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A B S T R A C T

Many geophysical imaging applications, such as full-waveform inversion, often rely on high-performance
computing to meet their demanding computational requirements. The failure of a subset of computer nodes
during the execution of such applications can have a significant impact, as it may take several days or even
weeks to recover the lost computation. To mitigate the consequences of these failures, it is crucial to employ
effective fault tolerance techniques that do not introduce substantial overhead or hinder code optimization
efforts. This paper addresses the primary research challenge of developing fault tolerance techniques with
minimal impact on execution and optimization. To achieve this, we propose DeLIA, a Dependability Library
for Iterative Applications designed for parallel programs that require data synchronization among all processes
to maintain a globally consistent state after each iteration. DeLIA efficiently performs checkpointing and
rollback of both the application’s global state and each process’s local state. Furthermore, DeLIA incorporates
interruption detection mechanisms. One of the key advantages of DeLIA is its flexibility, allowing users to
configure various parameters such as checkpointing frequency, selection of data to be saved, and the specific
fault tolerance techniques to be applied. To validate the effectiveness of DeLIA, we applied it to a 3D full-
waveform inversion code and conducted experiments to measure its overhead under different configurations
using two workload schedulers. We also analyzed its behavior in preemptive circumstances. Our experiments
revealed a maximum overhead of 8.8%, and DeLIA demonstrated its capability to detect termination signals
and save the state of nodes in preemptive scenarios. Overall, the results of our study demonstrate the suitability
of DeLIA to provide fault tolerance for iterative parallel applications.
1. Introduction

High-performance computing (HPC) has revolutionized research
involving complex calculations and large datasets, such as geophys-
ical methods. Large-scale supercomputers are equipped with numer-
ous components, making them capable of solving complex problems.
However, the size and complexity of these systems also contribute to
increased failures. Consequently, it is essential to employ techniques
that reduce the effects of interruptions or failures in the system. One
strategy is using a fault-tolerance solution that ensures the reliability
of the overall system and the user applications (Rojas et al., 2021).

In supercomputers, the components are organized into nodes, each
of which can have its own set of processing cores, memory hierar-
chies, and other resources. These nodes are distributed throughout
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the system, and communication among them often occurs through
the use of the message-passing interface (MPI). When a node fails
during the execution of an application, the error can propagate and
lead to a global failure of the entire execution. To address this issue,
programmers must implement fault tolerance (FT) mechanisms at the
application level. This involves adopting application-specific strategies
to minimize the adverse impact on the system’s performance when
faults occur (Weber, 2003). However, a significant challenge lies in de-
veloping FT techniques that do not introduce excessive overhead, as it
is crucial to maintain the system’s efficiency during normal operations.
Overhead refers to the additional resource allocation (time, memory,
and processing cycles) due to introducing some capability apart from
the main application, which in this case is fault tolerance.
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Cloud computing has emerged as a popular option for utilizing HPC
environments, providing an alternative to traditional on-premise clus-
ters. Many research efforts in the HPC field are focused on assessing the
cost–benefit analysis of migrating resource-intensive applications from
on-premise environments to public cloud platforms (Netto et al., 2018).
One cost-effective approach is using preemptive cloud instances, which
are less expensive but can be reclaimed by the cloud provider at any
time. Major cloud providers, such as Amazon EC2 Spot (AWS, 2023),
Microsoft Azure Spot (Microsoft Azure, 2023), Google Cloud Pre-
emptible (Google Cloud, 2023), and Oracle Preemptible Instances (Or-
acle Cloud, 2023), offer this type of instance, which utilizes spare
computing resources. In such a scenario, employing FT methods to
detect notifications before a cloud instance is reclaimed and save the
application’s state is essential. By employing FT techniques, researchers
can ensure that meaningful progress is not lost when a preemptive
instance is taken away. This would allow for the seamless resumption
of computation from the last saved state, minimizing the effects of
disruptions and maximizing the utilization of cloud resources.

Researchers have extensively explored the application of FT tech-
niques in HPC applications, with checkpointing and rollback (CR)
being the most commonly used methods. CR involves saving the state
of an application at predetermined intervals. In the event of a fail-
ure, the application can resume execution from the last saved check-
point. In distributed systems, researchers can save each process’s state
in local checkpoints or save the entire application state in global
checkpoints (Kalaiselvi and Rajaraman, 2000).

Another critical area of investigation is failure detection, where
heartbeat monitoring (HM) is commonly employed. This approach
involves processes periodically sending heartbeat messages to a leader
node. If the leader node does not receive the expected heartbeat mes-
sages from a particular node within a specific time interval, it is
assumed that the node has failed (Chetan et al., 2005).

The implementation details of each FT technique can vary among
researchers. For example, in their geophysical study, Gonçalves et al.
(2011) applied interruption detection directly using MPI. On the other
hand, Kayum et al. (2020) and Okita et al. (2022) implemented inter-
ruption detection in conjunction with a workload scheduler. A work-
load scheduler is a management software that allocates and distributes
the application’s work between different processes in a balanced man-
ner to obtain better execution.

Typically, FT methods are designed to be integrated into specific
problem domains or incorporated into workload schedulers. How-
ever, Bautista-Gomez et al. (2011) proposed an FT library that pro-
vides checkpointing and rollback functionality from the application
level. Bland et al. (2013) applied interruption detection using MPI
routines, and similarly, Laguna et al. (2016) presented a tool to give
the MPI state checkpointing and rollback. These approaches offer more
general-purpose solutions for implementing FT techniques.

Considering the specific requirements and constraints of various
applications and the need for FT in the face of increasingly less reliable
supercomputers or preemptive circumstances, providing a solution that
minimizes the implementation effort is highly desirable. FT HPC tech-
niques are usually attached to an application or workload scheduler,
offering data recovery but not interruption detection or the opposite.
To address this, we propose the dependability library for iterative
applications (DeLIA), which provides functionality for saving the ap-
plication state and detecting potential interruptions. DeLIA is designed
explicitly for bulk synchronous programs (BSP), characterized by data
synchronization among all processes, resulting in a globally consistent
state after each iteration (Valiant, 1990). Many scientific methods that
leverage HPC exhibit this behavior, including the geophysical method
of full-waveform inversion (FWI), which we have chosen as a case
study.

By utilizing DeLIA, BSP application developers can seamlessly inte-
grate fault tolerance capabilities into their programs without spending
2

significant time and effort on implementation. The library enables the
saving of the application state. It provides interruption detection, ensur-
ing that the execution can resume from the last saved state in the event
of failures or interruptions. DeLIA offers a user-friendly and efficient
solution for incorporating fault tolerance in BSP applications, providing
researchers with a streamlined approach to safeguarding their work
and mitigating the impact of interruptions in HPC environments. The
application developers can adapt the parameters and features they will
use.

The main features and contributions of this study to fault tolerance
in HPC applications field are:

• High configurability: DeLIA offers extensive configuration op-
tions, allowing users to select which library functionalities they
want to utilize in their applications, which critical data should be
saved, and some important parameters such as the frequency to
save.

• Adaptability to diverse BSP: DeLIA is designed to be adaptable
to different BSPs with various workload schedulers, making it
applicable to a wide range of scientific methods.

• Checkpoint and rollback functionality: DeLIA saves both the ap-
plication’s global state and the local state of individual processes,
ensuring that the execution can be resumed from the last saved
state.

