
HAL Id: hal-04682392
https://minesparis-psl.hal.science/hal-04682392v1

Submitted on 30 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Reconstructing indistinguishable solutions via a
set-valued KKL observer

Pauline Bernard, Mohamed Maghenem

To cite this version:
Pauline Bernard, Mohamed Maghenem. Reconstructing indistinguishable solutions via a set-valued
KKL observer. Automatica, 2024, 166 (August), pp.111703. �10.1016/j.automatica.2024.111703�.
�hal-04682392�

https://minesparis-psl.hal.science/hal-04682392v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Reconstructing Indistinguishable Solutions

Via aSet-ValuedKKLObserver

Pauline Bernard a, MohamedMaghenem b
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Abstract

KKL observer design consists in finding a smooth change of coordinates transforming the system dynamics into a linear filter
of the output. The state of the original system is then reconstructed by implementing this filter from any initial condition and
left-inverting the transformation, under a backward-distinguishability property. In this paper, we consider the case where the
latter assumption does not hold, namely when distinct solutions may generate the same output, and thus be indistinguishable.
The KKL transformation is no longer injective and its “left-inverse” is thus allowed to be set-valued, yielding a set-valued
KKL observer. Assuming the transformation is full-rank and its preimage has constant cardinality, we show the existence of a
globally defined set-valued left-inverse that is Lipschitz in the Hausdorff sense. Leveraging on recent results linking this left-
inverse with the backward-indistinguishable sets, we show that the set-valued KKL observer converges in the Hausdorff sense
to the backward-indistinguishable set of the system solution. When, additionally, a given output is generated by a specific
number of solutions not converging to each other, we show that the designed observer asymptotically reconstructs each of
those solutions. Finally, the different assumptions are discussed and illustrated via examples.

Key words: KKL observer, set-valued observer, indistinguishability, p-valued maps, Lipschitz extension

1 Introduction

Consider a dynamical system of the form

ẋ = f(x), y = h(x), (1)

where x ∈ Rnx is the state, y ∈ Rny is the output,
f : Rnx → Rnx and h : Rnx → Rny are continuously
differentiable.We assume that the trajectories of interest
remain in a compact subset X ⊂ Rnx . A typical problem
in many engineering applications is to estimate online
the current state x(t) of (1) based on the knowledge of
the output y on the interval [0, t], in the sense that, the
error between the estimate, denoted by x̂(t), and x(t)
asymptotically converges to zero. To do so, we usually
design an observer ; namely, a dynamical system

ż = F (z, y), x̂ = T (z, y), (2)

where z ∈ Rnz is the state and x̂ ∈ Rnx is the output.
System (2) is fed with the known output y to (1), and
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provides as output the estimate x̂ such that (see [8])

lim
t→∞

(x̂(t)− x(t)) = 0; (3)

Since the observer cannot distinguish solutions produc-
ing the same output, the possibility of achieving asymp-
totic estimation, implicitly, requires that indistinguish-
able solutions, i.e., solutions producing a same output,
at least asymptotically converge to each other. In other
words, the system must be detectable. In general, nonlin-
ear observers are designed under stronger observability
conditions saying that there is no indistinguishable so-
lutions, or, in other words, that the output signal carries
enough information to determine the state uniquely.

1.1 Background on KKL-Observer design

One possible route to design (2) that guarantees (3)
is the nonlinear Luenberger (or Kazantzis-Kravaris-
Luenberger (KKL)) approach, initially introduced in
[20] for single-output linear systems. The idea is to look
for a continuous and injective change of coordinates
T : Rnx → Rnz such that z := T (x) is governed by

ż = Az +By, (4)
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for a pair (A,B) ∈ Rnx×nx × Rnx to be chosen with A
Hurwitz. In particular, when T is smooth, it must verify

∂T

∂x
(x)f(x) = AT (x) +Bh(x) ∀x ∈ X . (5)

Given a solution t 7→ x(t) to (1), since A is Hurwitz, any
solution to (4) subject to t 7→ y(t) = h(x(t)), exponen-
tially estimates t 7→ T (x(t)); thus, an estimate of x can
be recovered through a left-inversion of T .

Originally, when ny = 1, D. Luenberger showed in [20]
that the map T always exists for linear observable sys-
tems as long as the pair (A,B) is picked controllable,
nz = nx, and A does not share any eigenvalue with the
system’s dynamics. In the context of nonlinear systems,
the existence of the map T was first established around
an equilibrium point in [26], [16] and [18]. Then, this lo-
cal result was extended in [17] to a global one using a
strong observability assumption. This result, however,
does not provide an indication on the necessary dimen-
sion nz. This problem was addressed in [4] under a weak
backward-distinguishability assumption. That is, the in-
jective map T is shown to exist, for each matrix A com-
plex, diagonal, of dimension nz = nx+1, and with nx+1
distinct complex eigenvalues. The aforementioned result
is generalized in [10], for almost any real controllable pair
(A,B) of dimension nz = 2nx+1 with A diagonalizable.
In terms of implementation, running (4) online from any
initial condition, provides an estimate of t 7→ T (x(t)).
A left-inverse T inv of T must thus be available to com-
pute an estimate x̂ = T inv(z) of the system solution. An
expression of the map T can sometimes be found ana-
lytically by solving (5) (e.g., for parameter identification
[1] or state/parameter estimation in electrical machines
[15,9]). Otherwise, when an expression for T or its left
inverse T inv is not available, numerical approximation
methods based on neural networks are being developed
[25,13,24]. But in any case, the distinguishability prop-
erty assumed in this literature [4,10] requires that the
backward solutions from any distinct states xa, xb in X
generate distinct past outputs ya, yb; hence, we say that
xa and xb are backward-distinguishable. Said differently,
any given state in X is uniquely determined by its past
output. The goal of this paper is to study situations
where this assumption is not verified.

1.2 Motivation

Backward-distinguishability is not always verified in
applications, where some systems may exhibit indistin-
guishable states. This is the case of induction motors
[22,28] and permanent magnet synchronous motors
(PMSMs) [9]. Estimating the state from the outputs is
then impossible. However, strategies to recover all the
possible trajectories corresponding to a given output,
are still of great interest, in particular for monitoring, or
when an extra-knowledge or expertise can be used to de-
cide on the actual-solution estimate, among all the pos-
sibilities provided by the set-valued observer. More pre-

cisely, when two solutions, not asymptotically tending
to each other, generate a same output, there is no hope
to design an observer producing a single asymptotically-
correct estimate. However, one could imagine having an
algorithm producing a set of estimates that converge
asymptotically — for a certain distance to be specified
— to the set of solutions generating that same output,
or producing one estimate converging asymptotically
to one of the several possible solutions. This is moti-
vated by classes of nonlinear systems producing finite
numbers of indistinguishable solutions, as in induction
motors [22,28] or PMSMs [9]. Indeed, when the number
of possible indistinguishable solutions corresponding to
a given output signal is finite, one could hope to design
an observer whose output x̂ reconstructs one of (or all)
the possible indistinguishable trajectories. This is done
in [22,23,21], through sliding mode tools, for systems
that can be written in a “non-observable cascade” form,
made of observable triangular forms interconnected via
a non-injective mapping. Instead, in [9], the KKL design
is used on a particular application featuring a PMSM
with unknown resistance. It is shown that indistinguish-
able solutions exist, but there are always less than six,
and that there exists a map T : Rnx → Rnz transform-
ing the dynamics into (4) and whose inversion enables
to reconstruct all the possible states. The correct value
of the resistance can then be monitored via extra phys-
ical knowledge. A preliminary work in [2] attempted to
generalize this idea by showing that a KKL observer is
able to extract from a given output signal t 7→ y(t) all
the possible information about the corresponding (in-
distinguishable) solutions. More precisely, it is proved
that, for an appropriate choice of the pair (A,B),
there exists a continuously differentiable transforma-
tion T : X → Rnz that transforms (1) into the form of
(4) and that the map T characterizes the distinguish-
able states, in the sense that, its preimage gives exactly
the set of indistinguishable states. This suggests that,
when the preimage map is continuous (in the sense of
set-valued maps), then it might be possible to online re-
construct, from a solution z to (4) subject to an output
y, all the possible indistinguishable solutions generating
y. Although this was confirmed on a particular simula-
tion example, unless further assumptions are made, the
preimage map is only defined on the image set T (X )
and it is only upper semicontinuous in general, which
prevents from stating a general convergence result.

1.3 Contribution

In this paper, we push forward the theory KKL ob-
servers when the backward-distinguishability assump-
tion is not satisfied. More specifically, we consider a
general nonlinear system (1) having a finite and con-
stant number of indistinguishable states on X (resp. so-
lutions). A smooth map T transforms it into the form
in (4). As a result, the (set-valued) preimage map of T ,
denoted by T− : T (X ) ⇒ X , allows us to generate what
we call a set-valued KKL observer for (1). Our goal is to
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propose sufficient conditions to guarantee that the de-
signed observer asymptotically reconstructs the possible
solutions generating a same output. The paper’s contri-
butions can be listed as follows:

1- We show that the map T− is Lipschitz continuous
provided that the Jacobian of T is full rank on X and
T− has a constant cardinality on T (X ).

2- Since the solutions to (4) are not guaranteed to remain
in T (X ), we prove the existence of a Lipschitz continuous
set-valued map T inv : Rnz ⇒ Rnx that is an extension
of T− to Rnz .

3- As a consequence of the latter two items, we show that,
for any x solution to (1) generating the output y and for
any z solution to (4) subject to y, the Hausdorff distance
between T inv(z(t)) and the backward-indistinguishable
set of x(t) converges to zero.

4- We provide further assumptions, under which, any
continuous selection t 7→ x̂(t) ∈ T inv(z(t)) converges
asymptotically to a solution to (1) generating the output
y. In particular, we consider the case where the cardi-
nality of T− equals the number of solutions generating
the output signal y and eventually remaining in X .

5- Finally, we discuss the necessity and establish some
connections between the different assumptions used in
this paper. In particular, we discuss the necessity of a
full-rank Jacobian of T to conclude Lipschitz continuity
of T−, and the necessity of the constant cardinality of
T− to conclude continuity of T−. Furthermore, we inves-
tigate the link between the existence of a finite number
of indistinguishable trajectories and the constant and
finite cardinality of the indistinguishable sets. We also
relate the rank of T with the rank of a differential ob-
servability map, that can be more easily computed.

