inflow segment of asset n (m3/s)
Q

tr

n Maximum turbines discharge of asset n (m3/s)
Qtr

n
Minimum turbines discharge of asset n (m3/s)

Sn,ω,t n-th asset surface area in scenario ω at time t (m2)
Zfbl,0
n Initial forebay water level of asset n (m)

Z
fbl

n,i i-th maximum forebay segment of asset n (m)
Zfbl

n,i i-th minimum forebay segment of asset n (m)
Ztlr
n Tailrace water level of asset n (m)

∆T Sampling period (s)
∆qtrn Turbines outflow ramp limit of asset n (m3/s)
ηtrn Turbine efficiency of asset n (-)
π̂E
ω,t Forecast of day-ahead energy price in scenario ω at

time t (e/MWh)
π̂E↑
ω,t Forecast of positive imbalance penalty price in sce-

nario ω at time t (e/MWh)
π̂E↓
ω,t Forecast of negative imbalance penalty price in sce-

nario ω at time t (e/MWh)
τbra,b Barrage water travel time from asset a to b (s)
τ tra,b Turbined water travel time from asset a to b (s)

Notation for the Proposed Distributed Algorithm
K Maximum number of iterations allowed (-)
J Objective function of the bidding problem (e)
JLB Lower bound on the problem’s global optimum (e)
JUB Upper bound on the problem’s global optimum (e)
Jgap Gap between upper and lower bounds (%)
ϵgap Tolerance parameter of termination criterion (%)
ϵUB Tolerance parameter of upper bound update (%)
ρ Penalty parameter (-)

Variables
bbrn,ω,t Binary variable associated with the barrage safety

constraint of asset n in scenario ω at time t (-)
bocn,ω,t,i Binary variable of the i-th operational curve segment

of asset n in scenario ω at time t (-)
eω,t Energy offer in scenario ω at time t (MWh)
hn,ω,t Hydraulic head of asset n in scenario ω at time t (m)
pHn,ω,t Output of asset n in scenario ω at time t (MW)
qbrn,ω,t Outflow of barrage n in scenario ω at time t (m3/s)
qinn,ω,t Inflow of asset n in scenario ω at time t (m3/s)
qoutn,ω,t Outflow of asset n in scenario ω at time t (m3/s)
qtrn,ω,t Outflow of turbines n in scenario ω at time t (m3/s)
zfbln,ω,t Forebay level of asset n in scenario ω at time t (m)
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δE↑
ω,t Positive imbalance in scenario ω at time t (MWh)
δE↓
ω,t Negative imbalance in scenario ω at time t (MWh)
λn,ω Vector of dual variables corresponding to the consen-

sus constraints of asset n in scenario ω

I. INTRODUCTION

A. Literature Review

AS the energy sector shifts from conventional generators to
variable renewable energy sources (vRES) such as wind

and solar, optimizing the bidding strategy and operation of
these stochastic resources by means of controllable units has
gained significant attention [1]. Hydropower plays a critical
role in this transition, providing nearly half of the world’s
low-carbon electricity and offering an unparalleled 1500 TWh
of storage capacity, dwarfing global battery storage by a factor
of 2200 in 2021 [2]. Among hydropower systems, cascaded
hydropower plants (CHPP) are effective in enhancing vRES
market value [3] and supporting grid operations [4]. However,
co-optimizing the market-based operation of CHPP and vRES
is challenging due to uncertainty sources, complex spatiotem-
poral constraints, and complicated nonlinear dynamics.

Approaches for managing uncertainty in CHPP-vRES sys-
tems can be broadly categorized into robust optimization [5],
interval optimization [6], chance-constrained programming
[7], and scenario-based stochastic programming [8]. A com-
prehensive analysis of these methods within the broader con-
text of power system optimization under uncertainty is detailed
in [9]. Among these, scenario-based stochastic programming
is often preferred for its flexibility in modeling uncertainty
by incorporating multiple potential outcomes, or scenarios,
each weighted by its associated probability. This method is
particularly well-suited for handling unbounded uncertainty
sources such as prices [10], inflow [11], and demand [12].
It results in solutions tailored to expected outcomes, unlike
methods focusing on worst-case realizations [13]. However, it
can be computationally inefficient, particularly with large sets
of scenarios. In bidding problems, scenario-based approaches
allow for the use of price-quantity bidding curves, enabling
energy bid adjustments based on predicted prices and genera-
tion levels [14]. This is particularly beneficial for vRES paired
with flexible resources such as hydropower units [15].

Besides uncertainty management, a key challenge in CHPP
operation is balancing modeling accuracy with tractability.
Comprehensive physical or operational models result in com-
plex mixed-integer nonlinear programming (MINLP) prob-
lems [16], for which there is still no efficient off-the-shelf
solver. Significant complexity arises from the coupling among
units, and the complicated nonlinear dynamics involved [17].
To address this, the original model is often simplified us-
ing three main methods [18], namely aggregation, optimiza-
tion/heuristic, and decomposition methods. Aggregation meth-
ods have been extensively applied to both short-term [19] and
long-term [20] scheduling of CHPP, but are best suited to
systems with similar reservoir and inflow characteristics, as the
individual plant constraints are overlooked. Researchers have
also investigated ways to simplify the MINLP model while
accounting for the individual dynamics of each plant. Solving
these optimization models directly with commercial solvers is

often very challenging. A common method extensively used
in the current literature is outer approximation [21], which
decomposes the MINLP problem into a mixed-integer linear
programming (MILP) master problem and a set of nonlinear
programming (NLP) subproblems, although this often results
in a suboptimal performance. Alternatively, the MINLP prob-
lem can be simplified in various manners, reducing to linear
programming (LP) [22], MILP [23], quadratic programming
[24], mixed-integer quadratic programming (MIQP) [25] or
NLP [26] problems. MILP approximations are increasingly
popular, offering a balance between modeling accuracy and
tractability [27]. To solve these models, methods such as
linear decision rules [28] and dynamic programming [26] have
been applied. While rule-based approaches may oversimplify
the problem, dynamic programming can be computationally
expensive due to dimensionality issues.