• Interruption detection: DeLIA incorporates interruption detection
mechanisms, including detecting termination signals sent by pre-
emptive instances and heartbeat monitoring. These features help
identify potential failures or interruptions in the execution of the
application.

• Low communication overhead: In DeLIA, communication require-
ments are handled by a dedicated thread to minimize interference
with the application’s behavior. To reduce the possibility of con-
flict with the existing MPI communication in the application, we
implemented communication for heartbeat monitoring using user
datagram protocol (UDP) instead of MPI. This protocol ensures a
lighter communication mechanism because it does not require a
message-delivery guarantee.

The remaining sections of this paper are organized as follows:
Section 2 provides a detailed description of the proposed library,
highlighting its main features. Section 3 focuses on the 3D FWI method,
which serves as a case study for evaluating DeLIA. Section 4 presents
the experimental results obtained from applying DeLIA in a 3D FWI
scenario and their analysis. Section 5 discusses related works in the
field of fault tolerance in HPC applications. Finally, Section 6 concludes
the paper by summarizing the contributions and suggesting avenues for
future research.

2. DeLIA

This study developed DeLIA using C++ for BSP applications struc-
tured according to Fig. 1. BSP problems are iterative, where processes
perform tasks on their local data during each iteration. At the end of
each iteration, all processes synchronize to update the application’s
global state.

The primary focus of DeLIA is to address fail-stop failures, which
refer to interruptions in the execution of the application caused by
hardware faults or specific software faults (Herault and Robert, 2015).
These failures result in the abrupt termination of the application.
Additionally, DeLIA is designed to handle preemptive scenarios, which
are circumstances where the execution of the application is interrupted,
even though it is not due to a failure.

By providing fault tolerance capabilities for both fail-stop failures
and preemptive scenarios, DeLIA enhances the resilience of BSP ap-
plications. It allows for the detection and recovery from interruptions,
ensuring the continuity of the application’s execution and preserving

the global or local state.
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Fig. 1. Schematic of the behavior of the target application for using DeLIA.

DeLIA offers an application programming interface (API) that en-
ables developers to incorporate FT features into their software. This API
allows users to invoke DeLIA functions, abstract the library implemen-
tation, and define the main parameters of DeLIA in a JavaScript object
notation (JSON) file. JSON was chosen for parameter input because it
is user-friendly, lightweight, and supported by many libraries.

2.1. Interruption detection

Detecting a possible application failure is necessary for applying
techniques to save and recover the data. In our library, interruption
detection is performed via heartbeat monitoring (Chetan et al., 2005)
and detection of termination signal.

2.1.1. Heartbeat messages
In the heartbeat monitoring system, the fault detector node receives

periodic heartbeat messages from every other node. If it fails to receive
these messages within a specific interval, it concludes that the node has
failed. Avoiding overwhelming the network with excessive heartbeat
messages when employing this method is crucial (Chetan et al., 2005).

DeLIA creates a thread in the nodes responsible for sending and re-
ceiving the messages. The leader node (also defined as a fault detector)
receives the heartbeat messages from each node. These messages are
sent in a defined interval (𝚂𝙻𝙴𝙴𝙿_𝚃𝙷𝚁𝙴𝙰𝙳_𝚃𝙸𝙼𝙴). If the leader node does
not receive any heartbeat message from a given node within a max-
imum waiting time (𝚃𝙸𝙼𝙴_𝙼𝙰𝚇_𝚆𝙰𝙸𝚃), it assumes that this node failed
(Fig. 2(b)). The leader then sends a trigger to the other nodes, which
respond by saving their local data to disk (Fig. 2(c)). Unfortunately, we
cannot detect this failure if the leader node fails.

The heartbeat monitoring communication was implemented using
the UDP networking protocol in addition to MPI. This choice was made
because the applications already utilize MPI, and to avoid any potential
conflicts with the version used in the application, we preferred to
implement our communication more generically. Furthermore, the UDP
protocol incurs less overhead as it is a lighter form of communication
that does not guarantee message delivery, unlike transmission control
protocol (TCP), which ensures message delivery but has more over-
head. Additionally, there is no issue with losing some messages during
heartbeat monitoring.
3

The application developer specifies the 𝚂𝙻𝙴𝙴𝙿_𝚃𝙷𝚁𝙴𝙰𝙳_𝚃𝙸𝙼𝙴 and
𝚃𝙸𝙼𝙴_𝙼𝙰𝚇_𝚆𝙰𝙸𝚃 through the parameter file. 𝚃𝙸𝙼𝙴_𝙼𝙰𝚇_𝚆𝙰𝙸𝚃 should be
more significant than 𝚂𝙻𝙴𝙴𝙿_𝚃𝙷𝚁𝙴𝙰𝙳_𝚃𝙸𝙼𝙴 to increase the chances of
receiving one message. If this configuration is not respected, the nodes
will spend more time (𝚂𝙻𝙴𝙴𝙿_𝚃𝙷𝚁𝙴𝙰𝙳_𝚃𝙸𝙼𝙴) to send the messages than
the maximum tolerated by the leader (𝚃𝙸𝙼𝙴_𝙼𝙰𝚇_𝚆𝙰𝙸𝚃), so the leader
will assume a failure occurred. In this situation, the nodes will receive
a trigger and save their local data unnecessarily. As the data will be
saved by a thread created for the HM, it is expected that the time spent
saving this data, even if unnecessarily, does not considerably impact
the application’s performance.

It is important to emphasize that heartbeat monitoring in DeLIA is
primarily intended to verify the operational status of the nodes rather
than scheduling tasks. The responsibility of task scheduling lies with
the application itself. This approach offers greater flexibility as the
application can choose a workload scheduler that effectively achieves
load balancing according to its specific requirements.

2.1.2. Termination signals
Supercomputers and cloud systems utilize termination signals to

notify a job that it should terminate for some reason, such as system
failures, exceeding the allocated execution time, or resource reclama-
tion in preemptive environments. However, with the integration of
fault-tolerance mechanisms, an application can safeguard critical data,
thus preventing the loss of progress during execution. DeLIA can detect
these termination signals and respond by triggering the nodes to save
their local data. This ensures that even in the event of termination, the
application’s progress and data are preserved, allowing for seamless
recovery and continued execution when possible. By implementing
this capability, DeLIA enhances the dependability of applications in
supercomputing and cloud environments, offering a robust solution for
handling failures and interruptions effectively.

2.2. Checkpointing and rollback recovery

The main challenge in checkpointing is determining which data to
save and how often (frequency) to save. Data size is critical because the
overhead of saving and loading should be less than the recomputation
time avoided. Frequency is another critical parameter, considering
the higher the frequency, the higher the overhead (Kalaiselvi and
Rajaraman, 2000).

Each application has its details, and because of that, the developer
should know which critical data to save. DeLIA allows users to pass
data directly to the library, which will save and read it. However, if the
application is already implemented with object-oriented programming,
the developer can implement DeLIA’s interfaces related to the critical
data.

DeLIA provides a solution for scenarios where an experiment is
run with one configuration, producing a checkpoint, and subsequent
execution is performed with a different configuration. The application
cannot recover the last checkpoint because it was created using dif-
ferent settings. To address this issue, DeLIA allows the application to
verify the settings of the last checkpoint before attempting to recover
the data. The user can send the data corresponding to the settings to
enable this functionality.