The rest of this paper is organized as follows. After stat-
ing the problem in Section 2, the Lipschitz continuity
and Lipschitz extension of the preimage map T− are
then analysed in Section 3, while convergence properties
of the proposed set-valued KKL observer are presented
in Section 4. The necessity and the link between the dif-
ferent assumptions is finally investigated in Section 5.
Examples are presented all along the paper to illustrate
our results.

Notations. For x ∈ Rnx , |x| denotes the Euclidean
norm of x and for ε > 0, B(x, ε) denotes the open ball
centered at xwhose radius is ε. For a setK ⊂ Rnx , we use
int(K) to denote its interior, ∂K its boundary, card(K)
the number of elements in the set K, and, for a point
x ∈ Rnx , d(x,K) denotes the distance from x to the set
K. For O ⊂ Rnx , K\O denotes the subset of elements
in K that are not in O. A point x ∈ K is isolated in K if
there exists ε > 0 such that B(x, ε) ∩K = {x}. The set
K is simply connected if any loop in K can be contin-
uously contracted to a point. The Dubovitsky-Miliutin

cone of K at x is given by

DK(x) :={v ∈ Rn : ∃ϵ0 > 0 : x+ ϵ(v + w) ∈ K

∀ϵ ∈ (0, ϵ0], ∀w ∈ ϵ0B}, (6)

and the contingent cone of K at x is given by

TK(x) :=

{
v ∈ Rn : lim inf

h→0+

d(x+ hv,K)

h
= 0

}
. (7)

For a differentiable map x 7→ T (x) ∈ Rnz , ∂T
∂x (x) denotes

the Jacobian of T at the point x. By F : Rnz ⇒ Rnx ,
we denote a set-valued map associating to each element
z ∈ Rnz a subset F (z) ⊂ Rnx , and, for some Z ⊂ Rnz ,
we let F (Z) := ∪z∈ZF (z). The set-valued map F is said
to be p-valued, for some p ∈ {1, 2, ...}, if for all z ∈ Rnz ,
card(F (z)) = p. Furthermore, we denote Ap(Rnx) the
space of unordered p-tuples in Rnx . Note that multiplic-
ity is allowed inAp(Rnx), i.e., a map F̃ : Rnz → Ap(Rnx)
associates to each z ∈ Rnz a tuple of p points in Rnx

that may not be distinct; in which case, we say that F̃
is an Almgren p-valued map [3]. Distances dH, δ,G, and
continuity notions for set-valued and p-valued maps are
recalled in Appendix A. Given x0 ∈ Rn, we denote by
ω(x0) the ω-limit set of x0 for (1), i.e,

ω(x0) := {y : ∀t̄ > 0, ∀ε > 0, ∃t > t̄ : |ϕ(t)− y| < ε},

where ϕ is the unique maximal solution to (1) starting
from x0. We recall that a (backward) solution ϕ to (1)
starting from x0 is (backward) maximal if the domain
of definition of every (backward) solution to (1) starting
from x0 is subset of the domain of definition of ϕ.

2 Problem Statement

2.1 Indistinguishability

Before stating the problem tackled in this paper, we re-
call some important definitions.

Definition 1 (Backward indistinguishable points)
Two points xa, xb ∈ Rnx are said to be backward in-
distinguishable for (1), which we denote xa ∼xb, if
the maximal backward solutions ϕa : (−σa, 0] → Rnx ,
ϕb : (−σb, 0] → Rnx to (1) initialized at xa, xb respec-
tively, i.e., with ϕa(0) = xa and ϕb(0) = xb, verify

h(ϕa(t)) = h(ϕb(t)) ∀t ∈ (−min{σa, σb}, 0] .

In other words, two points xa and xb are backward indis-
tinguishable for (1) if they cannot be distinguished from
the past output of (1). Indistinguishability may be seen
as an equivalence relation whose classes of equivalence
define the indistinguishable sets.

Definition 2 (Indistinguishability set) Given O ⊆
Rnx and x ∈ Rnx , the backward indistinguishable set with
respect to O for (1) is given by

IO(x) := {x′ ∈ O, x′ ∼x}. (8)
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In other words, IO(x) contains all the states in O that
cannot be distinguished from x based on the knowledge
of the past output. To ease the notation, we will omit the
mention of O when O = Rnx . As explained in the intro-
duction, in the context of observer design, we are inter-
ested in estimating the state modulo its indistinguish-
able states. For that, we need the preimage of a map T
to describe exactly the indistinguishable sets. This leads
to the following definition.

Definition 3 (Characterizing indistinguishability)
A map T : Rnx → Rnz is said to characterize the
backward-distinguishable points in O for (1) if, for each
(xa, xb) ∈ O ×O, we have

T (xa) = T (xb) ⇐⇒ xa ∼xb. (9)

The aforementioned notions focus on backward-
indistinguishable points. We will also exploit the link
with the notion of indistinguishable solutions.

Definition 4 (Indistinguishable solutions) Two
solutions ϕa : Ia ⊂ R → Rnx and ϕb : Ib ⊂ R → Rnx to
(1) are indistinguishable if

h(ϕa(t)) = h(ϕb(t)) ∀t ∈ Ia ∩ Ib.

Note that when two points are backward-indistinguishable,
then the two maximal backward solutions to (1) ini-
tialized at those points are indistinguishable. However,
backward indistinguishability says nothing about what
happens to those solutions in positive time. Conversely,
two indistinguishable solutions verify

ϕa(t)∼ϕb(t) ∀t ∈ Ia ∩ Ib (10)

provided that they are maximal in backward time. Note
though that, for analytic systems, the solutions are an-
alytic in time, and therefore, equality of outputs on an
arbitrarily small open subset of Ia ∩ Ib, implies equality
of outputs on Ia ∩ Ib. Hence, when (1) is analytic, two
solutions ϕa and ϕb, with Ia ∩ Ib nonempty, are indis-
tinguishable if and only if there exists to ∈ Ia ∩ Ib such
that ϕa(to)∼ϕb(to). Actually, in this case, (10) holds,
and the forward and the backward indistinguishability
of points are equivalent.

2.2 Set-valued KKL design

According to the KKL methodology, we are supposed
to find a C1 map T : Rnx → Rnz transforming the dy-
namics (1) into (4); namely, solution to (5). Without
observability/distinguishability assumptions, we cannot
hope to prove injectivity of T on X . However, [2, Theo-
rem 1] showed the existence of a map T solution to (5)
that characterizes the backward-distinguishable states
according to Definition 1.

Theorem 1 Assume the existence of an open bounded
set O, containing the compact set X , that is backward in-
variant for (1); i.e, the backward solutions to (1) starting

from O remain in O. Denote no := 2nx + 1 and nz :=
nony. Then, there exists ρ > 0 such that, for almost any
pair (Ao, Bo) ∈ Rno×no × Rno , with Ao + ρIno Hurwitz,
there exists T : Rnx → Rnz continuously differentiable,
characterizing the backward-distinguishable states, and
verifying (5) with (A = Iny

⊗Ao, B = Iny
⊗Bo).

Remark 1 Note that it is always possible to make the
set O backward invariant by modifying f outside of O.
However, by doing so, (9) holds for a modified system.
Hence, T (xa) = T (xb) ensures equality of the outputs of
the original system only as long as the backward solutions
t 7→ (ϕa(t), ϕb(t)) from (xa, xb) remain in the set where
f has not been modified.

Remark 2 According to [10, Proposition 2.1], the solu-
tion T to (5) is unique on the backward-invariant set O.
So, if we find T verifying (5) everywhere on O, for some
nz ≥ nx and for (A,B) picked according to Theorem 1,
then T characterizes the backward-distinguishable states.

Now, given t 7→ x(t) solution to (1) generating an output
t 7→ y(t), we know, using (5) that, any solution t 7→ z(t)
to (4), subject to output y, verifies

lim
t→+∞

|z(t)− T (x(t))| = 0. (11)

Consider the set-valued preimage map T− : T (X ) ⇒ X
defined by

T−(z) := {x ∈ X : T (x) = z}. (12)

Since T characterizes the backward-indistinguishable
states, in the sense that (3) holds, we know that

T−(T (x)) = IX (x) ∀x ∈ X . (13)

Exploiting (11), it becomes tempting to use T−(z(t)) as
an estimate of the indistinguishable set IX (x(t)) at time
t. However, z(t) is not guaranteed to be in the image set
T (X ) where T− is defined. Therefore, we need to find a
set-valued extension T inv : Rnz ⇒ Rnx , having the same
regularity as T−, and verifying

T inv(T (x)) = T−(T (x)) ∀x ∈ X . (14)

From there, one may compute online the set T inv(z(t)),
or at least a continuous selection x̂(t) ∈ T inv(z(t)), for
instance through optimization schemes. In this paper,
we study the following two questions:

(1) Under which conditions does t 7→ T inv(z(t)) asymp-
totically converge to t 7→ IX (x(t)) in the Hausdorff
sense ?

(2) Can we ensure that a continuous selection t 7→
x̂(t) ∈ T inv(z(t)) converges to a solution to (1) pro-
ducing t 7→ y(t)?

Regarding the first question, the answer is positive pro-
vided that T inv is (Hausdorff) continuous, which means

4



upper and lower semicontinuous at the same time. In
particular, it means that T− must also be (Hausdorff)
continuous. However, it is shown in [2] that the map T−

is, in general, only upper semicontinuous. Indeed, the
following example shows a case where T− is not lower
semicontinuous and, therefore, it cannot be continuous.
We refer the reader to Appendix A for the definitions of
the set-valued regularity notions used in this paper.

Example 1 Consider the smooth map T : X :=
[−π, π] → [−1, 1]× [−1, 1] given by

T (x) := (sin(2x), sin(x)).

Note that T−(0, 0) = {−π, 0, π}; whereas, for each
z ∈ T ([−π, π])\{0}, T−(z) contains only two elements.
Hence, T− is not lower semicontinuous at z = 0.

As a consequence, the continuity and convergence of
t 7→ T inv(z(t)) to t 7→ IX (x(t)) is not guaranteed with-
out extra assumptions that we investigate in the next
section. Before that, we illustrate the aforementioned
questions on the example studied in [2].

Example 2 ([2]) Consider system (1) with

f(x) :=

[
x2 + x1(1− (x21 + x22))

−x1 + x2(1− (x21 + x22))

]
,

h(x) := [x21 − x22 2x1x2]
⊤.