To overcome these limitations, researchers have explored
decomposition techniques. Two main strategies identified in
the literature are scenario decomposition and spatial decompo-
sition [29]. Scenario decomposition methods, such as Benders
decomposition [21] or the consensus alternating direction
method of multipliers (ADMM) [25], split the stochastic
problem into multiple deterministic subproblems, typically one
per scenario. Spatial decomposition, often achieved using La-
grangian relaxation techniques like dual decomposition [30],
ADMM [31], or the auxiliary problem principle (APP) [32],
breaks the problem down by units or groups of units. Both
strategies can reduce computational burden compared to the
centralized (non-decomposed) counterpart, however they often
require assumptions of convexity to guarantee converging to
the global solution. Even for MILP approximations, apply-
ing these methods to CHPP scheduling results in heuristic
approaches [18].

B. Motivation and Contributions

Co-optimized bidding strategy for CHPP and vRES is a
complex stochastic MINLP problem. While MILP approxima-
tions have become popular for their ability to balance modeling
accuracy versus computational tractability, they still incur
significant computational burdens. Decomposition approaches
have been effective in alleviating such a burden, however ex-
isting works focus on either spatial or scenario decomposition,
addressing only one dimension of the problem’s complexity,
and most importantly, do not offer any solution guarantee
in terms of optimality. To date, no decomposition method
for CHPP-vRES bidding effectively scales both spatial and
scenario dimensions while providing a performance guarantee.

This paper develops a scalable co-optimization method for
the joint bidding of cascaded hydropower, wind and solar en-
ergy units in the day-ahead market, accounting for uncertain-
ties in water inflows, prices, and renewable power generation.
A MILP formulation is provided, which is then decomposed
using a consensus ADMM approach. Since a straightforward
application of ADMM to a mixed-integer problem inherently
results in a heuristic method, the framework is extended
to incorporate trustworthy upper and lower bounds on the
distributed solution. This enhancement not only accelerates
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TABLE I
COMPARISON OF THIS STUDY WITH THE RELEVANT RELATED LITERATURE

Ref. Computational strategy Uncertainty modeled? Problem Solution method Decomposition Trustworthy
[19] Aggregation × MILP Branch and bound × ✓
[18] Aggregation ✓(stochastic programming) NLP NLP solver × ✓
[26] Optimization × NLP Dynamic programming × ✓
[23] Optimization ✓(interval programming) MILP Branch and bound × ✓
[28] Optimization ✓(stochastic programming) LP Linear decision rules × ✓
[32] Decomposition × MILP APP Spatial ×
[31] Decomposition × MIQP ADMM Spatial ×
[30] Decomposition ✓(stochastic programming) MILP Dual decomposition Spatial ×
[21] Decomposition ✓(stochastic programming) MINLP Benders decomposition Scenario ×
[25] Decomposition ✓(stochastic programming) MIQP Consensus ADMM Scenario ×

This paper Decomposition ✓(stochastic programming) MILP Consensus ADMM Spatial & scenario ✓

the algorithm but also facilitates the assessment of solution
quality, ensuring that the solution is ϵ-suboptimal, meaning
its objective value is guaranteed to be at most ϵ (e.g., 0.01%)
worse than the global optimal solution. In other words, the pro-
posed distributed algorithm offers a performance guarantee,
as it provides solutions that operators can confidently rely on.
Finally, drawing on recent advancements in consensus ADMM
[33], the existence and validity of the bounds is demonstrated.
Table I compares this study with the relevant related literature.

The key contributions of this paper are summarized
as follows. First, a scenario-spatial decomposition of the
centralized stochastic CHPP-vRES bidding strategy is pro-
posed. This involves decomposing the problem with respect
to three sets of coupling constraints: consistency constraints
across price, inflow, and vRES scenarios (scenario coupling);
power balancing among the aggregated energy units (spatial
coupling); and hydraulic links within the hydropower cascade
(spatial coupling). This full-scale decomposition distinguishes
the proposed approach from previous studies that either ad-
dress the centralized problem directly, e.g., [4], [5], [7], [28],
or decouple only one set of constraints, e.g., [21], [25], [30]–
[32]. Second, a consensus ADMM-based distributed algorithm
is developed to derive trustworthy upper and lower bounds
on the global optimum of the bidding problem. As a distinct
feature, this method offers a performance guarantee, even for
MILP problems, by using bounds to quantify the “distance”
between the distributed solution and the global optimum. In
contrast, existing decomposition approaches typically yield
heuristic solutions when applied to mixed-integer models, e.g.,
[21], [25], [30]–[32]. Finally, the paper offers a mathematical
proof demonstrating the existence and validity of the bounds.

