
HAL Id: hal-04657870
https://minesparis-psl.hal.science/hal-04657870

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MBAPPE: MCTS-Built-Around Prediction for Planning
Explicitly

Raphael Chekroun, Thomas Gilles, Marin Toromanoff, Hornauer Sascha,
Fabien Moutarde

To cite this version:
Raphael Chekroun, Thomas Gilles, Marin Toromanoff, Hornauer Sascha, Fabien Moutarde.
MBAPPE: MCTS-Built-Around Prediction for Planning Explicitly. 2024 IEEE Intelligent Vehicle
Symposium (IV), Jun 2024, Jeju Island, France. pp.2062-2069, �10.1109/IV55156.2024.10588457�.
�hal-04657870�

https://minesparis-psl.hal.science/hal-04657870
https://hal.archives-ouvertes.fr

MBAPPE: MCTS-Built-Around Prediction for Planning Explicitly

Raphael Chekroun∗,1,2,3, Thomas Gilles∗,1

Marin Toromanoff2, Sascha Hornauer1, Fabien Moutarde1

Abstract— We present MBAPPE, a novel approach to motion
planning for autonomous driving combining tree search with
a partially-learned model of the environment. Leveraging the
inherent explainable exploration and optimization capabilities
of the Monte-Carlo Search Tree (MCTS), our method ad-
dresses complex decision-making in a dynamic environment.
We propose a framework that combines MCTS with supervised
learning, enabling the autonomous vehicle to effectively navigate
through diverse scenarios. Experimental results demonstrate
the effectiveness and adaptability of our approach, showcasing
improved real-time decision-making and collision avoidance.
This paper contributes to the field by providing a robust
solution for motion planning in autonomous driving systems, en-
hancing their explainability and reliability. Code is available un-
der https://github.com/raphychek/mbappe-nuplan.

I. INTRODUCTION

Innovations in machine learning techniques have led to
significant advancements in self-driving technology. Partic-
ularly, the use of deep learning has greatly improved the
perception stage of autonomous driving. These developments
have been complemented by progress in sensor technology
and mapping methods. As a result, the focus is now shifting
to the next challenges of autonomous driving, and motion
planning emerges as a pivotal component. After identifying
roads and monitoring nearby vehicles and object entities, the
autonomous driving system must now decide its future path
and plan its trajectory accordingly to ensure a collision-free
route while respecting traffic rules.

Therefore, this study centers on the mid-to-end stage of
autonomous driving, presuming that perception tasks have
already been accomplished and working toward an efficient
and explainable motion planning. In this realm, recent re-
search mostly focus on Imitation Learning (IL) [1]–[3] or
hybrid IL and rule-based methods [4], [5].

However, rule-based methods for autonomous driving are
limited by their lack of scalability, adaptability, robustness in
complex and ambiguous situations, and their inability to han-
dle unconventional scenarios. This contrasts with machine-
learning based approaches that address these limitations
through data-driven learning and adaptability.

Nonetheless, while Neural Networks (NN) provide a pow-
erful and flexible tool for learning to drive using supervised
labels with IL methods [1], [6], [7], they remain limited in
the long-term understanding of the consequences of their

1 Mines Paris - PSL University, Centre for Robotics, Paris, France
2Valeo Driving Assistance Research, Créteil, France
3Department of Civil and Environmental Engineering, University of

California, Berkeley, USA
∗Equal contributions

Fig. 1. Visualization of the exploration done by MBAPPE in one planning
step. We display the bird-eye-view trajectory pieces in xy coordinates.
As the road is turning right, the MCTS explores multiple steering angle
and acceleration configurations to correctly take the turn. MBAPPE finally
selects the path which maximizes the Q-value (in green).

actions. Therefore, they may not comprehend the full scope
of interactions with the map and other agents. Deep Re-
inforcement Learning (Deep RL) based methods [8]–[10]
aim to incorporate long-term returns of such consequences
in the training of these networks. However, this causal
understanding remains implicit and not guaranteed, and Deep
RL training is most often sample inefficient.

