
HAL Id: hal-04604688
https://minesparis-psl.hal.science/hal-04604688v1

Submitted on 17 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numeric Base Conversion with Rewriting
Olivier Hermant, Wojciech Loboda

To cite this version:
Olivier Hermant, Wojciech Loboda. Numeric Base Conversion with Rewriting. LPAR 2024 Comple-
mentary Volume, May 2024, Balaclava, Mauritius. pp.92-106, �10.29007/21t9�. �hal-04604688�

https://minesparis-psl.hal.science/hal-04604688v1
https://hal.archives-ouvertes.fr

Kalpa Publications in Computing

Volume 18, 2024, Pages 92–106

LPAR 2024 Complementary Volume

Numeric Base Conversion with Rewriting

Olivier Hermant1 and Wojciech Loboda2

1 CRI, Mines Paris, PSL University, Paris, France
2 Institute of Computer Science, AGH University of Science and Technology, Poland

Abstract

We introduce and discuss a term-rewriting technique to convert numbers from any nu-
meric base to any other one without explicitly appealing to division. The rewrite system is
purely local and conversion has a quadratic complexity, matching the one of the standard
base-conversion algorithm. We prove confluence and termination, and give an implemen-
tation and benchmarks in the Dedukti type checker. This work extends and generalizes a
previous work by Delahaye, published in a vulgarization scientific review.

1 Introduction

Conversion between numeral positional systems in different bases is a well known concept. In his
article ”Changer de numération avec le système esperluette” [4], Jean-Paul Delahaye presents an
original way to convert a number to any base without using division or multiplication explicitly.
Indeed, the algorithm works by locally rewriting a representation with few simple rules, that
allow to switch from base 1 to any other base back and forth.

This yields an indirect conversion algorithm between two bases, as we must use base 1 as
an intermediate step. In the rewrite system of [4], & stands for the only digit in base 1. The
rules for conversion of a representation from base 1 to base 2 are the following, where x and y
stand for any sequence of 0, 1, and &, including the empty sequence:

&x −→ 0&x (r1)
x0&&y −→ x&0y (r2)
x0&y −→ x1y (r3)

The rules for the converse base 2 to base 1 transformation are the reversed rules:

0&x −→ &x (r1′)
x&0y −→ x0&&y (r2′)
x1y −→ x0&y (r3′)

The systems presented above are string rewriting systems (x and y are words) and not term
rewriting systems. Moreover, systems for conversion form any base to base 1 are not confluent.
As noticed by the author, premature application of (r3) leads to dead-end situations, which
is a symptom of a non-confluent rewrite system. We car be stuck in an hybrid representation

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024C (Kalpa Publications in Computing, vol. 18),
pp. 92–106

Base Conversion with Rewriting O. Hermant and W. Loboda

&& 0&& &0 0&0 10

1&

r1 r2 r1 r3

r3

Figure 1: Confluence issue with the original rewrite system of [4].

instead of reaching the correct binary representation. Fig. 1 displays an example on the natural
number 2, that can lead to 1& if the rewrite system is not used properly.

Term rewriting is a natural way of formalizing the original ideas [4], and we first design a
term rewrite system that represents it, slightly improved to correct the confluence issue men-
tioned above. We then generalize the approach by defining a direct translation between any
two numeric bases which is sound, confluent and terminating.

We begin our work by formalizing terms representing a number, we introduce the term
rewrite systems for conversion from any base to base 1, which directly corresponds to original
system, and systems for conversion from base 1 to any base, by modifying the original idea to
make the systems confluent. We then introduce a class of systems for direct conversion between
any two bases and prove soundness, confluence and termination for each system.

We implemented our systems in Dedukti [1], a logical framework based on the λΠ-calculus
modulo [3]. Dedukti contains a rewrite engine, capable of rewriting terms using rules given by
the user [5]. We provide a tool for generating a Dedukti file with systems for direct conversion
and benchmark base conversion with an extensive testing. We also compute and measure the
time complexity of the conversion with Dedukti and our systems and compare it to the time of
conversion using the usual algorithm.

2 Base Conversion and Rewriting

Term rewriting is a branch of computer science and logic which formalizes methods of replacing
terms with other terms. By term, we mean an expression consisting of variables, and symbols
with fixed arity, that are fully applied to the relevant number of terms. We can further divide
symbols into constants (0-ary symbols) and functions. For a term t, V ar(t) denotes set of
variables in t. Below, we recall the basic definitions of rewriting [2].

Definition 1 (Rewriting). A rewrite rule is an identity l −→ r, such that l, r are terms, l is
not a variable and V ar(l) ⊇ V ar(r). A term rewrite system R is a set of rewrite rules.

A term t rewrites to a term u, denoted t →R t′ if there is a position ω in t, a substitution
σ, and a rule l → r ∈ R, such that tω = lσ, and t′ = tω[uσ].

In other words, rewriting t into t′ with the rewrite rule l → r means finding an instance of l
in t (by pattern matching) and replacing this instance by the corresponding instance of r. We
will use → instead of →R if R is clear from the context. →∗ denotes the reflexive and transitive
closure of → [2].