The proposed approach is validated through a case study
simulating the real-world system managed by the French
aggregator Compagnie Nationale du Rhône [34]. The model
integrates real operational curves to account for the individ-
ual safety constraints of each hydropower plant. The non-
convex nature of these curves introduces significant complex-
ity into the optimization problem. Furthermore, dynamic price-
quantity bidding curves are derived to enhance the adapt-
ability of the bidding strategy to price forecasts, providing
greater flexibility compared to fixed hourly bids, which are
characterized by a uniform quantity offered for all price
levels. Simulation results assess the modeling accuracy, the
aggregator’s performance in the market, and the scalability of

Fig. 1. Diagram of the VPP under consideration, comprising CHPP and vRES.

the distributed method. An ex-post out-of-sample validation
is performed to determine the minimum number of scenarios
necessary to adequately represent the underlying uncertainties.

The remainder of the article is organized as follows: Section
II details the problem and its decomposition, Section III
discusses the results, and Section IV concludes the study.

II. METHODOLOGY

This section formulates the problem and outlines the pro-
posed distributed method with trustworthy bounds. Let n ∈ N
denote a hydropower plant within the cascaded system. The
problem is formulated in discrete time over a finite set of
sampling times t ∈ T , with a sampling period of ∆T . The
scenario ω ∈ Ω denotes a potential realization of uncertainty.
The uncertain parameters are denoted by the hat symbol (̂.).

A. Problem Statement

The goal is to optimize the participation of a price-taking en-
ergy producer in the day-ahead market, known as the bidding
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problem [35]. The system mimics a real-world virtual power
plant (VPP) operated by Compagnie Nationale du Rhône,
comprising 12 CHPP (totaling 2.2 GW of installed capacity),
6 wind farms (278.4 MW), and 4 solar farms (60.8 MW), as
shown in Fig. 1. The study considers three sources of uncer-
tainty—water inflow, vRES output, and market prices—which
are modeled using a finite set of scenarios.

The energy volumes offered to the market are denoted
by eω,t, and the day-ahead energy price forecast by π̂E. A
dual pricing settlement scheme is employed, with separate
prices for positive imbalances, δE↑ (energy injection falling
short of the offer), and negative imbalances, δE↓ (energy
injection exceeding the offer). The forecasted penalty prices
for these imbalances are denoted by π̂E↑ and π̂E↓, respectively.
Bids are submitted to the market operator as price-quantity
pairs, forming a set of price-quantity bidding curves [14]. The
optimization problem considers all scenario prices as potential
bidding points, with the energy produced for each hour and
price determining the bid. Consistent with common rules in
many European markets [35], all supply bids within an hour
must be non-decreasing as the price increases.

B. Centralized Optimization Problem

The VPP in Fig. 1 is modeled with three key assumptions:
(i) vRES are uncontrollable, facilitating the assessment of the
cascade’s ability to manage their variability; (ii) tailrace water
levels remain constant due to the minimal short-term impact of
run-of-the-river plant discharges; and (iii) all turbines within
each hydropower plant are of the same type.

The dynamics of the forebay reservoir water levels, denoted
by zfbl, are computed as a function of the reservoir’s surface
area S, inflow qin, outflow qout, and the initial forebay water
level Zfbl,0. For each asset pair, a specific point between the
two reservoirs, termed the control point, is selected, and the
forebay water level is derived from the volume balance at this
control point, leading to the following state-space model:

zfbln,ω,t = zfbln,ω,t−1 +

(
qinn,ω,t − qoutn,ω,t

)
∆T

Sn,ω,t
, ∀n, ∀ω,∀t, (1a)

zfbln,ω,0 = zfbln,ω,|T | = Zfbl,0
n , ∀n,∀ω. (1b)

The inflow into each reservoir is composed of the water
discharged from the upstream hydropower system through the
barrage and turbines, denoted by qbr and qtr, respectively, and
the external inflow, denoted by Q̂ext. Constraints (2) describe
the inflow into the n-th reservoir under scenario ω at time t:

qinn,ω,t = qbrn−1,ω,t−τbr
n−1,n

+ qtrn−1,ω,t−τtr
n−1,n

+ Q̂ext
n,ω,t,

∀n, ∀ω,∀t, (2)

where τ trn−1,n and τbrn−1,n represent the water propagation time
from the plant n−1 to the control point of plant n via turbines
and barrage, respectively. Similarly, the outflow is given by

qoutn,ω,t = qbrn,ω,t + qtrn,ω,t, ∀n,∀ω,∀t. (3)

To ensure stability and safety, CHPP operate under strict
operational curves. Fig. 2 shows an example of an operational
curve for a hydropower plant. These curves are developed

Fig. 2. Example of an operational curve from Compagnie Nationale du Rhône.

based on approved guidelines from relevant authorities and
take into account various constraints, including navigation,
irrigation, nuclear safety, agriculture, and tourism. During
low-flow periods, water levels are kept high for navigation,
while during floods, levels are controlled to mimic pre-barrage
conditions. Reservoirs provide storage capacity only during
normal inflow conditions, i.e., during energetic periods.