If, in execution, the application is interrupted and saves its global
data, in the subsequent execution with the same settings, when the
application calls the method 𝙳𝚎𝙻𝙸𝙰_𝚁𝚎𝚊𝚍𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊, DeLIA will re-
cover the global data. During synchronization, the application calls
the function 𝙳𝚎𝙻𝙸𝙰_𝚂𝚊𝚟𝚎𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊, which saves the global data in
the disk. DeLIA can also write and read data from each process; in
the case of the local data, each process can check if its local data can
be recovered and read them. DeLIA writes the local data through the
thread created to send the fault detection trigger.
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Fig. 2. Diagram of how heartbeat monitoring communication works.
3. Case study: 3D full waveform inversion

The case study to be analyzed is the integration of DeLIA with
the FWI, a standard algorithm in geophysics processing for oil and
gas exploration. This application is an ideal example of validating the
library because it generates significant data, has built-in global data
4

synchronization, and is used frequently in academia and the oil and
gas industry (Virieux and Operto, 2009).

FWI can be implemented using shared memory and distributed
memory. In this work, we parallelized the wave propagation with
shared memory as Barros et al. (2018). For distributed memory, we use
two different workload schedulers: decentralized static (DS) (Santana
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et al., 2019) and the cyclic token-based work-stealing (CTWS) (Assis
et al., 2019). DS scheduling distributes the task equally among the
process, and CTWS can redistribute some tasks dynamically after a
static distribution of tasks.

3.1. FWI definition

FWI is a numerical optimization technique to extract quantitative
information from seismograms (Virieux and Operto, 2009). The main
objective is to determine the velocity model vector 𝐯∗ by solving the
equation

𝐯∗ = arg min
𝐯

‖(𝐯) − 𝐝‖22, (1)

here the vector 𝐝 represents the seismic data obtained in the field (ob-
erved data), consisting of several seismograms recorded from different
eismic shots, (𝐯) is the operator that represents the artificial modeling
rocess of data using numerical methods to simulate the propagation
f seismic waves. This process generates seismograms based on a
redetermined velocity model (𝐯). (Virieux et al., 2009).

Eq. (1) minimizes the misfit 𝑓 which is calculated as

= ‖(𝐯) − 𝐝‖22. (2)

During the FWI algorithm, 𝐯 is iteratively updated. The final velocity
odel should effectively represent the subsurface velocity. The updated

f 𝐯 applies the quasi-Newton optimization method, as follows:

𝑗+1 = 𝐯𝑗 − 𝛼𝑗𝐇−1
𝑗 𝐠𝑗 , (3)

here the velocity model for the next iteration is updated using the
radient. Here, 𝑗 ≥ 0 represents the iteration number, 𝐯𝑗 is the velocity
odel vector at the 𝑗th iteration, 𝛼𝑗 is the step size in the direction

f the gradient, 𝐠𝑗 is the gradient at the 𝑗th iteration, and 𝐇−1
𝑗 is an

pproximation of the inverse of the Hessian matrix.
Notably, in our implementation of FWI, the gradient 𝐠𝑗 is com-

uted using the adjoint state method (Plessix, 2006). The gradient
s calculated after computing the forward propagation and the back-
ropagation. In this computation, it is possible to apply the optimal
heckpointing proposed by Symes (2007), where part of the forward
ropagation wavefield is saved in the disk and reused in the backpropa-
ation. We highlight that the optimal checkpointing proposed by Symes
2007) focuses on resolving the space problem in the main memory,
nd DeLIA’s checkpointing is focused on fault tolerance.

To calculate 𝐇−1
𝑗 , we utilize the limited-memory bounded Broyden–

letcher–Goldfarb–Shanno algorithm (L-BFGS-b) optimization method
Nocedal, 1980) with the library proposed by Zhu et al. (1997). The
ain parameters provided to L-BFGS-b include the function to mini-
ize (𝑓 ), the vector to be updated (𝐯𝑗), and the gradient (𝐠𝑗).

.2. FWI algorithm

Next, we describe the algorithm of the FWI method (Algorithm 1)
sing the notation shown in Table 1. The algorithm begins by reading
he observed seismic data of each shot and the initial model 𝐯0. We
efined the list of shots for each node 𝐓𝑝 as the list of tasks. Each of the
processes receives approximately the same number of shots. If FWI is

mploying CTWS, it can adjust the 𝐓𝑝 dynamically because, first, CTWS
llocates the tasks equally, and when a process stays idle, it will try to
teal tasks from an overloaded process.

Every process calculates the misfit (𝑓 𝑝
𝑗 ) and the gradient (𝐠𝑝𝑗 ) cor-

esponding to their shots. We generate 𝐠𝑗 and 𝑓𝑗 at the end of the 𝑗th
teration, summing all 𝑓 𝑝

𝑗 and 𝐠𝑝𝑗 . Next, we update the velocity model
ith L-BFGS-b using 𝐠𝑗 and 𝑓𝑗 . If the algorithm has converged, the

urrent velocity model is the best fit; otherwise, we execute another
teration of FWI until the convergence is reached or up to maximum
5

umber of iterations.
Table 1
Notation for the FWI.

𝑆 number of shots,
𝑠 index for the shot number (𝑠 = 0,… , 𝑆 − 1),

𝐽 number of iterations,
𝑗 index for the iteration number (𝑗 = 0,… , 𝐽 − 1),

𝑓𝑗 misfit from the iteration j,
𝑓 𝑠
𝑗 partial misfit of shot s from the iteration j,

𝐯𝑗 velocity model from the iteration j,
𝐠𝑗 gradient from the iteration j,
𝐠𝑠𝑗 partial gradient of shot s from the iteration j,
𝑃 number of processes,
𝑝 process index, i.e. rank (𝑝 = 0,… , 𝑃 − 1),

𝐓𝑝 list of tasks (shots) for the process p,
(𝐯)𝑠𝑗 modeled data corresponding to the velocity model of the iteration j

for the shot s,
𝐭𝑝 list of tasks already processed for the process p,
𝐠𝑝𝑗 partial gradient of process p from the iteration 𝑗,

𝑓 𝑝
𝑗 partial misfit of process p from the iteration 𝑗,

Algorithm 1 Main steps of one process in FWI parallel
1: Read 𝐯0 and 𝐝
2: for (𝐽 iterations) do
3: for (𝐓𝑝 shots) do ⊳ If CTWS is applied 𝐓𝑝 can be updated

dynamically
4: Generate (𝐯)𝑠𝑗
5: Compute the misfit 𝑓 𝑠

𝑗
6: Compute the gradient 𝐠𝑠𝑗
7: 𝑓 𝑝

𝑗 + = 𝑓 𝑠
𝑗

8: 𝐠𝑝𝑗+ = 𝐠𝑠𝑗
9: end for
0: Compute 𝐠𝑗 and 𝑓𝑗
1: Compute 𝐯𝑗+1 from 𝐯𝑗 using the L-BFGS-b library
2: if 𝐯𝑗+1 has converged then
3: break
4: end if
5: end for

3.3. Applying DeLIA to the FWI

As explained in Section 2, we need to identify the essential data
in FWI, to the settings, global checkpointing, and local checkpointing.
For the settings, we must save parameters such as the velocity model
size, the number of iterations, and the number of shots that we can
change between the runs. The setting data must be saved only in the
initialization of the FWI.