Definition 2 (Normal Form). We call t′ a normal form of t, if t →∗ t′ and there is no u such
that t′ → u.

Definition 3 (Termination). A term rewrite system is terminating, if, and only if, there is no
infinite rewriting chain t0 → t1 →

93

Base Conversion with Rewriting O. Hermant and W. Loboda

Definition 4 (Confluence). A term rewrite system is confluent, if, and only if, t →∗ u1 and
t →∗ u2 implies the existence of some t′, such that u1 →∗ t′ and u2 →∗ t′.

When the rewrite system is terminating, any term has at least one normal form, and if it
is, in addition, confluent, the normal form is unique.

We can treat → as a directed computation and use term rewrite system for numeric base
conversion. For this, we will need to define numeric base representations and design a rewrite
system that, given a representation in an initial numeric base b, yields a normal form that is a
representation in the target numeric base b′.

2.1 Numeric Base Conversion Basics

2.1.1 Representation in a Single Base

A numeric base b is a set of b pairwise distinct digits used to represent a number in a positional
numeral system. Along with the base, the position of a digit in a numeric representation w
determines the value this digit weighs in the value associated with w.

Formally speaking, in a system with base b = 1, 2, ... and digits D = {d0, d1, ..., db−1}, the
representation of a number is a finite sequence (ai)

n
i=0 with ai ∈ D. Sequences are typically

denoted as anan−1...a0. The value associated with the representation, ν(anan−1...a0), can be
calculated iteratively or recursively:

ν(anan−1...a0) =

n∑
i=0

ν(ai) ∗ bi = ν(a0) + b ∗ ν(anan−1...a1),

where ν(ai) denotes the value associated with the digit ai. For example, in base 2, with
D = {0,1} and ν(0) = 0, ν(1) = 1:

ν(1010) = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20.

The system with base 1 is called the unary system and the only digit in this system cor-
responds to 1. Base 1 is very peculiar and may not fully deserve the name “base”. It is not
really a positional base, unlike all the other bases. It is also not possible to use the standard
base-conversion algorithm to express a number in unary. Nevertheless, it fits in the general
framework describe in this article.

Representations of a number are not unique, save for base 1, because of the potential leading
zeroes. This is harmless.

In the rest of the article we will use the standard set of digits. For values from 0 to 9 we
will use the digits: 0,1, ...,9, for the higher values we use the uppercase letters: A,B,C, ...

Table 1: Values of the 16 First Standard Digits.

ν(0) = 0 ν(1) = 1 ν(2) = 2 ν(3) = 3
ν(4) = 4 ν(5) = 5 ν(6) = 6 ν(7) = 7
ν(8) = 8 ν(9) = 9 ν(A) = 10 ν(B) = 11
ν(C) = 12 ν(D) = 13 ν(E) = 14 ν(F) = 15

94

Base Conversion with Rewriting O. Hermant and W. Loboda

2.1.2 Distinguishing Digits in Different Bases

For each digit, we must be able to identify the base it comes from. Therefore, we assume that
different bases contain disjoint sets of digits. To enforce this distinction, while maintaining
the standard digit notation, we annotate each digit by the base itself. E.g. 34 ∈ D4, while
316 ∈ D16. We omit the annotation when the base is clear from the context. Of course, all the
digits, independently of their base, have the same standard value, as shown in Tab. 1.

Therefore each base b is composed of the digits Db = {db | ν(d) = 0, 1, ..., b− 1}.

2.1.3 Basic Conversion Algorithm

The usual algorithm for expressing the representation of a value v ∈ N in base b > 1 works by
performing the integral, or Euclidean, division of v by b : the remainder becomes the rightmost
digit of the representation, v becomes the quotient of the integral division and we repeat the
process until v = 0. In other words, the i-th rightmost digit of the representation of v is the
remainder of the division of v/bi−1 by b.

2.2 Mixed-Base Representation

In order to describe the rewrite system inspired by the original article [4], the definition of a
new numeral system is needed. We must allow the presence of digits associated with different
bases in a single representation. This new relaxed system can be considered a generalization of
standard positional system presented in Sec. 2.1.

Definition 5 (Mixed-Base Representation). A mixed-base representation is a sequence of digits
(ai)

n
i=0, denoted anan−1...a0, such that ai ∈ Dbi for a sequence of bases (bi)

n
i=0.

The base factor of the sequence, denoted bf(anan−1...a0) is the product of the respective
bases of the digits,

∏n
i=0 bi.

The value of a mixed-base representation is defined as

ν(anan−1...a0) =

n∑
i=0

ν(ai)bf(ai−1...a0) =

n∑
i=0

ν(ai)

i−1∏
j=0

bj

 = ν(a0) + ν(anan−1...a1) ∗ b0.

Example calculation of the value corresponding to a mixed-base representation:

ν(341202A1612) = 3 ∗ 23 ∗ 16 + 1 ∗ 22 ∗ 16 + 0 ∗ 2 ∗ 16 + 10 ∗ 2 + 1 = 469

Proposition 6. The iterative and recursive definitions of evaluation in Def. 5 are consistent
with each other.