The operational curves are approximated using the piece-
wise linear constraints in (4). This involves dividing the inflow
range into segments Qin, each linked to fixed forebay water
levels Zfbl and Z

fbl
. A distinct set of inflow segments Soc

n is
computed for each hydropower plant n:

qinn,ω,t ≥ bocn,ω,t,iQ
in
n,i, ∀i ∈ Soc

n ,∀n,∀ω,∀t, (4a)

qinn,ω,t < bocn,ω,t,iQ
in
n,i+1 +

(
1− bocn,ω,t,i

)
Moc,

∀i ∈ Soc
n ,∀n, ∀ω,∀t. (4b)

Here, Moc is a large positive constant, and the binary variables
boc are constrained by∑

i∈Soc
n

bocn,ω,t,i = 1, ∀n,∀ω,∀t. (5)

Constraints (6) enforce the forebay water level limits:∑
i∈Soc

n

Zfbl
n,ib

oc
n,ω,t,i ≤ zfbln,ω,t ≤

∑
i∈Soc

n

Z
fbl

n,ib
oc
n,ω,t,i,

∀n, ∀ω,∀t. (6)

The turbines are constrained by the ramp limit:

qtrn,ω,t − qtrn,ω,t−1 ≤ ∆qtrn , ∀n,∀ω,∀t, (7a)

qtrn,ω,t−1 − qtrn,ω,t ≤ ∆qtrn , ∀n,∀ω,∀t. (7b)

For safety reasons, the opening of the barrage is allowed
exclusively when the reservoir is at full capacity:

bbrn,ω,tQ
br

n
≤ qbrn,ω,t ≤ bbrn,ω,tM

br, ∀n, ∀ω,∀t. (8)

Here, Qbr is the minimum barrage discharge, Mbr is a large
positive constant, and the binary variables bbr satisfy

bbrn,ω,t ≤ 1−
∑

i∈Soc
n

Z
fbl

n,ib
oc
n,ω,t,i − zfbln,ω,t

max

({
Z

fbl

n,i

}
i∈Soc

n

) , ∀n,∀ω,∀t. (9)

Similarly, when the turbines operate, their discharge is
constrained by

Qtr

n
≤ qtrn,ω,t ≤ Q

tr

n , ∀n, ∀ω,∀t. (10)



5

The hydropower output, pH, can be calculated as a function
of the turbines outflow, net hydraulic head h, and turbine
efficiency ηtr, as described by

pHn,ω,t = w g ηtrn qtrn,ω,t hn,ω,t 10
−6, ∀n, ∀ω,∀t, (11)

where g is the acceleration due to gravity and w is the density
of water. The factor 10−6 is used to convert the power output
from watts to megawatts. The head is defined by

hn,ω,t = zfbln,ω,t − Ztlr
n , ∀n, ∀ω,∀t. (12)

Here, Ztlr denotes the constant tailrace reservoir water level.
The hydropower generation function exhibits nonlinearity due
to its bilinear dependence on qtr and h. To address this, the
McCormick approximation in (13) is employed to replace the
bilinear term in (11) with a convex envelope:

pHn,ω,t ≥ Cn

(
Qtr

n
hn,ω,t +Hnq

tr
n,ω,t −Qtr

n
Hn

)
, (13a)

pHn,ω,t ≥ Cn

(
Q

tr

n hn,ω,t +Hnq
tr
n,ω,t −Q

tr

nHn

)
, (13b)

pHn,ω,t ≤ Cn

(
Qtr

n
hn,ω,t +Hnq

tr
n,ω,t −Qtr

n
Hn

)
, (13c)

pHn,ω,t ≤ Cn

(
Q

tr

n hn,ω,t +Hnq
tr
n,ω,t −Q

tr

n Hn

)
. (13d)

Here, Cn = 10−6w g ηtrn , while H and H denote the maximum
and minimum hydraulic head, respectively. The range of
admissible values for pH is enforced by

0 ≤ pHn,ω,t ≤ P
H

n,ω,t, ∀n, ∀ω,∀t. (14)

Constraints (15) define the VPP’s power balance as(∑
n∈N

pHn,ω,t + P̂W
ω,t + P̂ S

ω,t

)
∆T − eω,t − δE↓

ω,t

+ δE↑
ω,t = 0, ∀ω,∀t, (15)

where P̂W and P̂ S denote the total wind and solar power
generation of the VPP, respectively.

The aggregator minimizes the objective function defined as

J :=
∑
ω∈Ω

∑
t∈T

Pω

(
π̂E↑
ω,tδ

E↑
ω,t − π̂E↓

ω,tδ
E↓
ω,t − π̂E

ω,teω,t

)
, (16)

representing the cost incurred by the VPP in the day-ahead
market. Minimizing this cost is equivalent to maximizing
the VPP’s profit. Here, Pω is the probability of scenario ω.
Constraints (17) ensure price-quantity bidding curves taking a
non-decreasing form:(

π̂E
ω,t − π̂E

ω′,t

)
(eω,t − eω′,t) ≥ 0, ∀ω′ ∈ Ω \ {ω},

∀ω,∀t. (17)

Finally, the set of decision variables z is defined as

z :=
{
eω,t, δ

E↑
ω,t, δ

E↓
ω,t, q

tr
n,ω,t, q

br
n,ω,t, z

fbl
n,ω,t, p

H
n,ω,t,

bbrn,ω,t, b
oc
n,ω,t,i

}
i∈Soc

n ,n∈N ,ω∈Ω,t∈T
. (18)

Then, the MILP given in (19) defines the bidding problem:

argmin
z

J (19a)

subject to: (1) − (10), (12), (14), (15), (17), (19b)
(13), ∀n, ∀ω,∀t. (19c)