Global checkpointing should save the critical data of an FWI itera-
tion, which are essential to the next iteration. In the case of the FWI,
the data are the total gradient (𝐠𝑗) and misfit (𝑓𝑗); The updated velocity
model in this iteration (𝐯𝑗+1); L-BFGS-b library parameters as iteration
number, bounds and double precision.

The local checkpointing must save the data that diverges between
the nodes, which is vital for its state. To the FWI, the local data are the
partial gradient (𝐠𝑠𝑗), misfit (𝑓 𝑠

𝑗 ), and the list of shots that are already
processed (𝐭𝑝). We omit the wavefield in the local checkpointing process
ecause data saving needs to be quick, and the wavefield contains
ignificant data that would take longer to save. Additionally, we should
dd more information on the wavefield at each time step to ensure the
eturn of the state during rollback, and it would require saving and
eading a large amount of data, which would be time-consuming.

When using DeLIA in an application, the first step is to initialize
he library by calling the function 𝙳𝚎𝙻𝙸𝙰_𝙸𝚗𝚒𝚝 (Line 2 of Algorithm

2). This function requires the parameter file of the library as input,



Computers and Geosciences 191 (2024) 105662C. Santana et al.

t
c
𝙳

d
t
i
A
i
i
o

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2

which contains information such as 𝚃𝙸𝙼𝙴_𝙼𝙰𝚇_𝚆𝙰𝙸𝚃 and the folder where
he data should be saved. After the initialization of DeLIA, we should
heck if there are global data to be recovered by calling the function
𝚎𝙻𝙸𝙰_𝙲𝚊𝚗𝚁𝚎𝚌𝚘𝚟𝚎𝚛𝙶𝚕𝚘𝚋𝚊𝚕𝙲𝚑𝚎𝚌𝚔𝚙𝚘𝚒𝚗𝚝𝚒𝚗𝚐; if so, we read the last global
ata from the disk in the function 𝙳𝚎𝙻𝙸𝙰_𝚁𝚎𝚊𝚍𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊 and start
he FWI from the last iteration; if not, we save the current settings
n the disk using the function 𝙳𝚎𝙻𝙸𝙰_𝚂𝚊𝚟𝚎𝚂𝚎𝚝𝚝𝚒𝚗𝚐𝚜 (Lines 3 to 7 of
lgorithm 2). Then, we call the function to start the heartbeat mon-

toring 𝙳𝚎𝙻𝙸𝙰_𝙷𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝𝙼𝚘𝚗𝚒𝚝𝚘𝚛𝚒𝚗𝚐_𝙸𝚗𝚒𝚝 (Line 8 of Algorithm 2), and
f some node fails, the other nodes will receive a trigger. At the end
f the FWI, we call 𝙳𝚎𝙻𝙸𝙰_𝙷𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝𝙼𝚘𝚗𝚒𝚝𝚘𝚛𝚒𝚗𝚐_𝙵𝚒𝚗𝚊𝚕𝚒𝚣𝚎 to finish

the threads created for the heartbeat monitoring in DeLIA (Line 27 of
Algorithm 2).

Before computing the partial gradient and misfit, each process
checks if it can read local data by calling the function
𝙳𝚎𝙻𝙸𝙰_𝙲𝚊𝚗𝚁𝚎𝚌𝚘𝚟𝚎𝚛𝙻𝚘𝚌𝚊𝚕𝙲𝚑𝚎𝚌𝚔𝚙𝚘𝚒𝚗𝚝𝚒𝚗𝚐. If the local data is available,
the process reads its last local data and starts processing from the next
shot that has not been processed yet with the function
𝙳𝚎𝙻𝙸𝙰_𝚁𝚎𝚊𝚍𝙻𝚘𝚌𝚊𝚕𝙳𝚊𝚝𝚊. On the other hand, if the local data is not
available, the process will process all shots. In our experiments, DeLIA
saves the local data when a process receives a trigger, ensuring that the
progress is recorded and can be resumed. This behavior is captured in
Lines 10 to 12 of Algorithm 2.

At the end of each FWI iteration, we utilize the function
𝙳𝚎𝙻𝙸𝙰_𝚂𝚊𝚟𝚎𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊 to save the global state of the iteration (Line 25
of Algorithm 2). These data are saved in accordance with the specified
limits of iterations and time–frequency, as specified in the parameter
file. This ensures that the global state is appropriately recorded and can
be accessed as needed.

Algorithm 2 Main steps of one process in FWI parallel using DeLIA
1: Read 𝐯0 and 𝐝
2: 𝙳𝚎𝙻𝙸𝙰_𝙸𝚗𝚒𝚝
3: if 𝙳𝚎𝙻𝙸𝙰_𝙲𝚊𝚗𝚁𝚎𝚌𝚘𝚟𝚎𝚛𝙶𝚕𝚘𝚋𝚊𝚕𝙲𝚑𝚎𝚌𝚔𝚙𝚘𝚒𝚗𝚝𝚒𝚗𝚐 then
4: 𝙳𝚎𝙻𝙸𝙰_𝚁𝚎𝚊𝚍𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊 ⊳ Update 𝐽 and 𝐯0
5: else
6: 𝙳𝚎𝙻𝙸𝙰_𝚂𝚊𝚟𝚎𝚂𝚎𝚝𝚝𝚒𝚗𝚐𝚜
7: end if
8: 𝙳𝚎𝙻𝙸𝙰_𝙷𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝𝙼𝚘𝚗𝚒𝚝𝚘𝚛𝚒𝚗𝚐_𝙸𝚗𝚒𝚝
9: for (𝐽 iterations) do
0: if 𝙳𝚎𝙻𝙸𝙰_𝙲𝚊𝚗𝚁𝚎𝚌𝚘𝚟𝚎𝚛𝙻𝚘𝚌𝚊𝚕𝙲𝚑𝚎𝚌𝚔𝚙𝚘𝚒𝚗𝚝𝚒𝚗𝚐 then
1: 𝙳𝚎𝙻𝙸𝙰_𝚁𝚎𝚊𝚍𝙻𝚘𝚌𝚊𝚕𝙳𝚊𝚝𝚊 ⊳ Update 𝐭𝑝, 𝐓𝑝, 𝐠

𝑝
𝑗 and 𝑓 𝑝

𝑗
2: end if
3: for (𝐓𝑝 shots) do
4: Generate (𝐯)𝑠𝑗
5: Compute the misfit 𝑓 𝑠

𝑗 and the gradient 𝐠𝑠𝑗
6: 𝑓 𝑝

𝑗 + = 𝑓 𝑠
𝑗

7: 𝐠𝑝𝑗+ = 𝐠𝑠𝑗
8: Put 𝑝 on the 𝐭𝑝
9: end for
0: Obtain the total gradient and misfit
1: Generate the 𝐯𝑗+1 updates the 𝐯𝑗 using the L-BFGS-b library
2: if 𝐯𝑗+1 has converged then
3: break
4: end if
5: 𝙳𝚎𝙻𝙸𝙰_𝚂𝚊𝚟𝚎𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊
6: end for
7: 𝙳𝚎𝙻𝙸𝙰_𝙷𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝𝙼𝚘𝚗𝚒𝚝𝚘𝚛𝚒𝚗𝚐_𝙵𝚒𝚗𝚊𝚕𝚒𝚣𝚎
8: 𝙳𝚎𝙻𝙸𝙰_𝙵𝚒𝚗𝚊𝚕𝚒𝚣𝚎

4. Experiments and results

We carried out validation and overhead analyses in experiments
with the 3D FWI application integrated with DeLIA. Experiments were
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performed on the supercomputer located at the High-Performance Com-
puting Center (NPAD) at the Federal University of Rio Grande do Norte,
and also on the preemptive environment Amazon Cloud Spot. Each
NPAD compute node has 128 GB RAM DDR4 2133.

