

Effects of water ageing on the mechanical properties of flax and glass fibre composites: Degradation and reversibility

G. APOLINARIO TESTONI, P. IENNY, S. CORN, R. LEGER, A. BERGERET, J.M. HAUDIN

Centre des Matériaux des Mines d'Alès (C2MA), Ecole des mines d'Alès, Alès, France Centre de Mise en Forme des Matériaux (CEMEF), Mines ParisTech, Sophia-Antipolis, France

In France:

20.000 boats reach their end-of-life in 2015

95% are manufactured with Glass-polyester composites.

Ref.: Le Duigou et al. 2014 / French Nautical Industries Federation.

Context of the presentation

Societal context due to new environmental legislation

Societal promotion to develop bio-based composites to conventional ones

Objective of the present study Undestanding the long-term influence of water on diffusivity and mechanical property through modelling

Refs.: Davies et al, 1996 ; Camino et al, 1997 ; Gellert et al, 1999 ; Pillin et al, 2011 ; Darshil et al, 2013 ; Faruk et al, 2012 ; Bledzki et Gassan, 1998 ; Scida et al, 2013 ; Le Duigou et al, 2009; Dhakal, 2007.

SUMMARY

Materials & Processing

Methods

Results & Discussion

Conclusions & Perspectives

Materials & Methods

Materials & Processing Unsaturated polyester resin Glass & Flax fibres Chemical treatment Composites

Flax / Polyester composite MEB C2MA-Mines Alès (200X).

Methods

Water ageing Composites drying Viscoelastic properties Uniaxial tensile tests Differential Scanning calorimetry

Materials

Polyester resin

Dicyclopentadiene isophtalic unsaturated polyester resine

Enydyne® N50 1912 AI (Cray Valley)

Values

1,17 g/cm3 57-60 °C

230-250°C

3000 MPa

70 MPa

Fibres

Unidirectionnal fibres

Grammage supplier database:

Cross-linked resin (supplier datasheet)

Properties

Density

Glass transition temperature Degradation temperature

Young Modulus

Maximum strength

Flexural ISO 178

Туре		Supplier Supplier grammage	Experimantal grammage	Weft		Warp		Thickness	
Fibres	orientation		(g/m2)		(g/m2)	(%)	(g/m2)	(%)	(mm)
Glass fibre	UD	Chomarat (Fr)	400	416 ± 11	408 ± 17	98%	8±1	2%	0,4
Flax fibre	UD	FRD (Fr)	360	369 ± 14	335 ± 11	91%	34 ± 2	9%	0,4
7		Institut Mines-Téléo	com					ICNF 2015	MINES Alès

Silane treatment aims to create a hydrophobic fibre surface.

Alès

Composites

Vacuum infusion processing of composite sheets

Methods

Water ageing

- Time, temperature
 - More than 6 months at 30°C

Julabo Thermostat (serpentine system) Temperature: 20 to 150°C

Water content variations:

 $W(\%) = ((W_t - W_o)/W_o)x100$

Alès

Physico chemical characterisation

• Sorption / desorption

Sorption measurements

 Immersion
 →
 Wiped off
 →
 weighing

 Jord
 Jord
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

Methods

Physico-chemical characterization

Differential scanning calorimetry

- Crosslinking rate
- Glass transition temperature (Tg)

Mechnical characterization

Static tensile testing

E σ rupture ε rupture

Mechnical characterization

Dynamic tensile testing (DMA)

Mechnical characterization

Free vibration analysis

(Non-destructive test)

E' (ωi) _η' (ωi)

Hydroscopic properties

Mechanical properties

Reversibility

Matorials	<u>Experimental data</u>				
waterius	Diffusivity (m²/s)	Saturation (%)			
Polyester resin	4.6 x 10 ⁻⁶	0.9			
Glass FRC	1.2 x 10 ⁻⁷	0.4			
Flax FRC	5.4 x 10 ⁻⁶	5.9			
Flax FRC (treated)	4.3 x 10 ⁻⁶	5.3			

Identification: Fick's Law 1D

Institut Mines-Télécom

Fibres	Saturation (%)
Glass fibres	- 0,21
Flax fibres	+ 16,4

Rule of mixtures (inversed method)

Mechanical properties

• Relative modulus evolution (vibration analysis)

Motoriala	Initial	Modulus evolution		
Materials	E_0 (GPa)	E_{sat}/E_0		
Polyester resin	3.25 ± 0.64	-5%		
GFRC	34.88 ± 1.16	0%		
FFRC	20.26 ± 1.16	-37%		
FFRC (treated)	20.44 ± 0.74	-22%		

ICNF 2015

MINES Alès

Mechanical properties

Damping evolution (vibration analysis)

Mechanical properties

• Damping evolution (vibration analysis)

Mechanical properties

• Fracture surface analysis of Flax FRC (ESEM)

Results and discussionReversibility

Sorption : Immersion at 30°C Drying: 2%h.r. / 30°C

Results and discussionReversibility

Reversibility

Matariala	Initial	Reversibility	
	E (GPa)	E (GPa)	_
CRFV	34.88 ± 1.16	35.09 ± 1.79	-
CRFL	$20.26 \pm 1.16 _$	→ 23.32 ± 0.22	13%

Evolution of the matrix crosslinking

rate throughout water ageing period.

Reversibility

Hypotheses

Evolution of the matrix crosslinking rate throughout water ageing period.

DSC characterization:

Cross-linking conditions: Post-cure - 16h at 40°C

Reversibility

Matariala	Initial	Reversibility	
	E (GPa)	E (GPa)	_
CRFV	34.88 ± 1.16	35.09 ± 1.79	-
CRFL	20.26 ± 1.16	→ 23.32 ± 0.22	13%

Reversibility

Reversibility

Flax FRC reach a dried mass 2% lower than initial state before immersion:

The weight loss after desiccation could be explained by two factors:

The **extractibles** (small cell-walls ٠ components) were removed during immersion

Modelling

Hydro-thermal ageing modelling

• A Realistic predictive model take into account :

ICNF 2015

Alès

Multiphysics modelling

To obtain a realistic predictive model:

Complex multiscale composite morphology:

Statistics of roving parameters (size and distribution measurements);

Statistics of fibres / bundles (surface area, form factor, inter-particle distance).

Multiphysics modelling

To obtain a realistic predictive model:

Complex multiscale composite morphology:

Statistics of roving parameters (size and distribution measurements);

Statistics of fibres / bundles (surface area, form factor, inter-particle distance).

h

Multiphysics modelling

The evolution of fibre and matrix behaviour (irreversible):

Matrix hardening Fibres extractibles removing

Conclusions

- The composites water uptake is mainly controlled by natural fibres.
 - Composites rigidity decreases while damping increases;
 - Ultimate properties increases at saturation.

Fibres plastification

Frictional effect caused by fibres swelling

Reversible ageing occurs during immersion at 30°C but:

- Further crosslinking is observed;
- Dried composites mass 2% lower than initial state before immersion

The loss weight is explained by drying the fibres initial humidity and by the removing of small cell-walls components removed during immersion.

Define fibres distribution in composites after processing

Modeling should take into account both fibres swelling and the influence of processing conditions on composite morphology;

To mimic real in-service conditions, thermohydro-mechanical ageing tests will be investigated on studied materials.

Thank you

@ Mário Gomes