(15)

For any x ∈ R2, I(x) = {x,−x}. Next, using the KKL
toolbox [12], a numerical solution to (5) defined on X :=
B(0, 1.7) and for nz = (nx + 1)ny = 6 (instead of nz =
(2nx + 1)ny = 10 as in Theorem 1) was obtained, after
making some open set O backward-invariant. Further-
more, it was numerically checked that T characterizes
the backward-distinguishable states in the sense that

T−(T (x)) = {x,−x} ∀x ∈ X .

Moreover, by online solving the optimization algorithm

x̂(t) := argmin
xs∈X

|z(t)− T (xs)|,

for z solution to (4) subject to an output y, we found that
the obtained function t 7→ x̂(t) converges asymptotically
to the set-valued map t 7→ {x(t),−x(t)} formed by the
two solutions to (1) generating y. However, this does not
imply that t 7→ x̂(t) tends to a solution to (1), unless con-
tinuity of t 7→ x̂(t) is enforced in the optimization prob-
lem. In which case, t 7→ x̂(t) either tends to t 7→ x(t) or
to t 7→ −x(t); namely, to one of the two indistinguishable
solutions. The goal of the paper is to prove these facts
observed in simulation.

3 Lipschitzness of T− and Lipschitz extension

In this section, we provide assumptions, under which,
the set-valued map T− is Lipschitz (and therefore con-

tinuous) and admits a Lipschitz extension T inv. More
precisely, we consider the following two assumptions.

Assumption 1 (Constant cardinality) There exists
p ∈ N>0 such that, for each z ∈ T (X ), card(T−(z)) = p.

If T characterizes the backward-indistinguishable states
as guaranteed in Theorem 1, namely, (3) holds, we know
that (13) holds. Therefore, Assumption 1 holds if and
only if

card(IX (x)) = p ∀x ∈ X .
In other words, any state in X admits exactly p−1 other
backward-indistinguishable states in X for (1). For in-
stance, in Example 2, Assumption 1 holds on any com-
pact subset ofR2\{0}with p = 2, but it does not hold on
X since 0 ∈ X and card(T−(T (0)) = card(IX (0))) = 1.

Assumption 2 (Full rank) For each x ∈ X , the Jaco-
bian matrix ∂T

∂x (x) is full rank.

Remark 3 When the map T solving (5) is known ex-
plicitly or learned numerically as in [12], the condition-
ing of ∂T

∂x (x) can be evaluated on a numerical grid. For

instance, the matrix ∂T
∂x (x) obtained in [2], for the sys-

tem in Example 2, can be checked to be full-rank on X
with a conditioning smaller than 103; see Figure 1.

The “physical” interpretation of Assumption 2 is less
straight-forward. In Section 5.3, we exhibit a link be-
tween the rank of T and the rank of the differential ob-
servability map in (45), provided that the eigenvalues
of A have a sufficiently large real part. Note also that a
map T verifying Assumption 1 does not necessarily ver-
ify Assumption 2 (take, for instance, the map T : R → R
with T (x) := x3). The following result discusses a link
between Assumptions 1 and 2.

Proposition 1 Let T : O ⊂ Rnx → Rnz be a C1 map,
and let X ⊂ O be compact such that Assumption 2 holds.
Then, for all z ∈ T (X ), card(T−(z)) is finite.

PROOF. Let xo ∈ X and zo = T (xo). Under Assump-
tion 2, for any x′o ∈ T−(zo) ⊆ X , there exists a neighbor-
hood B(x′o, ε) such that T : B(x′o, ε) → Rnz is injective.
Therefore, x′o is the unique preimage of zo in B(x′o, ε),
i.e., the preimages of zo are isolated. Since X is compact,
T−(zo) is finite. ■

We conclude from Proposition 1 that the contribution
of Assumption 1 over 2 is not in the fact that card(T−)
is finite, but in the fact that it is constant. For instance,
in Example 1, the map T verifies Assumption 2, and yet
does not show constant cardinality of T−. This is also
the case of Example 2, where Assumption 2 holds and
yet the cardinality drops at zero. This is because T is
not a local homeomorphism on X .

Under Assumptions 1 and 2, we establish Lipschitzness
of T− on T (X ). Furthermore, thanks to Almgren the-
ory [3], we establish the existence of a set-valued map
T inv : Rnz ⇒ Rnx that is a Lipschitz extension of T− to
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Fig. 1. Condition number of the Jacobian of T in Example 2

Rnz . The necessity of Assumptions 1 and 2 for the con-
tinuity/Lipschitzness of T− is discussed in Section 5.1.

Theorem 2 Consider a C1 map T : O ⊂ Rnx → Rnz ,
with O an open set containing the compact set X and
nz ≥ nx, such that Assumptions 1 and 2 hold. Then,
there exists a Lipschitz set-valued map T inv : Rnz ⇒ Rnx

such that

T inv(z) = T−(z) ∀z ∈ T (X ) (16)

and for any z ∈ Rnz , T inv(z) contains at most p elements.

PROOF. Consider zo ∈ T (X ), and according to As-
sumption 1, there exist (x1, x2, . . . , xp) ∈ X p such that

T−(zo) = {x1, . . . , xp}.

From Assumption 2, the Jacobian of T is full-rank
in a neighborhood of each xi since the rank is lower-
semicontinuous. Applying the constant rank theorem
in Lemma 2, we deduce that, for each i ∈ {1, 2, . . . , p},
there exist εi, σi > 0 and two diffeomorphisms
ϕi : B(xi, εi) → Rnx and ψi : B(zo, σi) → Rnz such that

ψi ◦ T (x) = (ϕi(x), 0, . . . , 0) ∀x ∈ B(xi, εi).

Now, denote by Proj : Rnz → Rnx the projection on the
first nx coordinates, we let the C1 map gi := ϕ−1

i ◦Proj◦
ψi : B(zo, σi) → Rnx verifying

gi ◦ T (x) = x ∀x ∈ B(xi, εi).

In other words, gi is a C
1 local left-inverse of T around

xi. We now prove that there exists σo > 0 such that

T−(z) = ∪p
i=1gi(z) ∀z ∈ B(zo, σo) ∩ T (X ). (17)

To do so, we pick a sequence (zk)k∈N in T (X ) converging
to zo. Since

T−(zo) := {x1, x2, . . . , xp} ⊂ ∪p
i=1B(xi, εi),

and since T− is upper semicontinuous acording to [2],
it follows that there exists k∗ > 0 such that, for each
k ≥ k∗,

T−(zk) ⊂ ∪p
i=1B(xi, εi).

As a result, for each k ≥ k∗ and each element xkj ∈
T−(zk), there exists ikj ∈ {1, 2, . . . , p} such that

zk = T (xk,j), and xk,j ∈ B(xikj
, εikj

).

Thus, xk,j = gikj
(zk), so that

T−(zk) ⊆ ∪p
i=1gi(zk) ∀k ≥ k∗.

The latter establishes the existence of a neighborhood
Wo of zo such that

T−(z) ⊆ ∪p
i=1gi(z) ∀z ∈Wo ∩ T (X ).

However, by Assumption 1, the cardinal of T−(z) is p
for z ∈ T (X ) ∩Wo, so that necessarily it is an equality
and (17) follows. Then, we note that the set-valued map
g : Wo ⇒ Rnx defined by g(z) =

⋃p
i=1 gi(z) can be

identified with an Almgren p-valued map g̃ on Wo ∩
T (X ). Thus, to g and T−, we associate the Almgren p-

valued maps g̃ and T̃− defined on Wo and Wo ∩ T (X ),
respectively.

Since each gi, i ∈ {1, 2, ..., p}, is C1, it is Lipschitz on
Wo with a Lipschitz constant Li > 0, and after (17), we
conclude that, for each za, zb ∈Wo ∩ T (X ), we have

G(T̃−(za), T̃
−(zb)) = min

σ∈Pp

max
i∈{1,...,p}

|gi(za)− gσ(i)(zb)|

≤ max
i∈{1,...,p}

|gi(za)− gi(zb)| ≤ max
i∈{1,...,p}

Li |za − zb|.

This being true on a neighborhood of zo, for any zo ∈
T (X ), we conclude that T̃− is locally Lipschitz on T (X ).
Now, since T (X ) is compact under the continuity of T ,

we show that T̃− is (globally) Lipschitz on T (X ). In-

deed, assume T̃− is not Lipschitz on T (X ). Then, for
every k ∈ N, there exists za,k, zb,k in T (X ) such that

G(T̃−(za,k), T̃
−(zb,k)) ≥ k|za,k − zb,k|. By compactness,

we can assume that the sequence {za,k, zb,k}∞k=1 is con-

vergent to (z∗a, z
∗
b ) ∈ T (X )× T (X ). Since T̃−(za,k) and

T̃−(za,k) are bounded, necessarily |za,k−zb,k| converges
to 0, and, thus, z∗a = z∗b := z∗. Therefore, for sufficiently
large k, za,k, zb,k must belong to a neighborhood of z∗

where T̃− is Lipschitz. This yields to a contradiction
when k is sufficiently large.

Next, by using Almgren extension theorem; see Lemma 3
in the Appendix, we conclude the existence of a Lipschitz
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Almgren p-valued map T̃ inv : Rnz → Ap(Rnx) (with

multiplicity allowed) such that T̃ inv agrees with T̃− on
T (X ). In particular, there exists L > 0 such that

G(T̃ inv(za), T̃
inv(zb)) ≤ L|za−zb| ∀(za, zb) ∈ Rnz×Rnz .

Then, forgetting about multiplicity and transforming
the p-valued map into a set-valued one, we build T inv :
Rnz ⇒ Rnx such that

dH(T inv(za), T
inv(zb)) ≤ L|za−zb| ∀(za, zb) ∈ Rnz×Rnz .