C. From Centralized to Distributed Optimization

The centralized optimization problem (19) is characterized
by spatial coupling, due to the hydraulic links among CHPP
in (1) and the electrical coupling in (15), as well as the
scenario coupling in (17). All coupling constraints involve

the global variables qtr
n,ω :=

[
qtrn,ω,1, ..., q

tr
n,ω,|T |

]⊤
, qbr

n,ω :=[
qbrn,ω,1, ..., q

br
n,ω,|T |

]⊤
and pH

n,ω :=
[
pHn,ω,1, ..., p

H
n,ω,|T |

]⊤
. By

duplicating these variables, the centralized problem (19) is
reformulated as a consensus problem, which reads as

argmin
zB,

{zH
n,ω}n∈N,ω∈Ω

J (20a)

subject to zB ∈ Ξ (β) , (20b)

zH
n,ω ∈ Γn,ω (θn,ω) , ∀n, ∀ω, (20c)

zB,H
n,ω = z̄B,H

n,ω : λn,ω, ∀n, ∀ω. (20d)

Here, zB collects the decision variables associated with the
power balancing of the VPP, as defined by

zB :=
{
eω,t, δ

E↑
ω,t, δ

E↓
ω,t, p̄

H
n,ω

}
n∈N ,ω∈Ω,t∈T

. (21)

The decision variables associated with the dynamics of each
hydropower plant are collected in zH

n,ω , as defined by

zH
n,ω :=

{
bbrn,ω,t, b

oc
n,ω,t, hn,ω,t, z

fbl
n,ω,t, q̄

tr
n,ω, q̃

tr
n,ω, q̄

br
n,ω,

q̃br
n,ω, p̃

H
n,ω

}
t∈T

. (22)

The feasible sets of zB and zH
n,ω are denoted by Ξ (β) and

Γn,ω (θn,ω), respectively. The former is defined by (14), (15)
and (17). The latter is defined by (1)-(10) and (12)-(14).
Vectors β and θn,ω collect the parameters associated with the
constraints defining the feasible sets Ξ and Γn,ω , respectively.

Moreover, the vector zB,H
n,ω ∈ R6×|T | collects the global

variables of the problem, as defined by

zB,H
n,ω :=

[
qtr
n−1,ω, q

br
n−1,ω, q

tr
n,ω, q

br
n,ω,p

H
n,ω,p

H
n,ω

]⊤
. (23)

The vector z̄B,H
n,ω ∈ R6×|T | collects the local copies of the

global variables in zB,H
n,ω , as defined by

z̄B,H
n,ω :=

[
q̃tr
n−1,ω, q̃

br
n−1,ω, q̄

tr
n,ω, q̄

br
n,ω, p̃

H
n,ω, p̄

H
n,ω

]⊤
. (24)

Consistency between global variables and local copies is
enforced through the consensus constraints in (20d). The
corresponding vector of dual variables λn,ω ∈ R6×|T | is
defined as

λn,ω :=
[
λ̃
tr

n−1,ω, λ̃
br

n−1,ω, λ̄
tr
n,ω, λ̄

br
n,ω, λ̃

p

n,ω, λ̄
p
n,ω

]⊤
. (25)

Clearly, problem (20) exhibits a decomposable structure.
Subproblem (20b) pertains to the VPP power balancing and is
referred to as the power balancing subproblem. Subproblems
(20c) address the hydropower plants individual dynamics and
are referred to as the local hydropower scheduling subprob-
lems. An example of the resulting decomposed structure is
shown in Fig. 3 for |N | = 3 and |Ω| = 1. The computational
advantage of this decomposition is that the original stochastic
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Fig. 3. Example of decomposed structure of problem (19) when reformulated
as the consensus problem (20). The edges in the bipartite graph represent the
consistency constraint linking global variables with their local copies.

MILP problem, solved for all n and ω, is now broken down
into |N | × |Ω| deterministic MILP subproblems, and one
stochastic LP subproblem, solved for all n and ω.

D. Distributed Optimization with Trustworthy Bounds

The reformulation presented in (20) enables the applica-
tion of various distributed optimization techniques. Among
others, the consensus ADMM has demonstrated significant
effectiveness [36]. Let k denote the current iteration of the
distributed algorithm, and ρk denote the penalty parameter,
which is updated dynamically, as detailed in [36]. To simplify
the following formulation, define the matrix A ∈ R6|T |×6|T |

as a diagonal matrix with a 5|T | × 5|T | identity matrix in
the top-left block and the last |T | diagonal elements set to
zero. By applying the consensus ADMM algorithm to (20),
the iterative steps outlined below are derived.

Step I. Local primal variables update (26)-(27):

zH
n,ω

k+1
= argmin

zH
n,ω∈Γn,ω

{(
Aλn,ω

k
)⊤

z̄B,H
n,ω

+
ρ

2

∥∥∥A(z̄B,H
n,ω − zB,H

n,ω

k
)∥∥∥2

2

}
, ∀n, ∀ω,

(26)

zBk+1
=argmin

zB∈Ξ

{
J +

∑
n∈N

∑
ω∈Ω

((
λ̄
p
n,ω

k
)⊤

p̄H
n,ω

+
ρ

2

∥∥∥p̄H
n,ω − pH

n,ω

k
∥∥∥2
2

)}
.