In a supercomputing environment such as NPAD, the execution of
the application can be interrupted earlier than expected when there is a
failure in a node (or due to some hardware or software error specifically
in that node and the application ends at the moment when the other
nodes try to communicate with the fail node), connection error, or
the execution exceeded the time limit that the supercomputer made
available to the user. In the case of AWS Spot, if the execution takes
too long, the probability of interruption increases due to the essence
of preemptible instances. FWI typically runs a lot of data and uses
a lot of resources, so there are possibilities for interruptions in both
environments. By performing FWI in these environments using DeLIA,
we can analyze the overhead generated by the library to check it does
not hinder the HPC optimizations that have already been applied.

We investigate this overhead under two workload schedulers, DS
and CTWS, and examine the application’s behavior when used with the
library in preemptive scenarios. In Section 4.1, we conduct experiments
using data from an estimated velocity model obtained from the Gato
do Mato (GdM) oil field in the Santos Basin, Brazil, where Shell Brazil
operates (Lopez et al., 2020).

We are considering the overhead and the relative standard deviation
(RSD) for the first analysis. The overhead is defined by:

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑀𝑤𝑜𝐷𝑒𝐿𝐼𝐴 −𝑀𝑤𝐷𝑒𝐿𝐼𝐴

𝑀𝑤𝐷𝑒𝐿𝐼𝐴
× 100, (4)

where 𝑀𝑤𝑜𝐷𝑒𝐿𝐼𝐴 and 𝑀𝑤𝐷𝑒𝐿𝐼𝐴 are the median runtime of a 3D FWI
without and with DeLIA, respectively. RSD is defined by:

𝑅𝑆𝐷 = 𝑆𝐷
𝐴𝑉 𝐺

× 100, (5)

where 𝐴𝑉 𝐺 is the average time of the executions, and 𝑆𝐷 is the
standard deviation. The RSD shows how dispersed the execution times
are. If the overhead is less than the RSD of experiments of FWI without
DeLIA, then we consider that the result is adequate for that experiment.

The same application was executed in preemptive circumstances
as explained in Section 4.2. We executed in the situation of a typical
supercomputer that will finish the job when the execution time exceeds
the requested time and in a preemptive cloud environment. The goal of
the experiments is to verify whether a program integrated with DeLIA
behaves as expected in such a scenario.

For all experiments, the number of local data is the same as the
nodes used in each investigation, and the number of measured seismo-
grams (observed data) is the same as the shots. For the experiments
in the NPAD, DeLIA saved the global and local data in the global file
system, which all nodes have access to.

4.1. Analysis of overhead

We executed the FWI application with GdM to test the DeLIA with
a bigger problem. We use the segment of the velocity model shown in
Fig. 3 to generate the observed data for FWI (more details of FWI con-
figuration are presented in Annex B). For this experiment, the data sizes
were: global data 806.4 MB, each local data 28.8 MB, each observed
data 49.9 MB, and velocity model 28.8 MB. For each iteration, DeLIA
saves the global data (806.4 MB), and for each trigger in each alive
node, DeLIA saves the local data (28.8 MB). We executed six iterations
of FWI. The library configuration was saving the global data in each
iteration, using the interruption detection with 𝚃𝙸𝙼𝙴_𝙼𝙰𝚇_𝚆𝙰𝙸𝚃 = 𝟼𝟶 and

𝚂𝙻𝙴𝙴𝙿_𝚃𝙷𝚁𝙴𝙰𝙳_𝚃𝙸𝙼𝙴 = 𝟷, and saving the local data after a trigger.
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Fig. 3. Velocity model of Gato do Mato oil & gas field.
Table 2
Analysis of FWI using DS.

4 nodes 8 shots 8 nodes 8 shots 8 nodes 32 shots

DeLIA overhead 2.54% 8.8% 3.84%
RSD without DeLIA 6.88% 3.37% 3.78%
RSD with DeLIA 17.40% 7.20% 5.14%

4.1.1. Using DS
We first ran the FWI with DS using eight sources, six iterations,

and each experiment ten times. To compare the overhead of the FWI
with DeLIA according to the number of nodes, we ran the experiments
with four and eight nodes. The execution with DeLIA using four nodes
shows good behavior, as shown in Fig. 4(a); the overhead was 2.54%
less than the RSD without DeLIA (6.88%), but the RSD with DeLIA
was more significant (17.40%), which shows that probably in the set
of experiments, HM detects many fake failures (Table 2).

In the experiment with eight nodes and eight shots, we do not
change the DeLIA and FWI configuration while employing further
resources. We have only one shot per node, so the local data feature is
underused; consequently, we have an overhead (8.8%) bigger than RSD
without DeLIA (3.37%). In the execution, a significant number of tasks
per node is adequate to save local data effectively. So we increased the
number of shots to 32; in this scenario, the overhead of FWI with DS
was 3.84%. The results are shown in Fig. 4 and Table 2.

4.1.2. Using CTWS
We executed the FWI with CTWS with six iterations and each exper-

iment ten times, with four and eight nodes. For this set of experiments,
we use 32 sources for more tasks per process because CTWS is a
dynamic scheduler that performs better in these scenarios. The DeLIA
main difference between a static and dynamic scheduler is that in the
last one, each process should read the list of tasks already processed by
the other in the recovery time.
7

Table 3
Analysis of FWI with GdM using CTWS using 32 shots.

4 nodes 8 nodes

DeLIA overhead 2.27% 2.68%
RSD without DeLIA 1.93% 8.22%
RSD with DeLIA 4.51% 7.69%

The execution with DeLIA using four nodes shows a tolerable be-
havior, as shown in Fig. 5(a); the overhead was 2.27% a slightly more
than RSD without DeLIA (1.93%), but the RSD with DeLIA was more
significant (4.51%) because of the fake failures detection (Table 3).

The execution using eight nodes was suitable; the overhead was
2.68%, the RSD without DeLIA 8.2%, and the RSD with DeLIA 7.69%.
As a dynamic scheduler, the execution times of the experiments can
differ from each other due to the changes in execution time, such as
stealing a task; because of that, the RSD without DeLIA was more
significant.

4.2. Behavior in preemptible conditions

Fault tolerance techniques can also be applied for preemptive condi-
tions without fault. To maintain the execution progress if the execution
is interrupted preemptively, fault tolerance actions must be performed
at the application level. To allow the use of DeLIA for such situations,
we analyzed the behavior of 3D FWI with this library in preemptive
circumstances; we used the supercomputer NPAD and Amazon Elastic
Compute Cloud (Amazon EC2) Spot for this set of experiments.