Our approach aims to get the best of both worlds by
using an IL prior to guide a MCTS [11], [12] into explicitly
exploring the consequences of actions, validating the NN
trajectory if it respects driving constraints, or exploring new
actions if required, see Figure 1. The main challenge in
running a MCTS is that it assumes environment transitions
to be deterministic and perfectly known. While this is true
for the displacement of the ego vehicle given its actions,
and for the update of the map that remains the same, other
agents will also move on their own accord. In order to have
a realistic world model, we developed an IL model to predict
all the other agents future trajectories. This way we get an
approximate of the future transitions that enables us to roll
out the consequences of our chosen actions on multiple time-
steps.

In this paper, we extend the MCTS paradigm to partially-
learned environment and apply it to autonomous driving.

ar
X

iv
:2

30
9.

08
45

2v
1

 [
cs

.R
O

]
 1

5
Se

p
20

23

https://github.com/raphychek/mbappe-nuplan

Pr
ed

ict
io

n
m

od
el

In
te

gr
at

io
n

M
CT

S

History input Prediction output Sequence of actions

,t = 0 s

)(,t = 8 s

...

)(
Planning output

: ego vehicle : other agents : red and green lights

Fig. 2. MBAPPE pipeline A prediction model infers future trajectories of other agents in the scene. This information is fed to the MCTS which outputs
a sequence of consecutive actions. Those are integrated to form an improved trajectory planning for the ego.

Next, we validate our performance on nuPlan [13] simulation
environment and compare to other existing baselines. Lastly,
we highlight the explainability of our approach which allows
easy observation and analysis of the steps leading to any
given decision via its decision tree.

II. RELATED WORK

MBAPPE seeks to leverage imitation learning (IL) to
guide a MCTS model in exploring the outcomes of its
actions. As such, this section is dedicated to examining rule-
based and learning-based motion planning techniques, and
strategies integrating MCTS with deep learning.

a) Rule-based methods: Rule-based methods employ
explicit rules to dictate the behavior of autonomous vehicle,
making them interpretable by nature [14]–[16]. A notable
instance is the Intelligent Driver Model (IDM) [17], designed
to track leading vehicles while maintaining safe distances
through computation of optimal acceleration based on the
leading vehicle’s speed. Rule-based methods were extended
in predictive rule-based approaches which anticipate future
environmental states to improve collision avoidance [18]–
[20]. However, rule-based methods are inflexible and rely
on perfect and consistent representation of the environment.
This characteristic make them struggle with generalization to
novel scenarios or with the inherent variability of real-world
conditions.

b) Imitation learning methods: Imitation learning
methods allow to learn how to drive from supervised data,
leading to more generalizability than rule-based methods.
Some of these methods directly create driving plans or com-
mands [7], [21], but they suffer from a lack of interpretability
and general robustness. To address these issues, some other
approaches focus on making the planning decisions more
interpretable. For instance, Dauner et al. developed Predictive
Driver Model (PDM) [4] to combine an interpretable IDM
with a simple neural network. Some methods deal with the
robustness problem by generating multiple planning options
with deep learning and then choosing the best one with the
lowest cost [22]–[25] or by refining deep-based predictions
[2], [26]. However, IL methods still suffers from distribution
mismatch where agent fails to recover from accumulation
error thus leading to increasingly out of expert distribution
states, and lacks of long-time reasoning.

c) Reinforcement learning methods: Instead of copying
human behavior like IL, RL models use a reward sys-
tem to judge how good a strategy is. This can lead to
improved decision-making, sometimes even outperforming
humans [27]. Model-free reinforcement learning focuses on
learning optimal actions directly from observed states and
rewards without creating an explicit model of the driving
environment. Even though RL is successful for simple au-
tonomous driving tasks [8], up to now, no published work
has reported sucess of exclusively RL-based method in
autonomous driving for complex urban environments [28].
Furthermore, RL suffers from sample inefficiency and lack
of convergence guarantees and interpretability. Recent works
leveraged supervised learning in RL pipelines to overcome
these limitations [10], [29], thus compensating the weakness
of the RL gradient during training.

d) Methods integrating MCTS with deep learning: Inte-
grating MCTS with deep learning techniques has emerged as
a compelling approach to enhance decision-making processes
in various domains. Silver et al. [27] pioneered this fusion by
combining MCTS with deep supervised learning to achieve
groundbreaking results in the game of Go with AlphaGo.
This paradigm was extended with AlphaZero [30] by relying
solely on self-play and RL. MuZero [31] finally embraced
implicitness and extended the generality of these approaches
by employing learned models to simulate outcomes and
inform strategic decision-making.