Indeed,

dH(T inv(za), T
inv(zb))

= max{max
i

min
j

|T̃ inv
i (za)− T̃ inv

j (zb)|,

max
j

min
i

|T̃ inv
i (za)− T̃ inv

j (zb)|}

and for any permutation σ in Pp,

max
i

min
j

|T̃ inv
i (za)− T̃ inv

j (zb)|

≤ max
i

|T̃ inv
i (za)− T̃ inv

σ(i)(zb)|

max
j

min
i

|T̃ inv
i (za)− T̃ inv

j (zb)|

≤ max
j

|T̃ inv
σ−1(j)(za)− T̃ inv

j (zb)|,

which gives the result by an appropriate re-indexing. ■

Example 3 Consider the map T introduced in Exam-
ple 1. We already showed that T− is only upper semi-
continuous. We can see that ∂T

∂x (x) is full rank for all
x ∈ X := [−π, π]. Hence, Assumption 2 is verified. How-
ever, Assumption 1 is not verified on T (X ) but verified
on any compact set contained in T (X )\{0}. Thus, T− is
Lipschitz on any compact subset contained in T (X )\{0}.
Remark 4 From the proof of Theorem 2, the set-valued
map T inv : Rnz ⇒ Rnx is obtained from the p-valued
map T̃ inv : Rnz → Ap(Rnx) (by ignoring multiplicities),

which is a Lipschitz extension of T̃− : T (X ) → Ap(Rnx)

(T− viewed as a p-valued map). The existence of T̃ inv is
guaranteed by Almgren Extension Theorem, whose proof
in [19, Theorem 1.7] is constructive; hence, it allows to

deduce a candidate T̃ inv, leading to a candidate T inv.

Remark 5 Note that the conclusions of Theorem 2 re-
main valid if, instead of Assumption 1, we assume that
the cardinality of T− is constant only on the connected
components of T (X ). The cardinality of T inv will then
not exceed the maximal cardinality of T−. Such a relax-
ation will not help our study since, using (11), a solution
z to (4), subject to the system’s output y, converges to
T (X ), and, since z is continuous, then it necessarily con-
verges to a connected component in T (X ), on which, the
cardinality of T− is constant under both assumptions.

4 Convergence of the KKL Observer

4.1 Set-valued convergence to indistinguishable set

We start this section by establishing a direct conse-
quence of Theorem 2 under the following assumption.

Assumption 3 The map T : X → Rnz characterizes
the backward-distinguishable points in X for (1) accord-
ing to Definition 3.

The existence of a map T verifying Assumption 3 is guar-
anteed by Theorem 1. Then, as noticed above, Assump-
tion 1 holds if and only if any point in X admits exactly
p− 1 other backward indistinguishable states in X .

Theorem 3 Consider a C1 map T : O ⊂ Rnx → Rnz ,
with O open and nz ≥ nx, verifying (5), for a given pair
(A,B) and X compact contained in O, and satisfying
Assumptions 1, 2, and 3. Let T inv : Rnz → Rnx be the
Lipschitz extension given in Theorem 2. Then, there exist
ρ, λ > 0 such that, for any solution x : R≥0 → Rnx to
(1) remaining in X , and for any solution z : R≥0 → Rnz

to (4) subject to y = h(x), we have

dH(T inv(z(t)), IX (x(t)))

≤ ρe−λt|z(0)− T (x(0))| ∀t ≥ 0. (18)

Therefore, if the system solution x eventually remains
in X , then the set-valued estimate T inv(z(t)) asymptot-
ically converges in the Hausdorff sense to the indistin-
guishable set IX (x(t)).

PROOF. According to Theorem 2, T inv is (globally)
Lipschitz and verifies

T inv(T (x)) = T−(T (x)) ∀x ∈ X .

Furthermore, using Assumption 3, we conclude that

T−(T (x)) = IX (x) ∀x ∈ X .

Therefore, there exists L > 0 such that

dH(T inv(z(t)), IX (x(t))) ≤ L|z(t)− T (x(t))|

for all t ≥ 0 provided that x(t) ∈ X . Hence, the proof
is completed using the fact that the estimation error
z̃(t) := z(t) − T (x(t)) in the z-coordinates verifies the

exponentially stable dynamics ˙̃z = Az̃. ■

Remark 6 (ISS set-valued observer) If the avail-
able output y fed into (4) is noisy, i.e., y = h(x) + ν,
then, the error z̃(t) := z(t)−T (x(t)) in the z-coordinates

evolves according to ˙̃z = Az̃+Bν instead of ˙̃z = Az̃ and
there exist ρ1, ρ2, λ > 0 (depending on the pair (A,B)
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only) such that

dH(T inv(z(t)), IX (x(t)))

≤ L

(
ρ1e

−λt|z(0)− T (x(0))|+ ρ2 sup
s∈[0,t]

|ν(s)|

)
(19)

for all t ≥ 0 provided that x(t) ∈ X . Besides, since
for any x̂0, x0 in X , T (x̂0) = T (x0) is equivalent to
T inv(T (x̂0)) = IX (x̂0) = IX (x0), there exists (by conti-
nuity) a class-K function ρ such that for any x̂0, x0 in X ,

|T (x̂0)− T (x0)| ≤ ρ (dH(IX (x̂0), IX (x0))) .

Therefore, if x(0) ∈ X and z(0) is chosen equal to T (x̂0)
for some initial guess x̂0 ∈ X , then |z(0) − T (x(0))| ≤
ρ (dH(IX (x̂0), IX (x0))) with IX (x̂0) = T inv(T (x̂0)). It
follows from (19) that the KKL observer exhibits a set-
valued ISS property with respect to measurement noise,
in the Hausdorff sense.

Remark 7 In the case where t 7→ x(t) does not remain
in X , the map t 7→ T inv(z(t)) is guaranteed to approach
t 7→ IX (x(t)) only during the time intervals, on which,
the solution x is within the set X .

4.2 Convergence of a continuous selection to a solution

In practice, one can compute a continuous selection t 7→
x̂(t) ∈ T inv(z(t)), for instance, through an optimization
algorithm. Hence, it is interesting to know whether x̂
converges to a solution generating y or not. To answer
this question, we make the following assumption on the
solutions generating a same output y.

Assumption 4 Given y : R≥0 → Rny , there exist t̄ > 0
and at least p ∈ N>0 solutions {xi}pi=1 : [t̄,+∞) → X to
(1) such that, for all i ∈ {1, . . . , p}, we have

• h(xi(t)) = y(t) for all t ≥ t̄,
• for all j ∈ {1, . . . , p} with j ̸= i, xi − xj does not

asymptotically converge to zero.

Given a solution z to (4) subject to y, we would like to
relate the continuous selection t 7→ x̂(t) ∈ T inv(z(t)) and
the solutions xi to (1) generating y. For that, we rely
on the following Splitting Lemma first proved in [7], see
also [11, Theorem 3.1.] for more details.

Lemma 1 (Splitting Lemma) Consider a continu-
ous set-valued map T− : C ⊆ Rnz ⇒ Rnx such that C
is simply connected and there exists p ∈ N>0 such that,
for each z ∈ C, card(T−(z)) = p. Then, there exist p
continuous (single-valued) functions {gi}pi=1 : C → Rnx

such that

T−(z) =

p⋃
i=1

{gi(z)} ∀z ∈ C. (20)

The map T− is then said to be split on C.

Remark 8 Without any assumption on its domain C
(such as simple connectedness), a continuous p-valued
map is not necessarily split in general when nz and nx
are both greater than one [27]; see the following example.

Example 4 Let C ⊂ R2 be the unit circle; namely,

C := {z ∈ R2 : |z| = 1}.

We parameterize C by the variable t ∈ [0, 1), and we let
the map ϕ : [0, 1) → C defined as

ϕ(t) := (sin(2πt), cos(2πt)).

Note that ϕ is a diffeomorphism and

ϕ−(z) =
arg(z)

2π
∀z ∈ C,

where arg : C → [0, 1) is the function associating each
z ∈ C to its argument. Consider the set-valued map H :
[0, 1) ⇒ R2 given by

H(t) := {f(t), g(t)},

where f , g : [0, 1) → R2 are continuous and defined as

f(t) = (f1(t), f2(t)) := (2− t, 4− t),

g(t) = (g1(t), g2(t)) := (1 + t, 3 + tet−1).

We start noting that f(t) ̸= g(t) for all t ∈ [0, 1). Indeed,
f1(t) = g1(t) only when t = 1/2. However,

7/2 = f2(1/2) ̸= g2(1/2) = 3 + 1/(2e1/2).

Hence, H is a continuous set-valued map such that
card(H(t)) = 2 for all t ∈ [0, 1).

At this point, we define the set-valued map T− : C ⇒ R2

given by

T−(z) = H(ϕ−(z)) ∀x ∈ C.

Clearly, card(T−(z)) = 2 for all z ∈ C. Furthermore,
since ϕ is a diffeomorphism and ϕ− is continuous
on C\(1, 0), we conclude that T− is continuous on
C\(1, 0). Actually, observing that limt→1 f(t) = g(0) and
limt→1 g(t) = f(0), it follows that T− is also continuous
at z = (1, 0). The latter shows that T− is 2-valued and
continuous on C. But we next show that T− is not split
using contradiction. Indeed, assume that T− is split,
then we can find continuous functions t−1 , t

−
2 : C → R2

such that

T−(z) = {t−1 (z), t
−
2 (z)} z ∈ C.

At the same time, by definition, we have that

T−(z) = {f(ϕ−(z)), g(ϕ−(z))} z ∈ C.
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Now, since f ◦ ϕ− and g ◦ ϕ− are continuous on C\(1, 0)
and never intersect, it follows that either

f(ϕ−(z)) = t−1 (z) and g(ϕ−(z)) = t−2 (z)

for all z ∈ C\(1, 0) or

f(ϕ−(z)) = t−2 (z) and g(ϕ−(z)) = t−1 (z)

for all z ∈ C\(1, 0). Both cases yield a contradiction since
t−1 and t−2 are continuous whereas the functions f ◦ ϕ−
and g ◦ ϕ− are discontinuous at (1, 0). Therefore, T− is
not split.

In order to apply Lemma 1, given an output y to (1), we
introduce the following assumption.

Assumption 5 There exists a solution z∗ to (4) subject
to y and a simply connected subset C ⊆ T (X ) such that
limt→+∞ |z∗(t)|C = 0.

Remark 9 Given any output y generated by a solution
x to (1), any solution z to (4) subject to y converges to
t 7→ T (x(t)) ∈ T (X ). Therefore, Assumption 5 holds in
particular if x asymptotically converges to a point in X
or if T (X ) is simply connected. It also holds if the range
of t 7→ T (x(t)) is, at least after a certain time, simply
connected in T (X ).

Assumption 5 allows us to guarantee that T− is split
on C. We then show that the same property holds for
T inv on a neighborhood of C. This allows to show that
any continuous selection t 7→ x̂(t) ∈ T inv(z(t)), with
z solution to (4) subject to y, converges to one of the
solutions generating y given by Assumption 4, as stated
in Theorem 4 below.