Proof. By induction on the length of the sequence.

We define the following set of terms, that we call T in the rest of the paper. They are lists
of digits that correspond to numbers in the newly introduced mixed-base representation:

< list of digits > := empty ∥ < member > · < list of digits >

< member > := begin ∥ 11 ∥ 02 ∥ 12 ∥ 03 ∥ 13 ∥ 23 ∥...

We further restrict this grammar by imposing the conditions that, in any list of digit, there
must be an explicit begin symbol at the beginning, and that begin cannot appear anywhere
except the beginning of a list.

95

Base Conversion with Rewriting O. Hermant and W. Loboda

These conditions make it possible to introduce rules that add or remove leading digits. This
unique begin symbol should be then followed by a sequence of proper digits.

We can calculate the value of a term, ν(t), t ∈ T by ignoring begin and empty and calculating
the value of sequence of digits as before:

ν(begin · an · an−1 · ... · a0 · empty) = ν(anan−1...a0),

ν(am · am−1 · ... · a0 · empty) = ν(amam−1...a0)

2.3 Conversion to Base 1

In this section we introduce rewrite systems that can be used to convert a number represented
in any base b > 1 to unary. The input term will be expressed as in Sec. 2.2, with the proviso
that all digits in list should be from base b. Then we rewrite t using the suitable system. The
normal form of t will correspond to its representation in unary. In this section we write &
instead of 11, with ν(&) = 1, to stay as close as possible as to the original work [4].

Systems for converting numbers from base b > 1 to base 1 are all based on the same principle,
and do not differ significantly from [4], except that they are now expressed on lists, as term
rewrite rules, instead of string rewrite rules. They consist of 3 types of rules:

begin · 0 · tl −→ begin · tl (type I)

& · 0 · tl −→ 0 · (&·)btl (type II)

The rationale behind the rule of type II it that it rewrites the sequence & and 0, by the
percolation of 0 leftwards, thereby “multiplying” & by “ten in base b” (i.e., b). It therefore
yields the sequence composed of 0 and b consecutive ampersands.

d · tl −→ 0 · (&·)ν(d)tl (type III)

The rules of type III rewrite every digit d ∈ Db, ν(d) > 0 to 0 and ν(d) ampersands. The 0
keeps track of the positional nature of the representation. It will be handled later by the rules
of type I and II.

For every system that converts a number representation in base b to a representation in
base 1 there is one rule of type I, one rule of type II and b − 1 rules of type III, which means
that the total number of rules is b + 1 in those systems. For example, here is the system that
converts numbers in base 2 to base 1:

begin · 0 · tl −→ begin · tl (type I)
& · 0 · tl −→ 0 ·& ·& · tl (type II)

1 · tl −→ 0 ·& · tl (type III)

A rewrite system is sound with respect to the value associated with the representation, if,
and only if, the value of a term does not change when we apply rules.

Definition 7 (Soundness of a Rewrite System). Let R a rewrite system, t and t′ be two terms,
such that t →∗

R t′. R is sound if, and only if, ν(t) = ν(t′).

Although this definition is generic, we will apply it only in the sub-case where t and t′ mix
only two bases b1 and b2, and R is the conversion system from b1 to b2.

96

Base Conversion with Rewriting O. Hermant and W. Loboda

2.3.1 Proof of Soundness

We show that any instance of the rules of type I, II and III preserves the value. We denote the
term before applying a rule as t and after rule application as t′, b is the initial base, k ∈ N is
the base factor of the tail, bf(tl).

The rule of type I removes a leading digit that has value 0 and does not contribute to the
value associated with the whole representation, thus the value does not change.

In case of application of the rule of type II:

ν(t) = ν(tl) + ν(0) ∗ k + ν(&) ∗ (b ∗ k) = ν(tl) + ν(&) ∗ (b ∗ k),
ν(t′) = ν(tl) + (b ∗ ν(&)) ∗ k + ν(0) ∗ (1b ∗ k) = ν(tl) + ν(&) ∗ (b ∗ k),

thus ν(t) = ν(t′).

In case of application of a rule of type III:

ν(t) = ν(tl) + ν(d) ∗ k,

ν(t′) = ν(tl) + Σ
ν(d)−1
i=0

(
ν(&) ∗ (1i ∗ k)

)
+ ν(0) ∗ (1ν(d) ∗ k) = ν(tl) + ν(d) ∗ k,

thus ν(t) = ν(t′).

The associated value effectively remains the same for any instance of any rule. To obtain
soundness, we still have to check that rewriting at a position ω in a context (following Def. 1)
does not change the final value. For this, notice that the context itself does not change, that
the rewritten sub-terms do not change value, and, critically, that :

• type II and type III rules do not change the base factor of the rewritten term, because
the base factor of & is 1;

• the type I rule does trigger the factor of the rewritten term, but that it only applies at
top level, so that, in this particular case, the context has to be empty.

In all cases, the value is preserved.