In the realm of autonomous driving, Chen et al. [32]
integrated MCTS with deep learning but relied on implicit-
ness for the tree transitions and prior computation, possibly
leading to inexplicable behaviors which are not desirable
for this domain of application. Other published methods
lack generalizability and constraint their applicative fields
to simplified custom environments such as highway driving
without possibility for public benchmarks comparison [33],
[34], or high level tactical decisions [35].

III. METHOD

In this section, we introduce MBAPPE and its com-
ponents. In particular, we present the known and learned
features of the world model, and technical details of our
MCTS design and exploration steps.

a) Selection b) Expansion c) Evaluation d) Backup

)(r

P P

P P

P P

)(rr()

Q

Q

Q

QQ+u(P)

Q+u(P)

Q+u(P)

Q+u(P)

Fig. 3. MCTS steps a) Each simulation pass in the tree follows a trade-off between exploitation of the best Q value of an action, and the exploration
term u(P) that encourages to explore nodes with less visits N along the prior P . b) The leaf node is possibly expanded following some probabilities
depending on the prior P and the continuity constraints. c) After the simulation, the leaf node is evaluated by explicitly computing the reward r described
in Section III-C. d) Q-values are updated so means of the rewards r in the sub-tree below each actions are tracked.

A. MBAPPE framework

At each time-step, a neural network (based on an open-
loop version of Urban Driver [21]) predicts an estimation of
the ego trajectory and of the future trajectories of every other
agents around the ego. This information is fed to the MCTS,
which will deploy an internal lightweight simulation where
the ego trajectory is used as a prior to guide the first steps
of exploration, and other agents trajectories are leveraged to
build the world model. At each simulation-step, which follow
a planning time axis inside the tree, the MCTS explores
the possible actions and internally simulates the evolution
of the environment to check how those explored actions will
impact its driving performances (driving out of area, check
for collisions with static objects, check collisions with other
agents thanks to their estimated trajectory, etc).

The global pipeline is represented in Figure 2.

B. World Model

The Monte-Carlo tree search leverages an internal sim-
plified representation of the world where it can quickly
iterate to explore possible sequences of actions and their
consequences. This environment is made of two categories
of features:

• Known features:
– The map information, including traffic light,
– Static objects such as traffic cones and barriers
– Dynamic objects such as neighboring vehicles, traf-

fic cones or pedestrians, which we will consider as
other agents evolving in the simulated environment

• Learned features:
– Estimated future trajectories of other agents given

by the NN prediction.

C. MCTS design and tree steps

Our MCTS is based on a kinematic bicycle model of the
vehicle. Actions are defined as a tuple (a, δ), where a is

the acceleration and δ the steering angle. Accelerations and
steering are discretized in 13 values each, in the respective
range of [−3, 3] m.s−2 and [−π/4, π/4] rad. Actions are
integrated every 0.1 s.

The simulation process of our tree search is detailed in Fig.
1. The tree is initialized with a single root node representing
the current context. Each tree node stores 3 values: Q the
expected return, P the action prior and N the number of
visits. The nodes are built and evaluated iteratively through
the following steps:

• Selection: We follow the PUCTS [27] formula to select
the next action following a trade-off between the ex-
ploitation of Q and the exploration of unvisited nodes
with low N .
At a node state S the action A is chosen using the
following formula:

At = argmax
A

Q(S,A)+ cpuctP (S,A)

√∑
B N(S,B)

1 +N(S,A)
(1)

with cpuct an hyper-parameter balancing the trade-off
between exploration and exploitation. We found cpuct =
2 to perform the best in our experiments.

• Expansion: We expand leaf nodes by all physically
possible actions from the state of the leaf node, follow-
ing a prior P and some continuity constraints. These
constraints ensure both comfort and physical feasibil-
ity of successive actions. Prior design and continuity
constraints are described in Section III-D.