4.2.1. Maximum resource usage time in a supercomputer environment
In this set of experiments, we utilized the 3D FWI application with

DeLIA, using GdM data consisting of 174 shots and four nodes. We
employed the CTWS workload scheduler in NPAD, setting a time limit
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Fig. 4. Overhead analysis of FWI with and without DeLIA using DS.

Fig. 5. Overhead analysis of FWI with and without DeLIA using CTWS.
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of one day and configuring it to send a termination signal to the
application two minutes before the end of the time limit.

The first execution involved running one FWI iteration. We then
executed the application again, starting from the middle of the second
iteration by reading the last application state. This second execution
continued until iteration 9, spanning an additional three days.

Using DeLIA, we successfully carried out up to 9 iterations at differ-
ent execution moments. The progress made during the first execution,
which lasted one day, was seamlessly carried forward into the second
execution, spanning three days, without any loss of progress.

4.2.2. Preemptive cloud instances (AWS EC2 spot)
The program was executed from the beginning in one instance (8

vCPUs, 32 GB RAM) of Amazon EC2 Spot, a preemptive computing
solution offered by AWS. After about 7 h, iteration 1 of FWI was
completed, and the global checkpoint was saved. Some hours later,
during iteration 2, due to the supply and demand dynamics at the
time, AWS decided to reclaim the resources and issued a two-minute
interruption notice. DeLIA detected the signal associated with the
interruption notice and saved the partial progress of iteration 2 (local
checkpoints) correctly.

Later, another EC2 Spot instance was started, and a 3D FWI simula-
tion was executed with the same settings. DeLIA detected the check-
points from the previous run and loaded their state of execution.
Iteration 2 of FWI was completed in 4.5 h, much less than the regular
7 h per iteration, because of the partial progress loaded from check-
points. Then, the following iterations were processed one after the other
until the program was completed, with no interruptions from AWS.

The application behaved as expected during a preemptive interrup-
tion, as it detected the interruption notice, saved a consistent state of
the application, and later resumed execution from the saved check-
points. Therefore, the DeLIA’s termination signal detection, checkpoint-
ing (local and global), and rollback recovery capabilities have been
validated in preemptive environments.

5. Related works

Researchers have investigated geophysics problems using high-
performance computing techniques with many computations, but few
have employed fault tolerance techniques for such problems. Gonçalves
et al. (2011) embedded checkpointing and rollback recovery for reverse
time migration (RTM) using heartbeat monitoring with MPI for fault
detection. Fault-tolerance strategies with checkpointing are common
and add an overhead that may be acceptable depending on the ap-
plication. However, the communication of the heartbeat monitoring
using MPI absorbs additional overhead of the MPI library and may not
be suitable if the application is an independent project that already
uses MPI because conflicts may occur. In our work, we choose to
implement heartbeat monitoring communication without MPI and to
promote reusability, we have built DeLIA as a library that can be easily
employed in other application codes.

Some authors proposed fault tolerance methods in the application
with a workload scheduler. Kayum et al. (2020), for example, applied
the method leader and workers, where the leader node sends the tasks
to the worker nodes, and if a worker fails, the leader can discard
this node. The authors concentrate on developing the FT methods
for network communication, which uses a TCP socket instead of MPI
because MPI demands all nodes to operate correctly to complete a
collective communication and to finalize. Borin et al. (2015) proposed
the scalable partially idempotent tasks system (SPITS), a model that
develops a workload scheduler with FT. SPITS architecture includes
job manager (JM) and worker. The JM is responsible for sending the
tasks to the workers; the workers execute them. The JM sends a task
and adds it to a list of work in progress (WIP). After a while, if the
task is consolidated, it is removed from the WIP list; otherwise, the
worker probably failed, and JM sends it again to another worker. Okita
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et al. (2018) applied SPITS in the Non-hyperbolic Common Reflection
Surface method, and Okita et al. (2022) applied to RTM using SPITS
and checkpointing; both works have investigations in preemptive cloud
scenarios. Combining FT with workload scheduling has been promising
but requires the use of a specific scheduler. On the other hand, our
approach can be used with other workload schedulers.

Bautista-Gomez et al. (2011) proposed the checkpoint library called
fault tolerance interface (FTI) implemented in C/MPI and Python. This
library spawns one extra MPI process per node to employ the FTI
features and to guarantee that the library does not cause any damage
to the application communication; on the other hand, it causes the
overhead of creating a new process. The authors have developed FTI
with a checkpoint using the Reed–Solomon method to encode the data
and used the Mw9.0 Tohoku Japan earthquake simulation as a case
study. Parasyris et al. (2020) extended the FTI to support checkpoints
with multiple nodes and multiple graphics processing units (GPUs),
reducing the overhead of the checkpoint and using a method that
detects and stores only the data that has changed. Our work does not
rely on an extra MPI process and does not use any MPI functionally,
and it does so to avoid additional overhead and conflicts with other
MPI features used in the application. DeLIA also adds fault detection
methods creating a dedicated thread for this.

Applications for distributed-memory HPC architectures often rely on
the MPI to handle node communication. However, the MPI standard
lacks a comprehensive fault tolerance strategy, as noted by Bouteiller
and Bosilca (2022). Several projects have emerged to address this
issue by introducing fault tolerance techniques to MPI, such as MPI-
FT (Louca et al., 2000) and FT-MPI (Fagg and Dongarra, 2000). One
notable project in this domain is user-level failure mitigation (ULFM),
which extends the MPI standard with fault-tolerance constructs, as
discussed by Bland et al. (2013). ULFM provides a set of essential
interfaces that enable users to adapt their recovery methods to suit the
characteristics of their applications. This flexibility has led researchers
and production teams to propose various recovery strategies at the ap-
plication level. ULFM defines MPI routines and definitions that enable
MPI applications to communicate despite failures. It is important to
note that ULFM is not designed to be a specific recovery approach
itself; instead, it supports the development of fault tolerance packages
by offering the minimal interface required to repair communication
channels.

Recent significant advancement in the ULFM project has been pre-
sented by Bouteiller and Bosilca (2022). This work focuses on fault re-
ports and the concurrent execution of recovery activities. Another work
that builds upon ULFM is introduced by Munhoz et al. (2022), which
proposes an in-memory rollback restart technique utilizing ULFM. Fur-
thermore, Godón (2022) investigate fault-tolerant strategies applied to
ant colony optimization using MPI with ULFM. The application must be
configured with a compatible MPI version that supports ULFM to use
it. ULFM enables the continued operation of MPI programs even after a
node failure by providing information about the error that occurred in
a node. However, it does not save the application’s state after a failure,
as in our proposal.

Sultana et al. (2019) proposed MPI Stages to save the state of
the MPI in BSPs. MPI Stages is an extension of the project proposed
by Laguna et al. (2016) called Reinit, which arises to fill the gap left
by UFML about the checkpoint of the MPI state. MPI Stages divide the
application into two functions, 𝚖𝚊𝚒𝚗_𝚕𝚘𝚘𝚙 (which executes all code) and
𝚖𝚊𝚒𝚗 (which initializes MPI and calls 𝚖𝚊𝚒𝚗_𝚕𝚘𝚘𝚙). When the application
fails, it is not necessary to re-queue the job or restart the application
from the beginning; the MPI Stages permits restart without initializing
the MPI and continue from 𝚖𝚊𝚒𝚗_𝚕𝚘𝚘𝚙. It is crucial noting that MPI
Stages saves and recovers the state of the MPI communication, but the
user should guarantee the application data checkpoint. DeLIA, on the
other hand, saves the application’s state instead of MPI’s.