2.3.2 Proof of Termination

In order to prove termination we introduce a reduction order on T by mapping each term t ∈ T
to the pair (π(t), π′(t)), with π, π′ : T → N. Pairs are compared lexicographically. π gathers
the values of the source base digits, while π′ identifies the first encountered digit and yields 0
if it is a Db digit, and 1 if it is & ∈ D1, as follows:

π(d · tl) = ν(d) + 1 + π(tl) π′(d · tl) = 0
π(& · tl) = π(tl) π′(& · tl) = 1
π(begin · tl) = π(tl) π′(begin · tl) = π(tl)
π(empty) = 0 π′(empty) = 0

For the rule of type I, l = begin · 0 · tl, r = begin · tl, and we have :

(π(l), π′(l)) = (1 + π(tl), 0) > (π(tl), 0) = (π(r), π′(r))

For the rule of type II, l = & · 0 · tl, r = 0 · (&·)btl, and we have

(π(l), π′(l)) = (1 + π(tl), 1) > (1 + π(tl), 0) = (π(r), π′(r))

97

Base Conversion with Rewriting O. Hermant and W. Loboda

For the rules of type III, l = d · tl, r = (&·)ν(d)tl, and we have

(π(l), π′(l)) = (ν(d) + 1 + π(tl), 0) > (π(tl), 1) = (π(r), π′(r))

For all 3 types of rules l −→ r, (π(l), π′(l)) > (π(r), π′(r)), thus by Thm. 5.2.3 from [2], the
conversion systems to base 1 are terminating.

2.3.3 Proof of Confluence

Rules do not produce critical pairs and systems are terminating, thus, by Cor. 6.2.5 from [2],
systems are confluent.

2.4 From Base 1

Systems for converting numbers from base 1 to any base b > 1 also consist of 3 types of rules:

begin ·& · tl −→ begin · 0 ·& · tl (type I)

The rule of type II rewrites the largest digit of Db (such that ν(d) = b − 1) followed by an
ampersand to ampersand and 0.

d ·& · tl −→ & · 0 · tl (type II)

Rules of type III accumulate the ampersands in the digit d, so that d takes values in [0...b− 2]
and d′ is such, that ν(d′) = ν(d) + 1.

d ·& · tl −→ d′ · tl (type III)

Every system for conversion from base 1 to any base b consists of 1 rule of type I, 1 rule
of type II and b − 1 rules of type III, which means that every system consists of b + 1 rules.
The concrete systems that convert numbers in base 1 respectively to binary and to base 10 are
displayed in Tab. 2. Compared to the base 2 conversion system of [4], type I and III rules are
identical, while type II rule has changed.

Table 2: Conversion Rules from Base 1 to : Base 2 (left) and Base 10 (right)

begin ·& · tl −→ begin · 0 ·& · tl begin ·& · tl −→ begin · 0 ·& · tl (type I)
1 ·& · tl −→ & · 0 · tl 9 ·& · tl −→ & · 0 · tl (type II)
0 ·& · tl −→ 1 · tl 0 ·& · tl −→ 1 · tl

(type III)

1 ·& · tl −→ 2 · tl
2 ·& · tl −→ 3 · tl
3 ·& · tl −→ 4 · tl
4 ·& · tl −→ 5 · tl
5 ·& · tl −→ 6 · tl
6 ·& · tl −→ 7 · tl
7 ·& · tl −→ 8 · tl
8 ·& · tl −→ 9 · tl

98

Base Conversion with Rewriting O. Hermant and W. Loboda

2.4.1 Proof of Soundness

We use the same notations as in Sec. 2.3. Systems introduced above are also sound with respect
to value associated with representation.

Rules of type I and II are the exact reverse of the rules of type I and II of Sec. 2.3, so their
instances are sound by virtue of Sec. 2.3.1. For rules of type III,

ν(t) = ν(tl) + ν(&) ∗ k + ν(d) ∗ (1 ∗ k) = ν(tl) + (ν(d) + 1) ∗ k = ν(tl) + ν(d′) ∗ k = ν(t′).

The value associated with the representation does not change when we instantiate the rules,
and the base factor does not change either, save in the case of type I rule. But in this latter
case, rewriting can only happen at top level of a representation. Thus the systems from base 1
are sound, for the same reasons as in Sec. 2.3.1.

2.4.2 Proof of Termination

As in Sec. 2.3, we prove termination by introducing a mapping from mixed-based terms to pairs
of natural numbers (π(t), π′(t)), where π and π′ are defined as follows:

π(d · tl) = ν(d) + π(tl) π′(d · tl) = 0
π(& · tl) = 2 + π(tl) π′(& · tl) = 1
π(begin · tl) = π(tl) π′(begin · tl) = π′(tl)
π(empty) = 0 π′(empty) = 0

For the rule of type I, l = begin ·& · tl, r = begin · 0 ·& · tl, and

(π(l), π′(l)) = (1 + π(tl), 1) > (1 + π(tl), 0) = (π(r), π′(r)).