• Evaluation: We consider that driving rewards are rather
short term (crash or not, exit road or not within the
next 6 or 8 seconds). Therefore they do not need to be
bootstrapped by a learned value network, but rather can
be evaluated at the current simulation step by checking
for them directly. Our computed reward rt at state st is
made of these main components:

– Progress: distance advanced since the last node,

normalized by maximum allowed speed limit
([0, 1]),

– Collision: penalty for collision with car and pedes-
trian (−5) or object (−2),

– Route: −0.5 if the vehicle is not on the expected
road,

– Drivable area: −1 if the vehicle is not on the
drivable area,

– Center of the road:
∗ −sin(θ)/2 where θ is the angle difference be-

tween the ego heading and the closest centerline
heading,

∗ −d/2 where d is the distance between the ego
position and the closest centerline.

• Back up: We update the Q values using the cumulative
reward as in MuZero [31]:

Gk =

l−1−k∑
τ=0

γτrk+1+τ

Q
(
sk−1, ak

)
:=

N
(
sk−1, ak

)
×Q

(
sk−1, ak

)
+Gk

N (sk−1, ak) + 1

N
(
sk−1, ak

)
:= N

(
sk−1, ak

)
+ 1

(2)
We use a discount factor γ of 1.

D. Prior and continuity constraints

An efficient MCTS exploration process can be achieved
by leveraging two approaches.

Firstly, providing the MCTS an intuition over actions to
explore to prioritize the more probable ones. This issue is
tackled using a prior over the distribution of actions for
each node. This prior is usually learned and inferred for
every node [31], which is computationally expensive, or
handcrafted. Secondly, to further streamline the exploration
process, we narrowed down the action space, thereby re-
ducing the overall actions that need to be explored to the
most critical ones. To achieve this, we integrated continuity
constraints into the MCTS to ensure not only the physical
feasibility of the actions explored but also to enhance comfort
and to reduce the exploration time.

1) The prior: We designed a prior which relies on both
handcrafted rules and learned rules, all without incurring any
additional computational overhead.

The prior function is made of two parts:
• The handcrafted prior Ph prioritizes exploration around

the constant speed with null steering angle,
• The learned prior Pl is obtained by deriving the predic-

tion of the ego trajectory by the NN into consecutive
actions. This prior advantages the possibility of follow-
ing NN actions for the first T time steps of the internal
simulation of the MCTS. We found T = 1 s to perform
the best in our experiments.

Both Pl and Ph are Gaussians centered on the chosen
action. The Gaussian are parametrized with a very high vari-
ance (σ2 = 100) to encourage an almost uniform exploration.

The designed prior can be written:

P t =

{
P t
h + P t

l if t ≤ T

P t
h if t > T

(3)

2) Continuity constraints: To ensure the output trajectory
is physically feasible and to minimize the total number of
actions to explore, we implemented continuity constraints in
the MCTS.

These constraints are two folded:
• The Tree Constraint: At a given step t of the real-world

vehicle movement, the root node of the novel tree will
be constrained to explore neighboring accelerations and
steering angles relatively to the actions taken at time
t − 1 by the previous tree. This constraint favors a
behavior continuity between successive time-steps and
corresponding MCTS.

• The Node Constraint: During the MCTS internal ex-
pansion phase, exploration only focuses on neighboring
accelerations and steering angle values relatively to the
actions of his parent node. This constraint favors a
behavior continuity during the expansion phase of a
given MCTS.

We formulate both continuity constraints as restricting the
following action (at+1, δt+1) to be within a range of at±0.15
m.s−2 for the acceleration and δt±π/240 rad for the steering
angle with (at, δt) the action at the previous time-step.

IV. EXPERIMENTAL RESULTS

Dataset: We show results on the nuPlan dataset. It
encompasses 1300 hours worth of real vehicle motion data
along with its corresponding simulator. Within the nuPlan
framework, we chose to assess the performance of planners
on closed-loop non-reactive agents benchmark. We focus
on this benchmark, as evaluations conducted in closed-loop
more effectively assess an agent’s driving capabilities without
the need to compare them to a flawed ’ideal’ behavior as
typically seen in open-loop assessments. Additionally, we
chose non-reactive agents for our study, as preliminary ex-
periments and other performance benchmarks [4], [13] have
demonstrated that outcomes are largely consistent between
reactive and non-reactive agents. All simulations are ran on
100 scenarios of each of the 14 scenarios types (totaling
1,118 scenarios in practice, as all 14 types do not have 100
available scenarios) of the nuPlan challenge, following the
Val14 benchmark validation set [4].