But, actually, we can prove that a continuous selection
within t 7→ T inv(z(t)) converges to a solution even if
T inv is not split on a set containing the solutions after
a certain time. So we propose the following alternative
assumption when Assumption 5 does not hold.

Assumption 6 There exists a solution z∗ to (4) subject
to y, for which, there exists τo > 0 and δ > 0 such that,
for each τ ≥ τo, z

∗([τ, τ + δ]) is simply connected.

We can then state the following result.

Theorem 4 Consider a C1 map T : O ⊂ Rnx → Rnz ,
with O open and nz ≥ nx, verifying (5), for a given pair
(A,B) and X compact contained in O, and Assumptions
1 and 2. Consider an output y : R≥0 → Rny to (1)
such that Assumption 4 and either Assumption 5 or 6
hold. Then, for any continuous selection t 7→ x̂(t) ∈
T inv(z(t)), where z : R≥0 → Rnz is a solution to (4)
subject to y, there exists a solution x̃ to (1) generating y
such that

lim
t→+∞

|x̂(t)− x̃(t)| = 0. (21)

PROOF. Consider an output y : R≥0 → Rny to (1)
and let z : R≥0 → Rnz be a solution to (4) subject to

the output y. We start by showing the result under As-
sumption 5. For that, let Uc ⊂ Rnz be a simply con-
nected compact subset including C in its interior. Next,
we let T inv

u be the restriction of T inv to Uc. Using The-
orem 2, we know that T inv

u is continuous and its images
contain at most p elements. Since T inv equals T− on the
compact set Uc ∩ T (X ), whose images contain exactly p
elements from Assumption 1, it follows that, by choos-
ing the boundary of Uc sufficiently close to T (X ), we can
say without loss of generality

card(T inv
u (z)) = p ∀z ∈ Uc. (22)

Now, since T inv
u is continuous on Uc simply connected

and (22) holds, we conclude, using Lemma 1, the ex-
istence of a sequence of continuous functions {gi}pi=1 :
Uc → X such that

T inv
u (z) = ∪p

i=1gi(z) ∀z ∈ Uc.

According to (22), we have for all z ∈ Uc and for all
i ̸= i′, gi(z) ̸= gi′(z). By compactness of Uc, continuity
of the maps gi and finiteness of pairs i, i′, there exists
ε > 0 such that

|gi(z)− gi′(z)| ≥ ε ∀i ̸= i′, ∀z ∈ Uc. (23)

On the other hand, knowing that the solution z∗ in As-
sumption 5 converges to C, we know that z∗(t) ∈ Uc at
least after a certain time. And knowing that any solu-
tion z to (4) subject to y converges to z∗, we have by
continuity that

lim
t→∞

d
(
x̂(t), T inv

u (z∗(t))
)
= 0. (24)

Hence, since x̂ is continuous, (24) and (23) imply the
existence of i∗ ∈ {1, 2, ..., p} such that

lim
t→∞

|x̂(t)− gi∗(z∗(t))| = 0. (25)

Now, we show that each t 7→ gi(z∗(t)), i ∈ {1, 2, ..., p},
must converge to one of the solutions xi generating y
given by Assumption 4. Indeed, let {zi}pi=1 : R≥0 → Rnz

such that

zi(t) = T (xi(t)) ∀i ∈ {1, 2, ..., p}, ∀t ≥ 0. (26)

According to (5) and the first item of Assumption 4,
all the zis and z∗ satisfy (4) subject to y. Hence, they
converge asymptotically to each other. Furthermore, ac-
cording to (26) and since xi(t) ∈ X for all t ≥ t̄, we have

xi(t) ∈ T−(zi(t)) ∀t ≥ t̄, ∀i ∈ {1, 2, ..., p}.

As above, using the continuity of T inv given by Theorem
2, we deduce that

lim
t→∞

d
(
xi(t), T

inv
u (z∗(t))

)
= 0 ∀i ∈ {1, . . . p}.
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Now, according to the second item of Assumption 4 and
the fact that t 7→ T inv

u (z∗(t)) describes p continuous
functions of time not converging to each other according
to (23), we conclude that, for each i ∈ {1, . . . , p}, there
exists a unique ki ∈ {1, 2, ..., p} such that xi converges to
gki

(z∗) asymptotically. Similarly, for each i ∈ {1, . . . , p},
there exists a unique li ∈ {1, 2, ..., p} such that gi(z∗)
converges to xli asymptotically. From (25), we deduce
the result.

We now suppose Assumption 6 holds instead of Assump-
tion 5. Let U ⊂ Rnz be a compact subset including T (X )
in its interior and let T inv

u be the restriction of T inv to U .
By Theorem 2, T inv

u is continuous and its images contain
at most p elements. Besides, T inv

u = T− on the compact
set T (X ) where its images have exactly p distinct ele-
ments according to Assumption 1. It follows that, with-
out loss of generality, when ∂U is sufficiently close to
T (X ), then we may assume that

card(T inv
u (z)) = p ∀z ∈ U . (27)

[11, Proposition 4.1.] then shows the existence of ϵ̄ > 0
such that

min{|xa − xb| : xa ̸= xb ∈ T inv
u (z), z ∈ U} ≥ ϵ̄. (28)

Furthermore, since y is generated by a solution to (1)
that is eventually in X according to Assumption 4, any
solution to (4) fed with y converges to T (X ) so that
z∗(t) ∈ U at least after some time, let’s say τo given by
Assumption 6 without loss of generality.

Finally, all solutions to (4) converge to each other, so in
particular z converges to z∗ and we have

lim
t→∞

d
(
x̂(t), T inv

u (z∗(t))
)
= 0. (29)

Now, under Assumption 6, for each τ ≥ τo, the set
z∗([τ, τ + δ]) ⊂ U is simply connected. Hence, using
Lemma 1, we conclude the existence of a sequence {gτi } :
z∗([τ, τ + δ]) → X such that

T inv
u (z) = ∪p

i=1g
τ
i (z) ∀z ∈ z∗([τ, τ + δ]).

Then, (28) allows us to conclude that

|gτi (z)−gτj ̸=i(z)| ≥ ϵ̄ ∀z ∈ z∗([τ, τ+δ]), ∀τ > τo. (30)

Let {zi}pi=1 : R≥0 → Rnz such that

zi(t) = T (xi(t)) ∀i ∈ {1, 2, ..., p}, ∀t ≥ 0. (31)

According to (5) and the first item of Assumption 4, all
the zis and z∗ satisfy (4) subject to y. Hence, they con-
verge asymptotically to each other and are in U after a
certain time. T inv

u being continuous on U , and reasoning

as above, we conclude that, for each ϵo ∈ (0, ϵ̄/8], there
exists τ1 ≥ τo such that, for each τ ≥ τ1 the following
two properties hold:

• For each i ∈ {1, 2, ..., p}, there exists a unique ki ∈
{1, 2, ..., p} such that

|gτki
(z∗(t))− xi(t)| ≤ ϵo ≤ ϵ̄/8 ∀t ∈ [τ, τ + δ].

• For each i ∈ {1, 2, ..., p}, there exists a unique li ∈
{1, 2, ..., p} such that

|gτi (z∗(t))− xli(t)| ≤ ϵo ≤ ϵ̄/8 ∀t ∈ [τ, τ + δ].

A consequence of the latter two items and (30) is that

|xj(t)− xi(t)| ≥ 3ϵ̄/4 ∀t ≥ τ1, ∀i ̸= j ∈ {1, 2, ..., p}.
(32)

Now, using (29), we conclude the existence of τ2 ≥ τ1
such that, for each τ ≥ τ2, there exists a unique i ∈
{1, 2, ..., p} such that

|x̂(t)− gτi (z(t))| ≤ ϵo ∀t ∈ [τ, τ + δ].

Thus, for each τ ≥ τ2, there exists a unique l ∈
{1, 2, ..., p} such that

|xl(t)− x̂(t)| ≤ 2ϵo ≤ ϵ̄/4 ∀t ∈ [τ, τ + δ].

Combining the latter inequality to (32) and using the
continuity of solutions and the continuity of the selection
x̂, we conclude that l is invariant with τ , i.e., there exists
a unique l ∈ {1, 2, ..., p} such that

|xl(t)− x̂(t)| ≤ 2ϵo ∀t ∈ [τ2,+∞).

■

Example 5 In Example 2, if we pick X̃ to be a compact
subset of R2 \ {0}, Assumptions 1 and 2 are satisfied.
Besides, if the circle C centered at 0 and of radius 1 is
contained in the interior of X̃ , then any solution x with
x(0) ̸= 0 converges to C and is eventually in X̃ . Then,
Assumption 4 holds since x and −x are the only indistin-
guishable solutions producing the same output y and not
converging to each other. On the other hand, Assump-
tion 5 does not hold, as it can be seen in Figure 2, since
the solutions t 7→ z(t) eventually circle around the “hole”

in T (X̃ ) obtained by removing a neighborhood of 0 in
X . Nevertheless, Assumption 6 holds because the time of
revolution around the hole is lower bounded by a positive
time δ∗, so that, even in the case of a periodic solution,
z([τ, τ + δ]) with δ < δ∗ is always simply connected. The
convergence observed in [2] in thus justified by applying
Theorem 4.
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Fig. 2. Image sets Ti(X̃ ) with X̃ = [−2, 2]2 \ B(0, 0.5) and trajectories t 7→ zi(t).

5 Discussion on Assumptions

5.1 Necessity of Assumptions 1 and 2 for Continuity
and Lipschitzness of T−

The next result shows that if T−
O : T (O) ⇒ O defined as

T−
O (z) := {x ∈ O : T (x) = z} (33)

takes finite values and is locally Lipschitz for some open
neighborhood O of X , then Assumption 2 holds.

Proposition 2 Let T : O → Rnz be a C1 map defined
on an open set O ⊆ Rnx with nz ≥ nx. Let X ⊂ O such
that any x ∈ X is isolated in T−

O (T (x)), with T− defined

in (33). Then, Assumption 2 is verified provided that T−
O

is locally Lipschitz.

PROOF. Let z ∈ T (X ) and let x ∈ X such that z =
T (x). We will show that ∂T

∂x (x) is full-rank, namely

∂T

∂x
(x)v = 0 =⇒ v = 0.