In summary, this work stands out from others by introducing a fault
tolerance library with several key features. Firstly, it provides a user-

friendly API allowing flexible integration into existing applications.
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Table 4
Literature review on tools of FT and geophysical problems applying FT.

Flexible
FT tool

Continue
after node
failure

CR
application
state

Interruption
detection

Preemptive
cloud
environment

Applied to
geophysical
problems

Gonçalves et al. (2011) x HM
with MPI

x

Kayum et al. (2020) x through
workload
scheduler

x

Okita et al. (2018) x through
workload
scheduler

x x

Okita et al. (2022) x x through
workload
scheduler

x x

Bautista-Gomez et al. (2011) x x

Bland et al. (2013) x x MPI
routines

Laguna et al. (2016) x x only
MPI State

MPI
routines

Our proposal x x HM
with a
dedicated
thread
using UDP

x x
Secondly, it incorporates checkpointing and rollback mechanisms, en-
abling the preservation and restoration of the application’s state in the
event of failure. Additionally, the library includes interruption detec-
tion capabilities through heartbeat monitoring and the detection of
termination signals. Furthermore, communication in DeLIA is achieved
without relying on the MPI to avoid conflict with the MPI already
applied in the application. This design choice allows for efficient com-
munication between processes. Lastly, DeLIA is compatible with various
workload schedulers, making it versatile and compatible with different
HPC environments.

Table 4 presents an overview of the works related to tools of FT and
geophysical problems applying FT techniques cited above. We consider
flexible FT tools the works developed uncoupled to an application or
workload scheduler.

6. Conclusion

We present DeLIA, a fault-tolerance library written in C++ for bulk
synchronous programs (BSP). DeLIA supports checkpointing the appli-
cation’s global state and each process’s state, heartbeat monitoring, and
termination signal detection. DeLIA provides interface classes to handle
the application’s state or settings and an application programming
interface (API) to simplify its use.

We validated DeLIA’s features in the context of the geophysical
problem of 3D full waveform inversion (FWI), a widely used application
in the scientific community that requires high-performance computing
resources. To ensure the library’s effectiveness, we performed experi-
ments using data from an estimated velocity model acquired from the
Gato do Mato oil field in the Santos Basin, Brazil (Lopez et al., 2020)
to analyze the overhead in a more realistic scenario.

Since the FWI application is employed in industrial and academic
domains with various schedulers, we tested DeLIA with two different
schedulers to ensure its adaptability in different settings. Through these
experiments, we observed that the number of tasks per process directly
impacts DeLIA’s overhead. Specifically, when saving local data, many
tasks are required to utilize this feature effectively.

We performed tests in the supercomputing NPAD and the preemp-
tive instance of AWS Cloud. DeLIA showed a light overhead of 8.8% in
the worst experiment and presented itself as suitable for employment
10

in preemptive circumstances. We currently have some limitations on
continuing the execution even if any node has been interrupted. We
intend to perform this in prospective work. The library is available on
https://lappsufrn.gitlab.io/delia/ with its documentation.

Code availability section

Dependability Library for Iterative Applications (DeLIA)
Email contact: carla.santana.058@ufrn.edu.br
Requirements to apply: A C++11-compatible compiler is required.

The library has been tested to compile with CMake version 3.5 or more
recent.

Program language: C++
Program size: 4.3 MB
DeLIA source codes are available for download at the link: https:

//gitlab.com/lappsufrn/delia-submission
DeLIA documentation is available at the link: https://lappsufrn.

gitlab.io/delia/
FWI source codes are available for download at the link: https:

//gitlab.com/lappsufrn/seismic/ufrn-fwi/mamute
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Appendix A. DeLIA quick start

The purpose of the appendices is to give an idea of how to apply
DeLIA in an application, but for more details, go to our documentation
https://lappsufrn.gitlab.io/delia/ .

The project example we are using has two loops: the external loop
represents the iterations of the global data, and the internal loop
represents the local data processing. The inner loop calculates the
variable 𝚕𝚘𝚌𝚊𝚕_𝚍𝚊𝚝𝚊, and the external loop reduces these variables in
the 𝚐𝚕𝚘𝚋𝚊𝚕_𝚍𝚊𝚝𝚊.

Listing 1: main file without DeLIA

int main(int argc, char **argv) {
int data_size , iterations , ind=0;
int rank, comm_sz;
double *local_data , *global_data;
Settings *st;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD , &comm_sz);
MPI_Comm_rank(MPI_COMM_WORLD , &rank);
// Class which represents the application

configuration
st = new Settings("config_file.json");
// Size of the data
data_size = st->getDataSize();
// Iterations number
iterations = st->getIterations();
// Data that will be calculated in each

process
local_data = new double[data_size];
// Data that will be result of the

reduction of the local data
global_data = new double[data_size];
if (local_data == NULL || global_data ==

NULL) {
fprintf(stderr, "Can’t allocate vectors

\n");
exit(-1);

}
for (ind; ind < iterations; ind++) {

for (int i = 0; i < data_size; i++) {
// Calculation of local data
local_data[i] = rank*i*ind;
11
}
// Reduction of the data
MPI_Allreduce(local_data , global_data ,

data_size , MPI_DOUBLE ,
MPI_SUM, MPI_COMM_WORLD)

;
if (rank ==0 )

printf("Iteration %d ends\n", ind);
}
MPI_Finalize();
delete (local_data);
delete (global_data);

}

A.1. DeLIA initialization

The application has a file representing the settings information
(𝚌𝚘𝚗𝚏𝚒𝚐_𝚏𝚒𝚕𝚎.𝚓𝚜𝚘𝚗) in this example. To initialize DeLIA, we pass the
id of the process and the number of processes, a JSON file with DeLIA
parameters (𝚍𝚎𝚕𝚒𝚊_𝚙𝚊𝚛𝚊𝚖.𝚓𝚜𝚘𝚗), and the application configuration file.
We are using checkpointing and interrupt detection. Then, we pass the
local and global data to DeLIA.

Listing 2: delia_param.json
{

"FT_FOLDER" : "./data",
"CHECKPOINTING_GLOBAL_ITERATION": 1,
"TRIGGER_SIGNAL" : true,
"TRIGGER_HEARTBEAT_MONITORING": {

"TIME_MAX_WAIT" : 20,
"SLEEP_THREAD_TIME" : 1

}
}

In our DeLIA configuration example, we saved the data in the folder
.∕𝚍𝚊𝚝𝚊, to save the global data in each iteration
(𝙲𝙷𝙴𝙲𝙺𝙿𝙾𝙸𝙽𝚃𝙸𝙽𝙶_𝙶𝙻𝙾𝙱𝙰𝙻_𝙸𝚃𝙴𝚁𝙰𝚃𝙸𝙾𝙽 ∶ 𝟷), activated the trigger by ter-
mination signal and heartbeat monitoring. The heartbeat monitoring
defined node failed if it did not send a message in 20 s, and every 2 s,
the observed node sends a message to the node leader.