Score and metrics: We use the nuPlan official score,
which measures driving quality between 0 and 100 through
a combination of 16 normalized driving metrics related to
infraction rate, ego comfort, or progress toward the goal.
We decided to put a special emphasis on the metrics of
collision rate (CR), driving area non-compliance (DA) and
ego progress (EP) in our experiments, as they are key
elements for a safe and efficient autonomous driving system.

Implementation details: For ablations studies, the num-
ber of simulation steps is limited to 256 in each MCTS. In
our setup (Intel Core i7-9700K CPU @ 3.60GHz) the whole
pipeline inference time is ∼ 0.15 seconds for this setup,

including input pre-processing, prediction model, MCTS
and post-processing. The pipeline runs on CPU only. For
inference speed purposes, we only expand new possible
actions every 1 s. We observed no drop of performance.

A. Ablation study over the prior

An ablation study over the choice of prior is presented
table I. Continuity constraints are the one described section
III-D.

Prior Metrics
Learned Crafted CR ↓ DA ↓ EP ↑ Score ↑

- - 6% 4% 31% 26%
✓ - 11% 3% 88% 65%
- ✓ 6% 4% 95% 82%
✓ ✓ 5% 2% 96% 86%

TABLE I
ABLATION OVER THE PRIOR.

We can see from results of Table I that MCTS without
prior is inefficient. Exploration being unguided, the expan-
sion phase does not create node leading to a good reward
a priori. Following Pl for the first steps of the simulation
allowed to significantly improve the exploration phase by
guiding the MCTS to stay within the driving area. Indeed,
thanks to continuity constraints, a good beginning of the
trajectory allows to stay on the road and reach acceptable
metrics. Interestingly, leveraging only Pl leads to an increase
of the collision rate: if the MCTS first actions differ from
the prior’s, there will be a mismatch between the guidance it
provides and the actual scenes which can lead to collisions.

Leveraging Ph allows the MCTS to prioritize exploration
of the most common behavior on average (staying at around
the same velocity with a null steering angle), therefore min-
imizing collisions and optimizing overall progress. Notably,
using only this naive prior without any kind of learning al-
ready yields very good performance, highlighting the power
of guided exploration in the MBAPPE method. Finally,
leveraging Ph +Pl allows to prioritize this kind of behavior
while starting with a better heads up and leads to best results
on this set of experiments.

B. Ablation study over continuity constraints

An ablation study over the choice of continuity constraints
is presented Table II. For these experiments, prior is Ph+Pl.

It becomes apparent that when applied separately, conti-
nuity constraints offer only marginal improvements to our
method. A possible explanation is that the handcrafted
identity prior already directs the MCTS towards a form of
constrained exploration similar to what is achieved through
node constraints. However, utilizing both node and tree con-
straints independently does enhance the exploration process.
Importantly, the combined effects of these constraints not
only substantially increase performance but also ensure a
consistent selection of actions, both within a single tree and

Constraints Metrics
Tree Node CR ↓ DA ↓ EP ↑ Score ↑

- - 7% 4% 95% 79%
✓ - 8% 3% 96% 82%
- ✓ 8% 2% 94% 82%
✓ ✓ 5% 2% 96% 86%

TABLE II
ABLATION OVER CONTINUITY CONSTRAINTS.

across multiple trees that correspond to sequential planning
steps.

C. Comparison with state-of-the-art methods

We compare MBAPPE’s performance with other state-
of-the-art method on the validation scenario of the Val14
benchmark [4]. See Table III.

Baselines: Urban Driver [21] utilizes PointNet [36]
layers to process polyline and employs a MLP following
a multi-head attention block to forecast the ego trajectory.
GameFormer Planner [2] exploits a Transformer to predict all
agents trajectories before refining ego planning via non-linear
optimization. PlanCNN [3] leverages a CNN on rasterized
inputs to predicts the ego trajectory. PDM [4] leverages an
improved IDM [17] model combined with a simple MLP to
generate several trajectories which are then scored to return
the optimal one. GC-PGP [5] categorizes proposed plans
according to their traversal of a route-constrained lane graph,
and then identifies the most probable cluster center.