Since T−
O is locally Lipschitz on T (O), it follows that

there exists L > 0 and a neighborhood U of z such that

dH
(
T−
O (zo), T

−
O (z)

)
≤ L|zo − z| ∀zo ∈ U ∩ T (O)

namely,

dH
(
T−
O (zo), T

−
O (T (x))

)
≤ L|zo−T (x)| ∀zo ∈ U∩T (O).

Now, to find a contradiction, we assume the existence of
v ∈ Rnx such that v ̸= 0 and ∂T

∂x (x)v = 0. Note that,
for all h ∈ R>0 sufficiently small, we have x + hv ∈ O,
and thus T (x+hv) ∈ T (O)∩U by continuity of T . The
latter implies that for all h ∈ R>0 sufficiently small,

dH
(
T−
O (T (x+ hv)), T−

O (T (x))
)
≤ L|T (x+hv)−T (x)| .

Furthermore, since

lim
h→0

1

h
|T (x+ hv)− T (x)| = ∂T

∂x
(x)v = 0,

we conclude that

lim
h→0

1

h
dH
(
T−
O (T (x+ hv)), T−

O (T (x))
)
= 0.

By definition of the Hausdorff distance, we have

dH
(
T−
O (T (x+ hv)), T−

O (T (x))
)
≥ d

(
y, T−

O (T (x))
)

∀y ∈ T−
O (T (x+ hv)).

Since x+ hv ∈ T−
O (T (x+ hv)), we deduce that

lim
h→0

1

h
d
(
x+ hv, T−

O (T (x))
)
= 0. (34)

Now, since x ∈ T−
O (T (x)) is isolated in T−

O (T (x)), we
conclude that for h sufficiently small,

d
(
x+ hv, T−

O (T (x))
)
= d (x+ hv, x) = h|v|.

Hence, limh→0
1
hd
(
x+ hv, T−

O (T (x))
)
= |v| ̸= 0, which

contradicts (34). ■

Remark 10 Note that the “isolated-point” property is,
in particular, verified if T−

O takes finite values. On the
other hand, we can show, in the same way, that Lipschitz-
ness of T− imposes from the Jacobian of T to be full-rank
on the interior of X provided that T− takes finite values.
But in order to show full-rank on the entire set X , we
propose to assume local Lipschitzness of an extension of
T− on an open neighborhood of X ; hence, Proposition 2.
Note that T−(x) = T−

O (x) ∩ X for all x ∈ X , thus, T−

coincides with T−
O on T (X ) if there are no extra preim-

ages of points in T (X ) lying in O. In that case, local Lip-
schitzness of T−

O implies Lipschitzness of T−.

On the other hand, the next result shows that, under
Assumption 2 and when T (X ) is connected, continuity
of T− on T (X ) implies that Assumption 1 holds.

Proposition 3 Let T : O → Rnz be aC1 map defined on
the open setO ⊂ Rnx , let X ⊂ O such that Assumption 2
holds and T (X ) is connected. Then, Assumption 1 holds
provided that T− defined in (12) is continuous on T (X ).

PROOF. Assume T− is continuous on T (X ). Let us
pick zo ∈ T (X ), and denote by p ∈ {1, 2, ...} the cardinal
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of T−(zo). Following the same first steps as in the proof
of Theorem (exploiting Assumption 2, the constant rank
theorem and the upper semicontinuity of T−), we show
the existence of a neighborhood Wo of zo and p C1 dif-
feomorphisms gi defined on neighborhoods of each pre-
image xi ∈ T−(zo) such that

T−(z) ⊆ ∪p
i=1gi(z) ∀z ∈Wo ∩ T (X ).

It follows that the cardinal of T− is at most p in
Wo ∩ T (X ). Now, assume the existence of a se-
quence {zk} of points in T (X ) converging to zo such
that card(T−(zk)) < p for all k ∈ {1, 2, ...}. Let
ϵ := min{|xi − xj | : {xi, xj} ⊂ T−(zo), i ̸= j} which
is positive since T−(zo) is finite. Then, by continuity
of the gis, since T

−(zo) = ∪p
i=1gi(zo) and T−(zk) is a

selection of less than p elements in ∪p
i=1gi(zk),

lim inf
k→∞

δ(T−(zo), T
−(zk)) ≥ ϵ,

which contradicts lower semicontinuity of T−. ■

5.2 Links Between Assumptions 3 and 4 Under As-
sumptions 1 and 2

Proposition 4 Assume system (1) is analytic and let
T : O ⊂ Rnx → Rnz be C1. Consider a compact set
X ⊂ O such that Assumptions 1, 2, and 3 hold. Let y :
R≥0 → Rny be an output to (1) generated by a solution x1
that remains in X after some t̄ > 0. Then, the following
properties are true:

• There exist at most p solutions {xi}pi=1 : [t̄,∞) → X
to (1) generating y. Besides, such solutions cannot
converge to each other.

• There are exactly p such solutions provided that one of
the following holds:

(1) The set X is forward invariant.
(2) There exists U ⊂ Rnx a neighborhood of X such that

IU (x1(t)) = IX (x1(t)) ∀t ≥ t̄.

(3) The two following properties hold

{f(x),−f(x)} ∩ TX (x) ̸= ∅ ∀x ∈ T−(x1(t̄)),

{−f(x), f(x)} ∩ T∂X (x) = ∅ ∀x ∈ ∂X .

PROOF. To prove the first item, given t̄ > 0, we con-
sider two distinct solutions x1, x2 : [t̄,∞) → X such that

h(x1(t)) = h(x2(t)) = y(t) ∀t ∈ [t̄,+∞).

By uniqueness of solutions, x1(t) ̸= x2(t) for all t ≥ t̄.
Also, by analityticity of (1), x1(t)∼x2(t) for all t ≥ t̄ and
by Assumption 3, T (x1(t)) = T (x2(t)) for all t ≥ t̄. So
for all t ≥ t̄, x1(t) and x2(t) are in T

−(T (x1(t))) and T
−

has cardinal p by Assumption 1. It follows that there are

at most p such solutions. Now, let us show that any such
solutions cannot converge to each other. Indeed, assume
x1 − x2 converges to zero. Since X is compact, there
exists an increasing and diverging sequence (tn)n∈N and
a limit point x∗ ∈ X such that limn→+∞ x1(tn) = x∗.
Then, also, limn→+∞ x2(tn) = x∗. Under Assumption
2, there exists a neighborhood of x∗ where T is locally
injective, which contradicts x2(tn) ∈ T−(T (x1(tn))) for
sufficiently large n.

Now, to prove the second item, we assume that y is
generated, on some interval [t̄,+∞), by a solution x1 :
[t̄,+∞) → X . Under Assumption 1, we let

{x1,o, ..., xp,o} := T−(T (x1(t̄))) with x1,o = x1(t̄).

By Assumption 3, we conclude that

xi,o ∼xj,o ∀i, j ∈ {1, . . . , p}.

Now, for each i ∈ {1, 2, ..., p}, we let the (unique) max-
imal solution xi : Ii → Rnx with t̄ ∈ Ii such that
xi(t̄) =: xi,o. By definition of ∼ , for each i ∈ {1, 2, ..., p},
we have

h(xi(t)) = h(x1(t)) ∀t ∈ Ii ∩ I1 ∩ (−∞, t̄].

By analyticity, actually, we conclude that

h(xi(t)) = h(x1(t)) ∀t ∈ Ii ∩ I1.

Denote I := ∩i∈{1,...,p}Ii, which is an open set that con-
tains t̄. We; thus, have

xi(t)∼xj(t) ∀t ∈ I, ∀i, j ∈ {1, . . . , p}.

To complete the proof, we need to show that

xi(t) ∈ X ∀t ≥ t̄, ∀i ∈ {1, . . . , p}. (35)

Under item 1), whenX is forward invariant, (35) follows.

Furthermore, we show that (35) holds under item 2)
using contradiction. That is, let tX ≥ t̄ be the maximal
time, such that, all the xis remain inX on [t̄, tX ]; namely,

tX := max{t ∈ I : xi(s) ∈ X , ∀s ∈ [t̄, t], ∀i ∈ {1, . . . , p}}.

Furthermore, let k ∈ {2, 3, ..., p} be such that the solu-
tion xk leaves the set X at tX . Hence, since xk is con-
tinuous, we conclude the existence of tm > tX such that
xk(tm) ∈ U\X . By analyticity, we conclude that

h(xk(t)) = y(t) ∀t ∈ [t̄, tm].

The latter plus the fact that xk(t̄) ∈ IU (x1(t̄)) imply
that xk(tm) ∈ IU (x1(tm)). However, using item 2), we
know that IU (x1(tm)) = IX (x1(tm)) ⊂ X , which yields
a contradiction.
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Suppose, now, that item 3) holds and let tX be finite.
By compactness of X , there exists ε > 0 such that, for
each i, j ∈ {1, . . . , p} with i ̸= j, we have

|xi(t)− xj(t)| ≥ ε ∀t ∈ [t̄, tX ], (36)

and by Assumption 1, we conclude that

T−(T (x1(t))) = {x1(t), . . . , xp(t)} ∈ X ∀t ∈ [t̄, tX ].

Now, by definition of tX , we conclude the existence
of k ∈ {2, 3, ..., p} such that xk(tX ) ∈ ∂X and xk
leaves X right after tX . Hence, using Lemma 4 we con-
clude that f(xk(tX )) ∈ TRnx\X (xk(tX )). Now, since
f(xk(tX )) /∈ T∂X (xk(tX )), we use Lemma 6 to con-
clude that f(xk(tX )) ∈ Rnx\TX (xk(tX )). Hence, using
Lemma 5, we conclude that, for some δ > 0 sufficiently
small,

xk(t) /∈ X ∀t ∈ (tX , tX + δ] ⊂ I. (37)

Note that this k may not be unique; however, for sim-
plicity we let it be unique in this proof, the exact same
arguments apply in the general case. Now, we distinguish
between two scenarios:

• When tX > t̄, we conclude that xk([t̄, tX ]) ⊂ X .
Hence, using Lemma 4, we conclude that

−f(xk(tX )) ∈ TX (xk(tX )).

However, since −f(xk(tX )) /∈ T∂X (xk(tX )), we use
Lemma 6 to conclude that−f(xk(tX )) ∈ DX (xk(tX )).
Hence, using Lemma 5, we conclude that for δ > 0
sufficiently small, we have

xk(t) ∈ int(X ) ∀t ∈ [tX − δ, tX ) ⊂ I. (38)

• When tX = t̄, we use (37), to conclude that

f(xk(t̄)) ∈ TRnx\X (xk(t̄)).