(27)

Step II. Global primal variables update in (28):

qtr
n,ω

k+1
=

1

2

(
q̄tr
n,ω

k+1
+ q̃tr

n,ω

k+1
)
, ∀n, ∀ω, (28a)

qbr
n,ω

k+1
=

1

2

(
q̄br
n,ω

k+1
+ q̃br

n,ω

k+1
)
, ∀n, ∀ω, (28b)

pH
n,ω

k+1
=

1

2

(
p̄H
n,ω

k+1
+ p̃H

n,ω

k+1
)
, ∀n,∀ω. (28c)

Step III. Dual variables update in (29):

λk+1
n,ω = λk

n,ω + ρ
(
z̄B,H
n,ω

k+1 − zB,H
n,ω

k+1
)
, ∀n,∀ω. (29)

The simulation results to be presented in the next sec-
tion show that applying ADMM to solve (20) often yields
high-quality solutions, highlighting its potential. However,
the method’s convergence depends on the convexity of the
subproblems, which is not met here due to the presence of
binary variables, making ADMM a promising yet heuristic
approach for solving (20). To make it trustworthy, a method
is introduced to derive effective upper and lower bounds on
the optimal objective function value of (19), denoted by J⋆,
based on the distributed solution computed at each iteration
of the consensus ADMM.

The initial lower bound, JLB0, is obtained by solving the
linear relaxation of (19). This relaxation expands the feasible
space, inevitably yielding a new optimum that is less than
or equal to J⋆. Conversely, the initial upper bound, JUB0, is
established by constraining the feasible space, which can be
achieved by eliminating the flexibility of CHPP. This is done
by setting the upper and lower limits on the forebay water level
of each hydropower plant to be identical, thus fixing the binary
variables in (6). Determining both JLB0 and JUB0 involves
solving two LP problems before executing the distributed
algorithm, with minimal computational impact. The proposed
method then iteratively updates JLB0 and JUB0 as the ADMM
algorithm proceeds, following two distinct strategies.

For the upper bound, each iteration k yields an updated
value, JUBk, through a quasi-projection step. Let zk denote
the primal variable value obtained via ADMM. Drawing inspi-
ration from the outer approximation strategy [21], zk is pro-
jected onto the LP formed by fixing the binary variables in (19)
to the values of zk. This projection, denoted by zprjk, remains
feasible within (19) since it is derived from a projection onto a
new feasible space formed by constraining (19)—specifically,
fixing the binary variables. Thus, J⋆ ≤ JUBk

:= J
(
zprjk

)
.

Proposition 1 describes the process of using dual variables
associated with the consensus constraints (20) for the iterative
updating of the lower bound JLBk. It extends the theoretical
findings from [33]—established for consensus ADMM in
scenario decomposition—to the case where the problem is
decomposed across both spatial and scenario dimensions.

Proposition 1. Let λ := {λn,ω}n∈N ,ω∈Ω satisfy the following
conditions (component-wise):

∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
p
n,ω + λ̃

p

n,ω

)
= 0, (30)∑

n∈N

∑
ω∈Ω

Pω

(
λ̄
tr
n,ω + λ̃

tr

n,ω

)
= 0, (31)

∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
br
n,ω + λ̃

br

n,ω

)
= 0. (32)

Let

DB (λ) := min
zB∈Ξ

{
J +

∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
p
n,ω

)⊤
pH
n,ω

}
, (33)
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and

DH
n,ω (λn,ω) := min

zH
n,ω∈Γn,ω

{
(Aλn,ω)

⊤
zB,H
n,ω

}
,

∀n, ∀ω. (34)

Then

D (λ) := DB(λ) +
∑
n∈N

∑
ω∈Ω

PωD
H
n,ω (λn,ω) ≤ J⋆. (35)

Proof. Let
{
bbr

⋆

, boc
⋆

e⋆, δE
⋆
,pH⋆

, qtr⋆ , qbr⋆ , zfbl⋆
}

be an
optimal solution of the original problem (19). Feasibility
implies that this optimal solution is also feasible within the
relaxed feasible spaces of the subproblems (20b) and (20c),
i.e., it is feasible in Ξ and Γn,ω,∀n, ∀ω, respectively. Thus:

DB(λ) ≤ J(e⋆, δE
⋆
) +

∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
p
n,ω

)⊤
pH⋆

n,ω, (36)

and

DH(λn,ω) ≤
(
λ̃
p

n,ω

)⊤
pH⋆

n,ω +
(
λ̃
tr

n−1,ω

)⊤
qtr⋆

n−1,ω

+
(
λ̃
br

n−1,ω

)⊤
qbr⋆

n−1,ω +
(
λ̄
tr
n,ω

)⊤
qtr⋆

n,ω

+
(
λ̄
br
n,ω

)⊤
qbr⋆

n,ω , ∀n, ∀ω.

(37)

Then

D(λ) ≤
∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
p
n,ω + λ̃

p

n,ω

)⊤
pH⋆

n,ω

+
∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
tr
n,ω + λ̃

tr

n,ω

)⊤
qtr⋆

n,ω

+
∑
n∈N

∑
ω∈Ω

Pω

(
λ̄
br
n,ω + λ̃

br

n,ω

)⊤
qbr⋆

n,ω

+ J(e⋆, δE
⋆
)

=J(e⋆, δE
⋆
) = J⋆.

(38)

The second last equality follows from (30)-(32), which are
inherently satisfied by the ADMM, as shown in [36].