Listing 3: DeLIA initialization in the code
// Initialization passing the rank of the

process, the number of processes
// the configuration file from DeLIA
// the configuration file from application
DeLIA_Init(rank, comm_sz, "delia_param.json",

"config_file.json");
if (!DeLIA_CanWork()) {

std::cerr << "DeLIA can not work" << std::
endl;

exit;
};

// Passing the global and local data to DeLIA
DeLIA_SetGlobalData(global_data , data_size ,

DOUBLE_CODE);
DeLIA_SetLocalData(local_data , data_size ,

DOUBLE_CODE);

A.2. Check if you can recover data

After DeLIA’s initialization, we can check if there is data to be
recovered. We check if it is possible to recover the global data by
calling the function 𝙳𝚎𝙻𝙸𝙰_𝙲𝚊𝚗𝚁𝚎𝚌𝚘𝚟𝚎𝚛𝙶𝚕𝚘𝚋𝚊𝚕𝙲𝚑𝚎𝚌𝚔𝚙𝚘𝚒𝚗𝚝𝚒𝚗𝚐, which
will check if there are data and the data corresponds to the current
application configuration.

https://lappsufrn.gitlab.io/delia/
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We should guarantee the processes synchronization, and we can
read the global data or write the current settings.

Listing 4: Recover data
// Check if there are data to be read with

the current settings
bool canRecover =

DeLIA_CanRecoverGlobalCheckpointing();
// Barrier necessary because if there aren’t

global data
// to be recover all process should check in

the same moment
MPI_Barrier(MPI_COMM_WORLD);
if (canRecover)

DeLIA_ReadGlobalData();
else

DeLIA_SaveSettings();
ind = DeLIA_getCurrentGlobalIteration();

A.3. Interruption detection

To apply the heartbeat monitoring, we should initialize this feature
before the main data processing (in this example, before the external
loop) and finalize it after the data processing finishes (in this example,
when the outer loop ends).

Listing 5: Heartbeat monitoring
DeLIA_HeartbeatMonitoring_Init();
for (ind; ind < iterations; ind++) {

// ...
}
DeLIA_HeartbeatMonitoring_Finalize();

To initialize the trigger by signal, you only need to define it in the
onfiguration file and this feature will be initialized with DeLIA. Heart-
eat monitoring is only initialized with the function
𝚎𝙻𝙸𝙰_𝙷𝚎𝚊𝚛𝚝𝚋𝚎𝚊𝚝𝙼𝚘𝚗𝚒𝚝𝚘𝚛𝚒𝚗𝚐_𝙸𝚗𝚒𝚝() because it is a more expensive
eature, and depending on the circumstances, it may not need to be
ctive at the same time as DeLIA.

.4. Checkpointing

To save the global data, the function 𝙳𝚎𝙻𝙸𝙰_𝚂𝚊𝚟𝚎𝙶𝚕𝚘𝚋𝚊𝚕𝙳𝚊𝚝𝚊 should
e called when the global data represents the application’s state. In this
xample, it is after the 𝙼𝙿𝙸_𝙰𝚕𝚕𝚛𝚎𝚍𝚞𝚌𝚎. The checkpointing frequency
s according to the 𝚍𝚎𝚕𝚒𝚊_𝚙𝚊𝚛𝚊𝚖.𝚓𝚜𝚘𝚗 parameters. In this parameters
ile, there is nothing about local checkpointing; in this case, the local
heckpointing is saved just when the node receives a trigger.

isting 6: Save global data
for (ind; ind < iterations; ind++) {

for (int i = 0; i < data_size; i++) {
// Calculation of local data
local_data[i] = rank*i*ind;

}
// Reduction of the data
MPI_Allreduce(local_data , global_data ,

data_size , MPI_DOUBLE ,
MPI_SUM, MPI_COMM_WORLD);

if (rank ==0 )
printf("Iteration %d ends\n", find);

// DeLIA will save the global data
according the frequency already

// informed in the delia_params.json
DeLIA_SaveGlobalData();

}
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A.5. DeLIA finalize

You should call the function 𝙳𝚎𝙻𝙸𝙰_𝙵𝚒𝚗𝚊𝚕𝚒𝚣𝚎 to finish DeLIA.

Listing 7: Finalize functions

DeLIA_HeartbeatMonitoring_Finalize();
DeLIA_Finalize();
MPI_Finalize();
delete (local_data);
delete (global_data);

A.6. Application with DeLIA

Example complete with DeLIA.

Listing 8: main file with DeLIA

int main(int argc, char **argv) {

int data_size , iterations , ind=0;
int rank, comm_sz;
double *local_data , *global_data;
Settings *st;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD , &comm_sz);
MPI_Comm_rank(MPI_COMM_WORLD , &rank);

// Class which represents the application
configuration

st = new Settings("config_file.json");
// Size of the data
data_size = st->getDataSize();
// Iterations number
iterations = st->getIterations();

// Data that will be calculated in each
process

local_data = new double[data_size];
// Data that will be result of the

reduction of the local data
global_data = new double[data_size];

if (local_data == NULL || global_data ==
NULL) {
fprintf(stderr, "Can’t allocate vectors

\n");
exit(-1);

}

//initialization passing the rank of the
process, the number of processes

// the configuration file from DeLIA
// the configuration file from application
DeLIA_Init(rank, comm_sz, "delia_param.

json", "config_file.json");
if (!DeLIA_CanWork()) {

std::cerr << "DeLIA can not work" <<
std::endl;

exit;
};

// Passing the global and local data to
DeLIA

DeLIA_SetGlobalData(global_data , data_size
, DOUBLE_CODE);

DeLIA_SetLocalData(local_data , data_size ,
DOUBLE_CODE);
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// Check if there are data to be read with
the current settings

bool canRecover =
DeLIA_CanRecoverGlobalCheckpointing();

// Barrier necessary because if there aren
’t global data

// to be recover all process should check
in the same moment

MPI_Barrier(MPI_COMM_WORLD);
if (canRecover)

DeLIA_ReadGlobalData();
else

DeLIA_SaveSettings();
ind = DeLIA_getCurrentGlobalIteration();

//initialization of the Hearbeat
monitoring

DeLIA_HeartbeatMonitoring_Init();

for (ind; ind < iterations; ind++) {

for (int i = 0; i < data_size; i++) {
// Calculation of local data
local_data[i] = rank*i*ind;

}
// Reduction of the data
MPI_Allreduce(local_data , global_data ,

data_size , MPI_DOUBLE ,
MPI_SUM, MPI_COMM_WORLD)

;
if (rank ==0 )

printf("Iteration %d ends\n", ind);

// DeLIA will save the global data
according the frequency already

// informed in the delia_params.json
DeLIA_SaveGlobalData();

}

DeLIA_HeartbeatMonitoring_Finalize();
DeLIA_Finalize();
MPI_Finalize();
delete (local_data);
delete (global_data);

}

Appendix B. FWI parameters

We apply DeLIA in the FWI available in https://gitlab.com/lappsuf
rn/seismic/ufrn-fwi/mamute; for this work, we used the configuration
below:

• number of points in the velocity model we have in the dimension
𝑥: 200

• number of points in the velocity model we have in the dimension
𝑦: 100

• number of points in the velocity model we have in the dimension
𝑧: 180

• distance from one point to another in the 𝑥, 𝑦 and 𝑧 dimension in
meters: 50

• number of points of the border we are considering: 50
• number of timesteps: 2400
• time sampling in seconds: 0.003343213190252791
• peak frequency in hertz: 2.0
• number of receivers: 2600
13
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