Furthermore, since f(xk(t̄)) /∈ T∂X (xk(t̄)); we con-
clude, using Lemma 6 that f(xk(t̄)) /∈ TX (xk(t̄)). As
a result, according to item 3), we have

−f(xk(t̄)) ∈ TX (xk(t̄))\T∂X (xk(t̄)) = DX (xk(t̄)).

Hence, using Lemma 5, (38) follows.

Now, using continuity of T− and Assumption 1, we con-
clude that, for each t ∈ (tX , tX +δ], there exists x′k,t ∈ X
such that

T−(T (x1(t)) = {x1(t), . . . , xk−1(t), x
′
k,t, xk+1(t), . . . , xp(t)},

and
lim
t→t+X

x′k,t = xk(tX ).

Furthermore, for δ > 0 even smaller, we conclude that all
the elements of T−(T (x1(t))), for all t ∈ [tX − δ, tX + δ],
are at a distance larger than ε/2 from each other. By
continuity of solutions with respect to initial data, we
conclude the existence tm ∈ (tX , tX +δ] sufficiently close
to tX such that the solution x′k starting from x′km,tm

at
time tm verifies

∥xk(t)− x′k(t)∥ < ε/2 ∀[tX − δ, tX + δ]

and x′k(tX − δ) ∈ int(X ). But by Assumption 3,
x′k,tm ∼x1(tm) and therefore, by analyticity, we have

xk(tX − δ)∼x′k(tX − δ).

It follows from (36) that xk(tX − δ) = x′k(tX − δ) and
therefore, xk = x′k by uniqueness of solutions. This is
impossible since xk(tm) /∈ X while x′k(tm) = x′k,tm ∈ X .
■

The previous proposition shows that, when system (1)
is analytic and under some assumptions on the way so-
lutions might exit or enter X , Assumptions 1, 2, and 3
imply Assumption 4. In the following result, we investi-
gate a converse statement. That is, for T solution to (5)
satisfying Assumptions 1 and 2, we consider an output
y satisfying the following assumption, which is slightly
stronger than Assumption 4.

Assumption 7 Given y : R≥0 → Rny , there exist t̄ > 0
and at least p ∈ N>0 solutions {xi}pi=1 : [t̄,+∞) → X to
(1) such that for all i ∈ {1, . . . , p},
• For each t ≥ t̄, h(xi(t)) = y(t).
• For each i, j ∈ {1, . . . , p}, we have

lim inf
t→∞

|xi(t)− xj ̸=i(t)| > 0. (39)

As a result, we show that T−(T (x)) ⊂ IX (x), for all x
within the ω-limit set of the solutions in Assumption 7
generating y.

Proposition 5 Consider a C1 map T : O ⊂ Rnx →
Rnz verifying (5) and Assumptions 1 and 2 on a compact
set X ⊂ O. Let y : R≥0 → Rny be an output to (1) such
that Assumption 7 holds. Let x1 be one of the solutions
introduced in Assumption 7 that generates y. Then,

T−(T (x)) ⊆ IX (x) ∀x ∈ ω(x1(t̄)).

PROOF. Let the solutions {xi}pi=1 : [t̄ → ∞) → X
to (1) generating y. Then, xext := (x1, x2, . . . , xp) is
solution to a duplicated system with dynamics fext =
(f, f, . . . , f) and verifies

h(xi(t)) = h(xj(t)) ∀t ≥ t̄ ∀(i, j) ∈ {1, . . . , p}2. (40)

Let Ω := ω(xext(t̄)), its ω-limit set. Since X is compact
and by uniqueness of solutions, Ω is compact, contained
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in X , and invariant by fext. Since h is continuous, we
deduce from (40) that for all (x⋆1, . . . , x

⋆
p) ∈ Ω,

h(x⋆i ) = h(x⋆j ) ∀(i, j) ∈ {1, . . . , p}2. (41)

Now pick x⋆ext := (x⋆1, . . . , x
⋆
p) ∈ Ω. By backward-

invariance of Ω, the backward solution (ϕ1, ..., ϕp) by
fext initialized at x⋆ext is defined on R≤0 and remains
in Ω. It follows from (41) (which holds everywhere on
Ω) that h(ϕi(t)) = h(ϕj(t)) for all t ≤ 0 and for all
(i, j) ∈ {1, . . . , p}2.
Since for each i ∈ {1, . . . , p}, ϕi is the backward solu-
tion to (1) initialized at x⋆i by definition of fext, we de-
duce that x⋆1 ∼x⋆2 ∼ ...∼x⋆p, and thus, since each x⋆i ∈ X ,
x⋆i ∈ IX (x⋆1). Moreover, by uniqueness of the solutions
to (5) on backward-invariant compact sets [10, Theo-
rem 2], we know that, for each i ∈ {1, 2, ..., p}, T (x⋆i ) =∫ 0

−∞ e−AsBh(ϕi(s))ds, which implies that T (x⋆1) = ... =

T (x⋆p). The latter allows us to conclude that

{x⋆1, . . . , x⋆p} ⊆ T−(T (x⋆1)) ∩ IX (x⋆1). (42)

Now, under the second item in Assumption 7, the x⋆i s
are distinct, which gives necessarily

{x⋆1, . . . , x⋆p} = T−(T (x⋆1)) ⊆ IX (y1) (43)

When, instead of (39), we assume that the solutions
{xi}pi=1 in Assumption 7 do not converge to each other
(as in Assumption 4), we cannot conclude the equality
in (43) based on (42). Indeed, it is possible to have, for
example, the solutions x1 and x2 converge to a same ω-
limit point x∗1 = x∗2 along a same sequence of times, and
they still do not converge to each other; see Example 6.

Example 6 Consider the two-dimensional system

ẋ = f(x) :=

[
(1− |x|2)x1 + x2

(1− |x|2)x2 − x1

]
x ∈ X := {|x| ≤ 2}.

Note that this system admits a unique nontrivial limit
cycle describing the unit circle {|x| = 1}. The latter at-
tracts all the solutions except the one starting from the
origin {x = 0}. Next, we propose to re-scale the system
using the smooth function ϕ : R≥0 → [0, 1] given by

ϕ(r) :=

{
0 if r ≥ 1

(1− r)2 if r < 1.

As a result, we introduce the system

ẋ = ϕ(|x|2)f(x) x ∈ X , (44)

for which, every point within the set {|x| = 0}∪{|x| ≥ 1}
is a static equilibrium point, and the solutions starting

from the set {0 < |x| < 1} converge to the set {|x| ≥
1} by spiraling, i.e., without converging to any specific
point in {|x| ≥ 1}. Hence, by letting x1 be a solution to
(44) starting from {|x| = 1} (which remains there, i.e.,
x1(t) = x1(0) for all t ≥ 0) and x2 be a solution to (44)
starting from {0 < |x| < 1}, we conclude that they do
not converge to each other (since x2 keeps spiralling), but
still they share a common ω-limit point which is x1(0).

5.3 Link Between Assumption 2 and the Rank of a Dif-
ferential Observability Map

In this section, we assume f and h to be smooth. Given
a positive integer m, consider the map Hm defined by

Hm(x) :=
(
h(x), Lfh(x), . . . , L

m−1
f h(x)

)
, (45)

containing the output map h and its m − 1 Lie deriva-
tives. The injectivity of Hm characterizes the so-called
differential observability of order m, meaning that the
state is uniquely determined from the knowledge of the
output and its first m − 1 time derivatives. In this pa-
per where we handle non-observable systems, we will
not make such an assumption. However, the next result
shows that the rank of the KKLmap T may be related to
the rank of the map Hm, when the eigenvalues of A are
picked sufficiently fast. This result allows to characterize
the set of regular points where the previous convergence
results hold by simply checking the rank of Hm.

Proposition 6 Consider a controllable pair (Ao, Bo) ∈
Rm×m × Rm with Ao Hurwitz and m ∈ N such that the
map Hm defined in (45) is full-rank on the compact set
X . Define A = Iny

⊗ Ao, B = Iny
⊗ Bo. There exists

k⋆ > 0 such that for all k > k⋆, there exists a C1 map
Tk : Rnx → Rnz which is full-rank on X and verifies (5)
with the pair (kA,B).

PROOF. First, since in (5), the map f is only used
on X , we can consider an open bounded set O and a

modified vector field f̆ such that f = f̆ on X and O is

backward invariant for ẋ = f̆(x). Then, as in Theorem
1, we show that the map defined by

Tk(x) :=

∫ 0

−∞
e−kAsBh(X̆(x, s))ds,

with X̆(x, s) representing the flow operator for ẋ = f̆(x),
is C1 on O for k sufficiently large and verifies (5) for the
pair (kA,B). Given the structure of A and B, Tk(x) =
(Tk,1(x), . . . , Tk,ny

(x)), where for all i ∈ {1, . . . , ny},

Tk,i(x) =

∫ 0

−∞
e−kAosBohi(X̆(x, s))ds.
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Then, after m integration by parts, we see that

Tk,i(x) = A−m
o CoK

(
Hm,i(x) +

1

km
K−1C−1

o Rk,i(x)

)
where Co is a square controllability matrix associated to
(Ao, Bo) (thus invertible), K = diag

(
1
k , . . . ,

1
km

)
, Hm,i

is the observability map of order m associated to hi and
Rk,i : Rnx → Rm are the remainders defined as

Rk,i(x) :=

∫ 0

−∞
e−kAosBoL

m
f hi(X̆(x, s))ds.

Defining Rk(x) = (Rk,1(x), . . . , Rk,ny (x)), and using

similar arguments as in proving Tk is C1, for k suffi-
ciently large, Rk is C1 and

∂Tk
∂x

(x) =M1(k)

(
∂Hm

∂x
(x) +M2(k)

∂Rk

∂x
(x)

)
,

where M1(k) := [Iny
⊗ (A−m

o CoK)]M , M2(k) :=
1

kmM
−1[Iny

⊗ (K−1C−1
o )], andM is an invertible square

matrix reordering the lines. Since Hm is full-rank on X
compact, there exists ρH > 0 such that for all x ∈ X ,

∂Hm

∂x
(x)⊤

∂Hm

∂x
(x) ≥ ρHInz

.