For the rule of type II, l = d ·& · tl, r = & · 0 · tl, and we have

(π(l), π′(l)) = ((b− 1) + 2 + π(tl), 0) > (2 + π(tl), 1) = (π(r), π′(r)).

For the rules of type III, l = d ·& · tl, r = d′ · tl, and we have

(π(l), π′(l)) = (ν(d) + 2 + π(tl), 0) > (ν(d) + 1 + π(tl), 0) = (ν(d′) + π(tl), 0) = (π(r), π′(r)).

For all 3 types of rules l −→ r, (π(l), π′(l)) > (π(r), π′(r)), thus by Thm. 5.2.3 of [2] systems
are terminating.

2.4.3 Proof of Confluence

Rules do not produce critical pairs and systems are terminating, thus by Cor. 6.2.5 from [2]
systems are confluent.

2.5 From and to any Base

The drawback of base b1 to b2 conversion using the previous rewrite systems is that we need a
detour through base 1, which is rather inefficient.

In this section we introduce a rewrite system for direct conversion from any base b1 > 1
to any other base b2 > 1. As with the previous systems, firstly we need to construct a term
t ∈ T corresponding to a pure representation of some number in base b1, then rewrite t using
the suitable system. The normal form of t will corresponds to the pure representation of this

99

Base Conversion with Rewriting O. Hermant and W. Loboda

number in base b2. In between, we will manipulate a mixed-base representation.

The systems for direct conversion from b1 to b2 consist of 3 types of rules, that make b1
digits percolate leftwards and, eventually, vanish. The rule of type I removes initial zeroes :

begin · 0b1 · tl −→ begin · tl (type I)

Rules of type II rewrite non-zero b1 digits at the beginning of a representation. d′b1 is
replaced by the unique db1 and db2 that verify ν(db1) = ν(d′b1)/b2 and ν(db2) = ν(d′b1)%b2. Here
and below, division is the integral division, and % is the modulo operator.

So, rules of type II replace d′b1 by the quotient and remainder of its Euclidean division by
b2. The quotient is itself expressed in base b1, therefore guaranteeing that it can be represented
with exactly one digit. Further improvements could be made, but this presentation has the
advantage to be uniform :

begin · d′b1 · tl −→ begin · db1 · db2 · tl (type II)

Rules of type III rewrite the sequence db2db1 to the sequence d′b1d
′
b2
, where ν(d′b1) =

ν(db2db1)/b2 = (ν(db1) + ν(db2) ∗ b1)/b2 and ν(d′b2) = ν(db2db1)%b2 = (ν(db1) + ν(db2) ∗ b1)%b2.
Note that ν(db2db1)/b2 < b1, so the existence of d′b1 is ensured :

db2 · db1 · tl −→ d′b1 · d
′
b2 · tl (type III)

Every system for direct conversion from base b1 to base b2 has 1 rule of type I, b1 − 1 rules
of type II and b1 ∗ b2 rules of type III. Tab. 3 displays such a system for the conversion from
base 2 to base 10.

Table 3: Direct Conversion System from base 2 to base 10.

begin · 02 · tl −→ begin · tl
begin · 12 · tl −→ begin · 02 · 110 · tl

010 · 02 · tl −→ 02 · 010 · tl 010 · 12 · tl −→ 02 · 110 · tl
110 · 02 · tl −→ 02 · 210 · tl 110 · 12 · tl −→ 02 · 310 · tl
210 · 02 · tl −→ 02 · 410 · tl 210 · 12 · tl −→ 02 · 510 · tl
310 · 02 · tl −→ 02 · 610 · tl 310 · 12 · tl −→ 02 · 710 · tl
410 · 02 · tl −→ 02 · 810 · tl 410 · 12 · tl −→ 02 · 910 · tl
510 · 02 · tl −→ 12 · 010 · tl 510 · 12 · tl −→ 12 · 110 · tl
610 · 02 · tl −→ 12 · 210 · tl 610 · 12 · tl −→ 12 · 310 · tl
710 · 02 · tl −→ 12 · 410 · tl 710 · 12 · tl −→ 12 · 510 · tl
810 · 02 · tl −→ 12 · 610 · tl 810 · 12 · tl −→ 12 · 710 · tl
910 · 02 · tl −→ 12 · 810 · tl 910 · 12 · tl −→ 12 · 910 · tl

2.5.1 Proof of Soundness

Systems for direct conversion are sound with respect to value associated with the representation.
As before we start by showing that any instance of each type of rule preserves the associated

100

Base Conversion with Rewriting O. Hermant and W. Loboda

value. We denote the term before applying a rule as t and after as t′, b1 is the initial base, b2
is the target base we are converting, and k ∈ N is the base factor of the tail.

When applying the rule of type I we remove the leftmost digit corresponding to the value
0. This digit does not contribute by any value to the value of t.