The proposed algorithm is referred to as the Consensus
ADMM with Bounds (CADMMB) and is summarized in
Fig. 4. A tolerance parameter ϵUB is used to guide whether the
upper bound update step should be performed at each iteration.
The termination criterion is given in (39):

Jgapk = 100

∣∣∣JUBk − JLBk
∣∣∣∣∣∣JUBk

∣∣∣ ≤ ϵgap or k ≥ K, (39)

where ϵgap and K are parameters of the algorithm.
A key advantage of this approach, in contrast to heuristic

applications of distributed methods, lies in the availability
of trustworthy bounds on the global optimum: the solution
provided by the CADMMB is ϵgap-suboptimal, meaning its
objective value is at most ϵgap (e.g., 0.01%) worse than
the value achieved by the optimal solution. In other words,
the CADMMB offers a performance guarantee by providing
solutions that operators can confidently evaluate and trust.

Fig. 4. Illustration of the proposed CADMMB algorithm.

TABLE II
CHARACTERIZATION OF THE UNCERTAINTIES.

Uncertainty Average hourly values (standard deviation)
February March April

π̂E (e/MWh) 51.1 (12.4) 35.4 (9.8) 34.7 (8.8)
π̂E↑ (e/MWh) 58.1 (13.9) 38.6 (10.7) 38.6 (9.7)
π̂E↓ (e/MWh) 49.1 (12.8) 32.3 (8.4) 28.5 (8.3)
Q̂ext (m3/s) 1367.8 (456.1) 1932.2 (549.3) 798.68 (219.0)
P̂S (MWh) 6.2 (10.7) 9.6 (14.1) 13.5 (17.4)
P̂W (MWh) 91.5 (61.9) 84.6 (57.1) 52.8 (29.5)

TABLE III
CHARACTERIZATION OF THE HYDROPOWER CASCADE.

Asset name Average annual Head Capacity
energy output (GWh) (m) (MW)

Pierre-Bénite 528 9.0 80
Vaugris 332 6.7 72

Péage de Roussillon 885 12.2 160
Saint Vallier 668 11.5 120

Bourg lès Valence 1082 11.7 180
Beauchastel 1211 11.8 192

Baix le Logis Neuf 1177 11.7 192
Montélimar 1575 16.5 275

Donzère-Mondragon 2032 22.5 349
Caderousse 843 8.6 187

Avignon 857 9.5 186
Vallabrègues 1269 11.3 210

III. SIMULATION RESULTS AND DISCUSSION

This section presents simulation results over three months
(February-April 2017), covering diverse inflow conditions.
The uncertainties are characterized in Table II. Compagnie
Nationale du Rhône’s analysis shows that the uncertainties in
vRES, inflows, and prices are minimally correlated and can be
treated as independent. Therefore, different sets of scenarios
are generated for each uncertainty source, randomly combined,
and assigned equal probabilities. The hydropower cascade
configuration is shown in Fig. 1 and detailed in Table III.
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Fig. 5. Out-of-sample validation results considering 2000 testing scenarios.

Simulations use historical day-ahead market prices in France,
with the bidding problem solved iteratively each day within a
4-hour optimization window. In the CADMMB, both ϵgap and
ϵUB are set to 0.01%, while K = 5000. The algorithm runs
on an Intel i7 processor using Gurobi 9.5.0 as the solver.

A. Out-of-Sample Validation
Fig. 5 presents the ex-post out-of-sample validation results

obtained when increasing the number of training scenarios.
This standard procedure assesses the performance of the
stochastic optimization tool. It involves solving problem (19)
using a set of training scenarios, then evaluating the objective
function (16) by applying the optimal decisions from the
training to a new testing set, consisting of 2000 scenarios
in this case. The difference between the training and testing
objective function values is called the objective function error.
Since the problem is solved iteratively over several days, the
results are averaged. Fig. 5 reports both average and standard
deviation (std) values. The results indicate that 20 scenarios
are sufficient to minimize the error for both the MILP problem
(19) and its LP relaxation. Using more than 20 scenarios raises
computational complexity without significantly improving ac-
curacy.

B. Stylized Illustrative Example
Before presenting the full case study, results from a stylized

example with 5 scenarios are presented. Figs. 6 and 7 show the
convergence rates of the consensus ADMM and the proposed
CADMMB, respectively, under different initial values of the
penalty parameter ρ. The results reveal that the standard
ADMM converges in less than 1140 iterations at best but
exhibits undesirable oscillatory behavior. In contrast, Fig. 7
shows that the CADMMB not only eliminates the oscillations
but also achieves bounds convergence with 99.99% accuracy in
203 iterations at best. The initial lower bound guess is already
close to the global optimum and remains stable throughout
the iterations. The initial gap between bounds is relatively
small (2.54%), highlighting the benefits of warm starting the
algorithm with initial bounds, as shown in Fig. 4. While
consensus ADMM shows a satisfactory performance, the ac-
tual accuracy of its solutions remains indeterminate without
explicitly computing the global optimum through centralized
optimization. In contrast, our trustworthy CADMMB not only
provides bounds that quantify the “distance” from the global
optimum but also enables precise control over the desired
accuracy by tuning the ϵgap parameter.

Fig. 6. Example of convergence of the standard consensus ADMM algorithm
for various initial penalty parameter values, when considering 5 scenarios.

Fig. 7. Example of convergence of the proposed CADMMB algorithm for
various initial penalty parameter values, when considering 5 scenarios.