By invertibility of A−m
o Co and M , and given the

structure of k, there also exists ρc > 0 such that
M1(k)

⊤M1(k) ≥ ρc

km Inz
. It follows that for all v ∈ Rn

and all x ∈ X ,
∣∣∂Hm

∂x (x)v
∣∣ ≥ ρH |v|, and∣∣∣∣∂Tk∂x

(x)v

∣∣∣∣ ≥ ρc
km

(
ρH |v| −

∣∣∣∣M2(k)
∂Rk

∂x
(x)v

∣∣∣∣)
Upper-bounding M2(k) by k

mcc for some cc > 0 inde-
pendent from k, we thus get∣∣∣∣∂Tk∂x

(x)v

∣∣∣∣ ≥ ρc
km

(
ρH |v| − cc

∣∣∣∣∂Rk

∂x
(x)v

∣∣∣∣)
Let us now upper-bound the Jacobian of Rk,∣∣∣∣∂Rk

∂x
(x)

∣∣∣∣ ≤ ∫ 0

−∞

∣∣e−kAs
∣∣ ∣∣∣∣B∂Lm

f h

∂x
(X̆(x, s))

∣∣∣∣
∣∣∣∣∣∂X̆∂x (x, s)

∣∣∣∣∣.
A being Hurwitz, there exists a positive definite matrix
P and a positive scalar a such thatATP+PA ≤ −2aP. It

follows that for all s in (−∞, 0]
∣∣e−kAs

∣∣ ≤√λmax(P )
λmin(P ) e

kas,

where λmin and λmax denote the minimal and maxi-
mal eigenvalues respectively. The bounded set O being
backward invariant under the modified dynamics, we

can consider c0 = maxx∈cl(O)

∣∣∣B ∂Lnz
f

h

∂x (x)
∣∣∣. Finally, we

show that the Jacobian of the flow operator ∂X̆
∂x (x, s)

grows at most exponentially in time. To do so, we use

the fact that ψ(t) = ∂X̆
∂x (x, t) satisfies the ODE : ψ̇(t) =

∂f
∂x (X̆(x, t))ψ(t).Denoting c1 := maxx∈cl(O)

∣∣∣∂f̆∂x (x)∣∣∣ and
bounding the previous differential inequality, we obtain

that
∣∣∣∂X̆∂x (x, s)∣∣∣ ≤ e−c1s for all s in (−∞, 0]. Therefore,

for k > c1
a , there exists a positive constant c2 such that∣∣∂Rk

∂x (x)
∣∣ ≤ c2

ka−c1
. It follows that, for all (x, v) ∈ X×Rn,∣∣∣∣∂Tk∂x

(x)v

∣∣∣∣ ≥ ρc
knz

(
ρH − cc

c2
ka− c1

)
|v|,

and Tk is indeed full-rank on X for k sufficiently large. ■

Remark 11 Note that if we add the backward invari-
ance condition used in Theorem 1 and we ask from the
PDE in (5) to hold on O, the full-rank map Tk given by
Proposition 6 is the unique solution to (5) (see Remark
2). However, we cannot directly prove that Tk charac-
terizes the backward distinguishable points, i.e., verifies
(9). According to Theorem 1 when m ≤ no, (9) holds if
(kAo, Bo) is outside a zero-measure set.

Example 7 For the system in Example 2, we can see
that H1(x) := (x21 − x22, x1x2) is full-rank for all x ̸=
(0, 0). On the other hand, Hm is never full-rank at (0, 0)
for any m ∈ N. This means that, at least for no ≥ 1 and
(Ao, Bo) ∈ Rno×no × Rno , the solution to (5) with pair
(kIny ⊗Ao, Iny ⊗Bo) should be full-rank on any compact

set X̃ ⊂ R2\{(0, 0)}, provided that k is sufficiently large.
Nothing can be said for compact sets that include (0, 0).

6 Conclusion

This paper proposed a set-valued KKL observer
for nonlinear systems disobeying the backward-
distinguishability property. Provided that the trans-
formation T is full rank on X and its preimage has
a constant cardinality, it is shown that the set-valued
preimage is locally Lipschitz and admits a locally Lips-
chitz extension T inv. When, additionally, a given output
y is generated by a number of distinct solutions (that
equals the cardinality of the preimage) not converging
to each other, the designed observer is shown to asymp-
totically reconstructs each of such solutions. Such an
approach applies to any nonlinear system, with no par-
ticular normal form, unlike high-gain or sliding-mode
based methods in [22,23,21]. In the future, it would be
interesting to explore other analysis tools to relax some
of the considered assumptions, for example, without im-
posing the continuity/Lipschitzness of T inv and study
the convergence of (maybe not all) C1 selections.
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A Useful definitions : continuity in set-valued
and p-valued Maps

For regularity and convergence of set-valued maps, the
space of subsets of Rnx is endowed with the Hausdorff
distance as defined next.

Definition 5 (Hausdorff distance) Given two sub-
sets Xa and Xb of Rnx , the Hausdorff distance is

dH(Xa,Xb) := max
{
δ(Xa,Xb), δ(Xb,Xa)

}
where δ(Xa,Xb) := supxa∈Xa

d(xa,Xb) =
supxa∈Xa

infxb∈Xb
d(xa, xb) .

Remark 12 For closed sets, δ(Xa,Xb) = 0 is equivalent
to Xa ⊆ Xb, while dH(Xa,Xb) = 0 to Xa = Xb.

The continuity of a set-valued map F : K ⇒ Rnx then
contains the following two properties ([6, Chapter 1]).

Definition 6 (Upper semicontinuity) A set-valued
map F : K ⇒ Rnx is said to be upper semicontinuous
at z⋆ ∈ K if for any open neighbourhood V containing
F (z⋆) there exists a neighbourhoodW of z⋆ such that for
all z ∈W , F (z) ⊆ V . This is equivalent to

lim
z→z⋆

δ(F (z), F (z⋆)) = 0. (A.1)

Definition 7 (Lower semicontinuity) A set-valued
map F : K ⇒ Rnx is said to be lower semicontinuous at
z⋆ ∈ K if for any x ∈ F (z⋆) and any neighborhood V of
x, there exists a neighborhood W of z⋆ such that for all
z ∈W , V ∩ F (z) ̸= ∅. This is equivalent to

lim
z→z⋆

δ(F (z⋆), F (z)) = 0. (A.2)

In standard topology, we may then define stronger con-
tinuity properties such as Lipschitz continuity.

Definition 8 ((Local) Lipschitzness) The set-
valued map F : K ⇒ Rnx , with K ⊂ Rm, is said to
be locally Lipschitz if, for each x ∈ K, there exists a
neighborhood U of x and a scalar k > 0 such that, for all
(xa, xb) ∈ (U ∩K)× (U ∩K),

dH(F (xa), F (xb)) ≤ k|xa − xb|. (A.3)

Besides, F is said to be Lipschitz if there exists k > 0
such that (A.3) holds for all (xa, xb) ∈ K ×K.

We also sometimes use the following topology of un-
ordered p-tuples (counting multiplicity).

Definition 9 (Distance on Ap(Rnx)) For Sa ∈
Ap(Rnx) and Sb ∈ Ap(Rnx), we let the distance

G(Sa, Sb) := min
σ∈Pp

max
i∈{1,...,p}

|sa,i − sb,σ(i)|

where Pp is the set of permutations of p elements,
and Sa, Sb are in Ap(Rnx) with elements {sa,i}pi=1 and
{sb,i}pi=1, respectively.

The notions of continuity and (local) Lipschitzness of p-

valued maps F̃ : Z ⊂ Rnz → Ap(Rnx) naturally follows
from the usual definitions, while using the distance G on
Ap(Rnx) instead of the Hausdorff distance.

Remark 13 In general, the distances dH and G are not
equal nor equivalent. For instance, the Hausdorff distance
between the unordered 3-tuples {1, 1, 2} and {1, 2, 2}, seen
as sets, is zero, while the G distance between them is not.

B Some useful lemmas

Lemma 2 (Constant-rank theorem) Consider an
open subset O ⊂ Rnx , xo ∈ O and a C1 map
T : O → Rnz such that rank

(
∂T
∂x (x)

)
= nx for all

x ∈ O. Then, there exist a neighborhood of xo denoted
U(xo), a neighborhood of T (xo) denoted U(T (xo)),
and C1 diffeomorphisms ϕ : U(xo) → ϕ(U(xo)) and
ψ : U(T (xo)) → ψ(U(T (xo))) such that

ψ ◦ T (x) = (ϕ(x), 0, 0, ..., 0) ∀x ∈ U(xo).

Next, we recall the following extension theorem for Lip-
schitz maps [14, Theorem 1.1] and [19, Theorem 1.7].

Lemma 3 (Lipschitz extension theorem) Let Z ⊂
Rnz and F̃ : Z → Ap(Rnx) be Lipschitz. Then, there

exists a Lipschitz extension F̃a : Rnz → Ap(Rnx) of F̃ .

Next, we recall from [5, Proposition 3.4.1] and [5, The-
orem 4.3.4] some useful results on forward invariance of
a set X .

Lemma 4 Consider system (1) with f : O ⇒ Rn con-
tinuous. Consider a closed set X ⊂ O and a solution x of
ẋ ∈ f(x) satisfying ∀t̄ > 0, ∃t ∈ (0, t̄] : x(t) ∈ X . Then,
f(x(0)) ∈ TX (x(0)).

Lemma 5 Consider system (1) with f : O ⇒ Rn con-
tinuous. Let X ⊂ O be closed with nonempty interior and
xo ∈ ∂X . If f(xo) ⊂ DX (xo), then, for each solution x
to ẋ ∈ f(x) starting from xo, there exists δ > 0 such that
x((0, δ]) ⊂ int(X ).

The following result can be found in [5, Lemma 4.3.2
and Theorem 4.3.3].

Lemma 6 Given a closed set X ⊂ Rnx , for each x ∈
∂X , we have DX (x) = Rnx\TRnx\X (x) and T∂X (x) =
TX (x) ∩ TRnx\X (x).
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Université PSL in 2017. For her work on
observer design for nonlinear systems, she
obtained the European Ph.D. award on
Control for Complex and Heterogeneous

Systems 2018. As a post-doctoral scholar, she visited the Hy-
brid Systems Lab at the University California Santa Cruz,
USA, and the Center for Research on Complex Automated
Systems at the University of Bologna, Italy. Since 2019, she is
an associate professor at the Centre Automatique et Sytèmes
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