In the case of the rules of type II, we have

ν(t′) = ν(tl) + ν(db2) ∗ k + ν(db1) ∗ b2 ∗ k
= ν(tl) + (ν(d′b1)%b2) ∗ k + (ν(d′b1)/b2) ∗ b2 ∗ k (by definition of db2 and db1)
= ν(tl) +

[
ν(d′b1)%b2 + (ν(d′b1)/b2) ∗ b2

]
∗ k

= ν(tl) + ν(d′b1) ∗ k (by definition of integral division)
= ν(t). (by definition of ν)

In the case of the rules of type III, we have

ν(t′) = ν(tl) + ν(d′b2) ∗ k + ν(d′b1) ∗ b2 ∗ k
= ν(tl) + [ν(db2db1)%b2 + (ν(db2db1)/b2) ∗ b2] ∗ k (by definition of d′b2 and d′b1)
= ν(tl) + ν(db2db1) ∗ k (by definition of integral division)
= ν(t). (by definition of ν)

The value associated with the representation does not change in the instances of all types
of rules. Rules of type III do not change the base factor of t and t′. Rules of type I and II do
change the base factor, but they apply only at top level. The system is therefore sound.

2.5.2 Proof of Termination

We prove termination of the rewrite systems for direct conversion by introducing a reduction
order on T. We map each t ∈ T to a triplet of natural numbers, (π(t), π′(t), π′′(t)), that we
order lexicographically. π counts the number of digits in base b1, π

′ is the position of the first
occurrence of a b1 digit in a representation, and π′′ is the value of this first occurrence, as
follows :

π(db1 · tl) = 1 + π(tl) π′(db1 · tl) = 0 π′′(db1 · tl) = ν(db1)
π(db2 · tl) = π(tl) π′(db2 · tl) = 1 + π′(tl) π′′(db2 · tl) = π′′(tl)

π(begin · tl) = π(tl) π′(begin · tl) = π′(tl) π′′(begin · tl) = π′′(tl)
π(empty) = 0 π′(empty) = 0 π′′(empty) = 0

The lexicographic order decreases strictly, as follows :

1. π decreases strictly for any instance of the rule of type I, and is not affected by instances
of any rule of type II and III.

2. π′ decreases strictly for any instance of a rule of type III, and is not affected (it remains
equal to 0) by instances of any rule of type II.

3. Finally, π′′ decreases strictly for any instance of a rule of type II, since ν(db1) = ν(d′b1)/b2,
and b2 > 1.

Each rule l −→ r of every rewrite system for direct conversion is such that the measure
decreases. By Thm. 5.2.3 of [2] all these systems are terminating.

101

Base Conversion with Rewriting O. Hermant and W. Loboda

2.5.3 Proof of Completeness

Here, we show that every normal form contains only base b2 digits. Assume that t is in normal
form and contains a b1 digit. It cannot be the leftmost digit of t, otherwise a type I or type
II rule would apply, as together they cover every possible b1 digit in first position. Therefore,
the first b1 digit in t cannot be the leftmost, and there must be a b2 digit on its left. But this
triggers a type III rule, which is a contradiction.

The completeness proofs for the base 1 conversion systems are similar and left to the reader.

2.5.4 Proof of Confluence

Rules do not produce critical pairs and systems are terminating, thus by Cor. 6.2.5 from [2]
systems are confluent.

2.5.5 Complexity Analysis

Type I and II rules act on a b1 digit at the initial position of a representation, while type III
rules act on a b1 digit that is not in initial position. So, type I and II rules commute with type
III rules. Note as well, that type II and type III rules preserve the number of b1 digits, and
that all these digits are to disappear in the normal form.

Any rewrite sequence can therefore be organized, without changing its length, as starting
with a pure b1 representation, to which we apply rewriting in a series of sub-sequences of the
following form :

• a series of type I and type II rules that make the leading b1 digit disappear,

• followed by a series of type III rules that push all the b2 digits rightmost, and make a
leading b1 digit appear again.

Sub-sequences enjoy the following properties :

• each sub-sequence makes exactly one b1 digit disappear (the leading one), so there are
exactly n sub-sequences, if the input representation has n digits.

• at the end of a sub-sequence, all b1 digits are on the left, and all b2 digits are on the right.

• type III rules commute with each other, as they do not overlap, so we can push the b2
digits on the right with the strategy of our choice.

We now evaluate the maximal length of a sub-sequence. For every leading db1 , there is at most
a constant k number of steps, after which a type I rule is applied1. This introduces a sequence
of k b2 digits.

In a sub-sequence, there is, therefore, at most (k + 1) rewrite steps of type I and type II.
Then, type III rules will push all the new b2 digits to the right. Each new b2 digit will swap its
position with each remaining b1 digits : at most k ∗ n steps.

In total, a sub-sequence involves at most (k+1)+ k ∗n = O(n) rewrite steps, and the total
rewrite sequence is of length O(n2). Lastly, to assess correctly the complexity, we have to take
into account the complexity of pattern matching.

Naive pattern matching on a term of length n is of complexity O(n), so our conversion
algorithm is of complexity O(n3). But, at least theoretically, we can improve this bound and
have an O(1) pattern matching for type III rules:

1To be precise, k = ⌈logb2 (b1)⌉, as each type II rule divides by b2 the value of the leading digit, which is at
most b1 − 1.