Method CR ↓ DA ↓ EP ↑ Score ↑

Urban Driver MA [21] 34% 26% 96% 47%
GameFormer Planner [2] 6% 4% 98% 84%
PDM-Hybrid [4] 2% 0% 99% 93%
IDM [17] 12% 6% 95% 76%
GC-PGP [5] - - - 57%
PlanCNN [3] - - - 73%

MBAPPE (GameFormer) 3% 2% 98% 90%
MBAPPE (Urban Driver) 5% 2% 96% 86%

TABLE III
VAL14 BENCHMARK ON NUPLAN

For this comparison, we extended Urban Driver to predict
trajectories of all other agents in the scene in addition to the
ego’s. We name this updated version Urban Driver Multi-
Agent (Urban Driver MA). Then, we evaluated two versions
of MBAPPE. One leverages Urban Driver MA as prediction
and prior model (c.f. Figure 2), and the other a GameFormer
model. Other components of those systems are identical.

In our experiments, we found that enhancing a predic-
tion model with MBAPPE consistently results in improved
planning. Specifically, when integrated with GameFormer,
MBAPPE yields a substantial improvement in key metrics

Fig. 4. A subset of a decision tree obtained with MCTS exploration. Nodes are colored according to their Q-value. The root node correspond to the
present state of the vehicle in the nuPlan simulator. We observe that the orange left branch exploration leads to the ego leaving the expected route, hence
the low Q-value. The red middle branch exploration leads to a collision, thus explaining the low Q-value. The green right branch exploration presents the
expected behavior and therefore has the highest Q-value. The explored planning can also be observed in Figure 1.

compared to using non-linear optimization techniques as
done with the GameFormer Planner.

Thus, MBAPPE not only delivers state-of-the-art perfor-
mance, but is also an explainable and interpretable operator
when applied to predictive models. This dual benefit both
refines decision-making policies and provides added adapt-
ability.

V. AN EXPLICIT AND EXPLAINABLE METHOD

A key benefit of this technique is its simplicity: it requires
only basic high-level directives in the form of a reward
function (e.g., move ahead, avoid collisions, stick to the
route, and remain on the road). Despite its vague prior, the
method yields highly effective and realistic planning. This
eliminates the need for specific, hard-to-generalize rules, like
basing decisions on the road’s curvature or the speed of
the car ahead, as well as the use of hardly interpretable
neural networks. As a result, our approach is highly flexible,
adaptable, and explainable.

Indeed, decisions of the MCTS are explainable and the
internal process that led to those decisions can be easily
observed and analyzed. Figure 4 provides an example of a
decision tree of the MCTS in which we can observe several
exploration branches and their consequences on the tree
expansion. In particular, we observe on the green right branch
that internal exploration leading to desirable behavior yields
the highest Q-value and further exploration of that branch.
When exploration leads to collisions or to the ego leaving
its expected route, the Q-value is low and exploration stops,

as shown in the red middle and orange left branches. Figure
4 shows that MCTS decisions-making process is transparent
and explainable, thus leading to an explicit and safe planning.

VI. CONCLUSION

This paper presents MBAPPE, a novel approach extending
MCTS for planning within a partially learned environment
in the context of autonomous driving. Through ablation
studies, we highlighted the advantages of incorporating the
designed priors and continuity constraints into the MCTS
tree. Comparative analysis using a benchmark on the nuPlan
simulator revealed that MBAPPE is an effective refinement
operator for planning models, consistently outperforming
vanilla models across all evaluation metrics. Finally, we
emphasize the interpretability provided by this technique,
a critical attribute for ensuring the safety and reliability of
autonomous vehicles.

In terms of future work, as MBAPPE improves planning
model capabilities, one could fine-tune the prior network
similarly to the approach used in AlphaGo [27]. This would
enable the network to better emulate the MCTS output,
thereby refining its priors and initiating a cycle of self-
improvement. Better results could also be achieved with a
more complex learned prior inferred for each node [31],
[32], as well as learning a bootstrapped value network to
estimate node expected returns in addition to the current
reward. However this would require more network inferences
and could harm the execution time.

REFERENCES

[1] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu,
and F. Moutarde, “Gohome: Graph-oriented heatmap
output for future motion estimation,” in 2022 In-
ternational Conference on Robotics and Automation
(ICRA), IEEE, 2022, pp. 9107–9114.