C. Full Scale Case Study

Figs. 8 and 9 illustrate the performance of the standard
consensus ADMM and the proposed CADMMB, respectively,
when applied to the full scale case study involving 20 sce-
narios. As shown in Fig. 8, the ADMM fails to address
the complexity of the problem. In contrast, our CADMMB
exhibits a robust performance, efficiently converging with
99.99% accuracy in about 550 iterations. The initial lower
bound estimate in this case is significantly distant from the
optimum, necessitating iterative updates to refine JLB. No-
tably, the evolution of JLB and JUB throughout the iterations
differs markedly. While JLB is continuously updated based
on the progressive evolution of the dual variables, JUB is
determined through a projection step into a new feasible space,
which results in the large jump observed in Fig. 9.

Fig. 10 generalizes these findings by showing the average
runtime for solving the daily bidding problems and the number
of failures—defined as the number of days for which the algo-
rithm fails to provide a solution within the 4-hour optimization
window—for different algorithms, as a function of the number
of scenarios. In the reference case (20 scenarios), CADMMB
reduces the average runtime by approximately 35% compared
to consensus ADMM and by 57% compared to a traditional
centralized optimization. Moreover, while the number of in-
tractable instances explodes for both the standard ADMM
and centralized algorithms as the number of scenarios grows,
our trustworthy CADMMB consistently provides a distributed
solution with over 99.99% accuracy (ϵgap = 0.01%).
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Fig. 8. Example of ADMM performance when considering 20 scenarios.

Fig. 9. Example of CADMMB performance when considering 20 scenarios.

TABLE IV
COMPARISON BETWEEN EX-POST PROFIT WITH FIXED HOURLY BIDS AND

PRICE-QUANTITY BIDDING CURVES. IN BRACKETS, THE RELATIVE
DIFFERENCE WITH RESPECT TO FIXED HOURLY BIDS.

Num. scenarios Profit per MWh of energy produced (e)
Fixed bids Price-quantity bidding curves

5 33.63 34.38 (+2.2%)
10 35.74 36.80 (+3.0%)
15 37.82 39.22 (+3.7%)
20 39.45 41.22 (+4.5%)
25 39.89 41.36 (+3.7%)

Fig. 11 illustrates an example of the price-quantity bidding
curves generated by our CADMMB. Despite the provided
parallelization of the problem shown in Fig. 3, the CADMMB
algorithm effectively coordinates both vRES and hydropower
resources to optimize energy offers during daily peak price
periods. These findings are generalized in Table IV, where it
is reported that employing our CADMMB with price-quantity
bidding curves enhances the average ex-post market profit
of the VPP by up to 4.5% compared to using a traditional
centralized solution with fixed hourly bids.

Finally, Fig. 12 illustrates a typical daily operation of the last
hydropower asset in the cascade using CADMMB, reflecting
the overall behavior of the hydropower system. The figure
presents three distinct inflow conditions: energetic, low-flow,
and flood periods. Due to constraints imposed by hydropower
operational curves (e.g., Fig. 2), the hydropower plant can fully
respond to vRES energy drops by discharging the reservoir
only during energetic periods when sufficient storage capacity
is available. During low-flow periods, CADMMB still enables
to address the most significant vRES energy drops, while
during flood periods, the hydropower plants are constrained
to operate as run-of-the-river assets with no storage capacity.

Fig. 10. Comparison between centralized MILP, consensus ADMM, and
CADMMB based on average runtime per scheduling period and failure rates
(% of total simulation days), as a function of the number of scenarios.

Fig. 11. Example of price-quantity bidding curves derived via CADMMB.
Peak price periods are highlighted in red.

Fig. 12. Example of coordination between the hydropower cascade and vRES
under various inflow conditions when the proposed CADMMB is employed.

IV. CONCLUSION AND FUTURE WORK

This study introduces a stochastic ADMM-based distributed
algorithm for the co-optimization of vRES and CHPP in
the day-ahead market. First, the original MILP problem is
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decomposed across spatial and scenario dimensions. A dis-
tributed strategy is then applied to derive trustworthy bounds
on the global optimum, with mathematical proof provided to
demonstrate their existence and validity. Unlike a conventional
ADMM application, which can lead to heuristic methods
for non-convex problems, the proposed CADMMB algorithm
offers a performance guarantee. Testing in collaboration with
the French aggregator Compagnie Nationale du Rhône shows
the algorithm’s effectiveness in managing complex aggrega-
tions. The CADMMB achieves a 35% reduction in average
runtime compared to consensus ADMM and a 57% reduction
compared to traditional centralized optimization. Additionally,
CADMMB consistently delivers solutions with over 99.99%
accuracy, whereas both centralized and consensus ADMM
methods fail to solve the problem. Future research will aim
to refine initial bound guess strategies, explore the effects of
parameter tuning, extend the analysis to multi-market trading
case, and integrate asynchronous communication to enhance
the robustness of the proposed distributed algorithm.
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short-term hydropower scheduling,” IEEE Trans. Power Syst., vol. 31, no.
6, pp. 4616-4625, Nov. 2016.

[19] L. S. M. Guedes, P. de Mendonça Maia, A. C. Lisboa, D. A. G. Vieira,
and R. R. Saldanha, “A unit commitment algorithm and a compact MILP
model for short-term hydro-power generation scheduling,” IEEE Trans.
Power Syst., vol. 32, no. 5, pp. 3381-3390, Sep. 2017.

[20] A. Helseth, and B. Mo, “Hydropower aggregation by spatial decompo-
sition—An SDDP approach,” IEEE Trans. Sustain. Energy, vol. 14, no.
1, pp. 381-392, Jan. 2023.
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