102

Base Conversion with Rewriting O. Hermant and W. Loboda

• in a sub-sequence, after the application of a type III rule, that swaps a b1 and b2 digit,
we are at the exact position of the next potential type III rule application.

• instead of inspecting the term again from its beginning, it is therefore much more efficient
to keep inspecting the current position, which is O(1), given the purely local nature of
the rewrite system.

• this will make each b2 digit swap rightmost in O(n). As there are at most k such digits
to process, each sub-sequence can be run in time O(n).

In total, this rewriting strategy yields an O(n2) conversion algorithm.

3 Implementation and Benchmark

We created a python and a Haskell program for generating all the systems for direct conversion
in Dedukti and tested conversion for any pair of bases between 2 and 19. We also measured
the conversion times using our systems.

3.1 Implementation in Dedukti

The scripts are available in a repository2 and can be used to generate systems for direct con-
version between bases in Dedukti. To generate a Dedukti module with the system for base
conversion, we use the python script genrules.py. We must provide the source base and
target base as command-line arguments.

$python gen_rules.py base1 base2

Here is the example of the conversion from base 2 to base 10, exactly corresponding to
Tab. 3, that the script generates in Dedukti. b represents begin, Nil represents empty, cons
is the list constructor (denoted as · in Sec. 2), and the digits can be recognized effortlessly :

Digit : Type.

Term : Type.

Nil : Term.

b : Digit.

def cons : Digit -> Term -> Term.

0t : Digit.

1t : Digit.

2t : Digit.

3t : Digit.

4t : Digit.

5t : Digit.

6t : Digit.

7t : Digit.

8t : Digit.

9t : Digit.

0 : Digit.

1 : Digit.

2https://github.com/wojciechloboda/base-conversion-with-term-rewriting

103

https://github.com/wojciechloboda/base-conversion-with-term-rewriting

Base Conversion with Rewriting O. Hermant and W. Loboda

[tail] cons b (cons 0 (tail)) --> cons b (tail).

[tail] cons b (cons 1 (tail)) --> cons b (cons 0 (cons 1t (tail))).

[tail] cons 0t (cons 0 (tail)) --> cons 0 (cons 0t (tail)).

[tail] cons 0t (cons 1 (tail)) --> cons 0 (cons 1t (tail)).

[tail] cons 1t (cons 0 (tail)) --> cons 0 (cons 2t (tail)).

[tail] cons 1t (cons 1 (tail)) --> cons 0 (cons 3t (tail)).

[tail] cons 2t (cons 0 (tail)) --> cons 0 (cons 4t (tail)).

[tail] cons 2t (cons 1 (tail)) --> cons 0 (cons 5t (tail)).

[tail] cons 3t (cons 0 (tail)) --> cons 0 (cons 6t (tail)).

[tail] cons 3t (cons 1 (tail)) --> cons 0 (cons 7t (tail)).

[tail] cons 4t (cons 0 (tail)) --> cons 0 (cons 8t (tail)).

[tail] cons 4t (cons 1 (tail)) --> cons 0 (cons 9t (tail)).

[tail] cons 5t (cons 0 (tail)) --> cons 1 (cons 0t (tail)).

[tail] cons 5t (cons 1 (tail)) --> cons 1 (cons 1t (tail)).

[tail] cons 6t (cons 0 (tail)) --> cons 1 (cons 2t (tail)).

[tail] cons 6t (cons 1 (tail)) --> cons 1 (cons 3t (tail)).

[tail] cons 7t (cons 0 (tail)) --> cons 1 (cons 4t (tail)).

[tail] cons 7t (cons 1 (tail)) --> cons 1 (cons 5t (tail)).

[tail] cons 8t (cons 0 (tail)) --> cons 1 (cons 6t (tail)).

[tail] cons 8t (cons 1 (tail)) --> cons 1 (cons 7t (tail)).

[tail] cons 9t (cons 0 (tail)) --> cons 1 (cons 8t (tail)).

[tail] cons 9t (cons 1 (tail)) --> cons 1 (cons 9t (tail)).

These systems are instantly declared terminating and confluent by the tools Wanda and CSI.

3.2 Benchmark

We measured the time of base conversion in Dedukti for a range of combination of source
and target bases, and for representations with various numbers of digits n. Digits have been
randomly chosen. Conversion is done by running the command

dk check --stdin module.dk

where module.dk is the name of the Dedukti module that contains the definition of the rewrite
system. We provide a term representing a number in b1 as an input.

Table 4: Conversion Time in Seconds.