[2] Z. Huang, H. Liu, and C. Lv, “Gameformer: Game-
theoretic modeling and learning of transformer-based
interactive prediction and planning for autonomous
driving,” arXiv preprint arXiv:2303.05760, 2023.

[3] K. Renz, K. Chitta, O.-B. Mercea, A. S. Koepke,
Z. Akata, and A. Geiger, “Plant: Explainable planning
transformers via object-level representations,” in Con-
ference on Robot Learning, PMLR, 2023, pp. 459–
470.

[4] D. Dauner, M. Hallgarten, A. Geiger, and K.
Chitta, “Parting with misconceptions about learning-
based vehicle motion planning,” arXiv preprint
arXiv:2306.07962, 2023.

[5] M. Hallgarten, M. Stoll, and A. Zell, “From prediction
to planning with goal conditioned lane graph traver-
sals,” arXiv preprint arXiv:2302.07753, 2023.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, et al.,
“End to end learning for self-driving cars,” arXiv
preprint arXiv:1604.07316, 2016.

[7] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and
A. Geiger, “Transfuser: Imitation with transformer-
based sensor fusion for autonomous driving,” IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 2022.

[8] A. Kendall, J. Hawke, D. Janz, et al., “Learning to
drive in a day,” in 2019 International Conference
on Robotics and Automation (ICRA), IEEE, 2019,
pp. 8248–8254.

[9] D. Chen, V. Koltun, and P. Krähenbühl, “Learning
to drive from a world on rails,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 15 590–15 599.

[10] R. Chekroun, M. Toromanoff, S. Hornauer, and F.
Moutarde, “Gri: General reinforced imitation and
its application to vision-based autonomous driving,”
Robotics, vol. 12, no. 5, 2023, ISSN: 2218-6581. DOI:
10.3390/robotics12050127.

[11] R. Coulom, “Efficient selectivity and backup operators
in monte-carlo tree search,” vol. 4630, May 2006,
ISBN: 978-3-540-75537-1. DOI: 10.1007/978-3-
540-75538-8_7.

[12] L. Kocsis and C. Szepesvári, “Bandit based monte-
carlo planning,” in Machine Learning: ECML 2006,
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 282–293, ISBN: 978-3-540-46056-5.

[13] K. T. e. a. H. Caesar J. Kabzan, “Nuplan: A closed-
loop ml-based planning benchmark for autonomous
vehicles,” in CVPR ADP3 workshop, 2021.

[14] S. Thrun, M. Montemerlo, H. Dahlkamp, et al., “Stan-
ley: The robot that won the darpa grand challenge,” in
The 2005 DARPA Grand Challenge: The Great Robot
Race, M. Buehler, K. Iagnemma, and S. Singh, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 1–43, ISBN: 978-3-540-73429-1. DOI: 10.1007/
978- 3- 540- 73429- 1_1. [Online]. Available:
https://doi.org/10.1007/978-3-540-
73429-1_1.

[15] J. Leonard, J. How, S. Teller, et al., “A perception-
driven autonomous urban vehicle,” Journal of Field
Robotics, vol. 25, no. 10, pp. 727–774, 2008.

[16] A. Bacha, C. Bauman, R. Faruque, et al., “Odin: Team
victortango’s entry in the darpa urban challenge,”
Journal of field Robotics, vol. 25, no. 8, pp. 467–492,
2008.

[17] M. Treiber, A. Hennecke, and D. Helbing, “Congested
traffic states in empirical observations and micro-
scopic simulations,” Physical review E, vol. 62, no. 2,
p. 1805, 2000.

[18] P. Karkus, B. Ivanovic, S. Mannor, and M. Pavone,
“Diffstack: A differentiable and modular control stack
for autonomous vehicles,” in Conference on Robot
Learning, PMLR, 2023, pp. 2170–2180.

[19] M. H. Danesh, P. Cai, and D. Hsu, “Leader: Learning
attention over driving behaviors for planning under un-
certainty,” in Conference on Robot Learning, PMLR,
2023, pp. 199–211.

[20] W. Zeng, W. Luo, S. Suo, et al., “End-to-end inter-
pretable neural motion planner,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8660–8669.