Digits\System 2 to 10 10 to 2 5 to 10 10 to 5 9 to 10 10 to 9 5 to 16 16 to 5
100 0.0056 0.1101 0.0155 0.0282 0.0180 0.0193 0.0093 0.0387
200 0.0122 0.4578 0.0363 0.1037 0.0611 0.0698 0.0320 0.1652
300 0.0263 1.1028 0.0806 0.2432 0.1371 0.1533 0.0703 0.3549
400 0.0433 2.0179 0.1441 0.4428 0.2426 0.2836 0.1242 0.6551
500 0.0660 3.3339 0.2327 0.7098 0.3968 0.4493 0.1931 1.0819
600 0.0959 4.9116 0.3281 1.1245 0.6712 0.6609 0.2801 1.5495
700 0.1287 6.7356 0.5456 1.5785 0.9968 1.2142 0.5097 2.5296
800 0.1796 10.751 0.6798 2.0055 1.0964 1.2706 0.5081 3.3080
900 0.2209 12.081 0.8194 2.5501 1.3622 1.6939 0.6673 3.8998

As we can notice in Tab. 4, there is a significant difference in conversion time depending on
the bases combination. It is not symmetric : time increases proportionally to the quotient of

104

Base Conversion with Rewriting O. Hermant and W. Loboda

the initial and target bases. The number of rules also affects the conversion time, conversion
with systems with more rules is slower.

Figure 2: Base 2 to Base 10, Dedukti. Figure 3: Base 2 to Base 10, Numpy.

We compared the conversion time using our systems in Dedukti with the conversion time
using the usual algorithm implemented in Python. As we can see in Fig. 2 and Fig. 3, execution
times differ drastically, in favor of Python. It is not very clear whether Dedukti demonstrates
a quadratic or a cubic time behavior, while Numpy results are more clearly quadratic.

4 Conclusion

In this article, we have developed the idea of numeric base conversion using term rewriting
systems. We first presented a generalization of the standard representation of natural num-
bers, the mixed-base representation. With this new representation, we presented a method for
constructing term rewrite systems that can be used for conversion between any two bases in
a indirect way, using intermediate unary base, and in a direct way. We have shown that they
enjoy all the necessary properties : soundness, completeness, confluence and termination.

The algorithm that we obtained makes no call to division, unlike standard base conversion.
Euclidean division is only needed to precompute the finite term rewriting system. Actually, our
approach can even be used to implement Euclidean division by b : given a number n, it suffices
to convert n into base b to get the quotient and the remainder.

The rewrite system is linear, and purely local, flipping two digits at a time. Moreover, the
(type-III) rules to convert from base b1 to b2 are the reversal of the (type-III) rules to convert
from base b2 to b1. Proof of this result is left to the reader.

On the practical side, we provide a simple script for generating these systems in Dedukti
and extensively tested our conversion algorithm for all the combination of bases between 2 and
19 (we displayed only the most relevant ones in the benchmark section). We conclude that
numeric base conversion introduced in this article works properly for the tested bases, with
very decent performances.

Regarding the efficiency of the algorithm, we have analyzed the complexity of conversion
using our systems in terms of number of rule applications and of time complexity. We have also

105

Base Conversion with Rewriting O. Hermant and W. Loboda

compared the actual time of conversion with our systems and Dedukti to the time of conversion
using the usual algorithm for expressing number in a certain base. Conversion with the usual
algorithm implemented in python turned out to be significantly faster, which is certainly due
to the efficiency of the Python library that we used.

However, the asymptotic complexity of our algorithm seems of interest, and it as least can
sustain comparison with the usual base conversion algorithm, both from the practical and the
theoretical sides. This analysis still needs to be refined.

As further work, we will try to generate more optimized rewrite systems. In particular rules
of type II can be improved to directly generate a pure sequence of b2 digits. Factually, this
would merge type I and type II rules, without changing the complexity of the algorithm. We
may as well try to implement a fast pattern-matching algorithm that would speed-up (in our
specific case) the complexity bound given by naive pattern matching. We also intend to use
more heavily optimized rewrite engines, like Maude.

5 Acknowledgments

Thanks to Gilles Dowek for the remark, that base conversion can be used to perform division,
and to the Deducteam project-team and CRI colleagues for the numerous discussions.

References

[1] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois,
Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Dedukti: a logical
framework based on the λΠ-calculus modulo theory. CoRR, abs/2311.07185, 2023.

[2] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[3] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus mod-
ulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Applications, 8th Interna-
tional Conference, TLCA 2007, volume 4583 of Lecture Notes in Computer Science, pages 102–117.
Springer, 2007.

[4] Jean-Paul Delahaye. Changer de numération avec le système &. Pour la Science, 519:80–85, January
2021.

[5] Gabriel Hondet and Frédéric Blanqui. The new rewriting engine of dedukti (system description.

106

	Introduction
	Base Conversion and Rewriting
	Numeric Base Conversion Basics
	Representation in a Single Base
	Distinguishing Digits in Different Bases
	Basic Conversion Algorithm

	Mixed-Base Representation
	Conversion to Base 1
	Proof of Soundness
	Proof of Termination
	Proof of Confluence

	From Base 1
	Proof of Soundness
	Proof of Termination
	Proof of Confluence

	From and to any Base
	Proof of Soundness
	Proof of Termination
	Proof of Completeness
	Proof of Confluence
	Complexity Analysis

	Implementation and Benchmark
	Implementation in Dedukti
	Benchmark

	Conclusion
	Acknowledgments