[21] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński,
and P. Ondruska, “Urban driver: Learning to drive
from real-world demonstrations using policy gradi-
ents,” in Conference on Robot Learning, PMLR, 2022,
pp. 718–728.

[22] A. Cui, S. Casas, A. Sadat, R. Liao, and R. Urtasun,
“Lookout: Diverse multi-future prediction and plan-
ning for self-driving,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021,
pp. 16 107–16 116.

[23] A. Sadat, S. Casas, M. Ren, X. Wu, P. Dhawan,
and R. Urtasun, “Perceive, predict, and plan: Safe
motion planning through interpretable semantic rep-
resentations,” in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXIII 16, Springer, 2020,
pp. 414–430.

[24] W. Zeng, W. Luo, S. Suo, et al., “End-to-end inter-
pretable neural motion planner,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8660–8669.

[25] W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang, and
R. Urtasun, “Dsdnet: Deep structured self-driving net-
work,” in Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020,

https://doi.org/10.3390/robotics12050127
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-73429-1_1
https://doi.org/10.1007/978-3-540-73429-1_1
https://doi.org/10.1007/978-3-540-73429-1_1
https://doi.org/10.1007/978-3-540-73429-1_1

Proceedings, Part XXI 16, Springer, 2020, pp. 156–
172.

[26] G. Aydemir, A. K. Akan, and F. Güney, “Adapt:
Efficient multi-agent trajectory prediction with adap-
tation,” arXiv preprint arXiv:2307.14187, 2023.

[27] D. Silver, A. Huang, C. Maddison, et al., “Mastering
the game of go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–489, Jan. 2016.
DOI: 10.1038/nature16961.

[28] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and
H. Li, “End-to-end autonomous driving: Challenges
and frontiers,” arXiv preprint arXiv:2306.16927, 2023.

[29] M. Toromanoff, E. Wirbel, and F. Moutarde, “End-
to-end model-free reinforcement learning for urban
driving using implicit affordances,” in Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 7153–7162.

[30] D. Silver, T. Hubert, J. Schrittwieser, et al., “Mastering
chess and shogi by self-play with a general reinforce-
ment learning algorithm,” CoRR, vol. abs/1712.01815,
2017. arXiv: 1712 . 01815. [Online]. Available:
http://arxiv.org/abs/1712.01815.

[31] J. Schrittwieser, I. Antonoglou, T. Hubert, et al.,
“Mastering atari, go, chess and shogi by planning
with a learned model,” Nature, vol. 588, no. 7839,
pp. 604–609, 2020.

[32] J. Chen, C. Zhang, J. Luo, J. Xie, and Y. Wan, “Driv-
ing maneuvers prediction based autonomous driv-
ing control by deep monte carlo tree search,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 7,
pp. 7146–7158, 2020. DOI: 10.1109/TVT.2020.
2991584.

[33] K. Shu, H. Yu, X. Chen, et al., “Autonomous driving at
intersections: A critical-turning-point approach for left
turns,” in 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), IEEE,
2020, pp. 1–6.

[34] T. Ha, K. Cho, G. Cha, K. Lee, and S. Oh, “Vehicle
control with prediction model based monte-carlo tree
search,” in 2020 17th International Conference on
Ubiquitous Robots (UR), 2020, pp. 303–308. DOI:
10.1109/UR49135.2020.9144958.

[35] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine,
and M. J. Kochenderfer, “Combining planning and
deep reinforcement learning in tactical decision mak-
ing for autonomous driving,” IEEE transactions on
intelligent vehicles, vol. 5, no. 2, pp. 294–305, 2019.

[36] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet:
Deep learning on point sets for 3d classification and
segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017,
pp. 652–660.

https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1109/TVT.2020.2991584
https://doi.org/10.1109/TVT.2020.2991584
https://doi.org/10.1109/UR49135.2020.9144958

	INTRODUCTION
	Related work
	Method
	MBAPPE framework
	World Model
	MCTS design and tree steps
	Prior and continuity constraints
	The prior
	Continuity constraints

	Experimental results
	Ablation study over the prior
	Ablation study over continuity constraints
	Comparison with state-of-the-art methods

	An explicit and explainable method
	Conclusion

