

28 May 2024, Aachen, Germany

Physical-informed machine learning prediction of properties of oxide glasses

F. Pigeonneau¹, E. Hachem¹, M. Rondet¹, O. de Lataulade²
 ¹Mines Paris | PSL Univ. - Centre of Materials Forming, CNRS UMR 7635, Sophia Antipolis, France

²L'Oréal Operations, Packaging Science Center, 9 rue Pierre Dreyfus 92110 Clichy, France

1. Industrial context

Packaging Science Center

MINES DAD

ULTRA LIGHT GLASS BOTTLE

Resistant

Recyclable Eco-Desirable

L'Oréal R&D Project with CEMEF

Resistant & Recyclable Glass Composition Glass Scientist, Machine Learning, Genetic Al

Cemef : F. Pigeonneau, Elie Hachem

After Smonths already able to Predict Properties with given Compo : Dansity, young modulus, Hardness Tg; Fusion T°C 7

Prediction of Composition for given Properties

Identification of a new glass composition territory (more resistant)

1. Industrial context

Figure 1: Tensile experiment on a sample with a size flaw c.

$$\sigma_c = \frac{\sqrt{2E\gamma}}{\sqrt{\pi c}}.\tag{1}$$

The fracture toughness is defined¹:

$$K_{lc} = \sqrt{2E\gamma}$$
, in plane-stress, (2)

$$K_{lc} = \sqrt{\frac{2E\gamma}{1-\nu^2}}, \text{ in plane-strain.}$$
 (3)

¹A. A. Griffith: The Phenomena of Rupture and Flow in Solids, in: Philos. Trans. R. Soc. Lond. Ser. A 1921.

1. Industrial context

Figure 1: Tensile experiment on a sample with a size flaw c.

$$\sigma_c = \frac{\sqrt{2E\gamma}}{\sqrt{\pi c}}.\tag{1}$$

The fracture toughness is defined¹:

$$K_{lc} = \sqrt{2E\gamma}, \text{ in plane-stress,}$$
(2)
$$K_{lc} = \sqrt{\frac{2E\gamma}{1-\nu^2}}, \text{ in plane-strain.}$$
(3)

Mechanical properties vs glass composition

¹Griffith: The Phenomena of Rupture and Flow in Solids (see n. 1).

- 1. Industrial context
- 2. Deep learning method
- 3. Density & molar volume
- 4. Young's modulus & packing factor
- 5. Poisson coefficient
- 6. Synthesis & perspectives

2. Deep learning method

- i) network formers: SiO_2 , B_2O_3 , P_2O_5 , V_2O_5 and GeO_2 ;
- ii) network modifiers: Na_2O , K_2O , Li_2O , CaO, MgO, SrO, BaO, Fe_2O_3 , Y_2O_3 , La_2O_3 ;
- iii) network intermediates: Al_2O_3 , TiO_2 , ZrO_2 , ZnO and PbO.
 - keras of Python >> Artificial Neural Networks (ANN) with 2 or 3 hidden layers with 20 neurons.
 - The Gaussian error linear units "gelu" activation function (hidden layers) and linear function for output layer.
 - Adam solver used for the optimization.
 - Variable to fit is normalized.
 - Spitting of training, validation and test sub-sets is [0.6; 0.2, 0.2].

• According to Huggins² and Huggins and Sun³ for a glass of N oxides $M_{n_i}O_{m_i}$:

$$\frac{1}{\rho} = \sum_{i=1}^{N} \left[\left(k + b_{\mathrm{SiO}_2} \right) n_i + m_i c_i \right] \frac{y_i}{\mathcal{M}_i},\tag{4}$$

After changing y_i in x_i:

$$\mathcal{V}_{\mathcal{M}} = \sum_{i=1}^{N} \left[\left(k + b_{\mathrm{SiO}_2} \right) n_i + m_i c_i \right] x_i.$$
(5)

³M. L. Huggins/K.-H. Sun: Calculation of density and optical constants of a glass from its composition in weight percentage, in: J. Am. Ceram. Soc. 26.1 (1943), pp. 4–11.

²M. L. Huggins: The Density of Silicate Glasses as a Function of Composition, in: J. Opt. Soc. Am. 30.9 (1940), pp. 420–430.

• According to Huggins² and Huggins and Sun³ for a glass of N oxides $M_{n_i}O_{m_i}$:

$$\frac{1}{\rho} = \sum_{i=1}^{N} \left[\left(k + b_{\mathrm{SiO}_2} \right) n_i + m_i c_i \right] \frac{y_i}{\mathcal{M}_i}, \tag{4}$$

• After changing y_i in x_i :

$$\mathcal{V}_{\mathcal{M}} = \sum_{i=1}^{N} \left[\left(k + b_{\mathrm{SiO}_2} \right) n_i + m_i c_i \right] x_i.$$
(5)

ANN model on $\mathcal{V}_{\mathcal{M}}$

²Huggins: The Density of Silicate Glasses as a Function of Composition (see n. 2). ³Huggins/Sun: Calculation of density and optical constants of a glass from its composition in weight percentage (see n. 3).

Figure 2: Histograms of (a) glasses and (b) max(x_i) in the ρ data-set of 64 420 glasses, (c) pdf of ρ in kg/m³.

(b)

Figure 3: Predicted $\mathcal{V}_{\mathcal{M}}$ in (cm³/mol) as a function of data-set values for (a) the validation sub-set and (b) the test sub-set.

Figure 4: ρ (kg/m³) of (a) akaline glasses and (b) SiO₂-R_nO_m glasses. Symbols are experimental data according to Bansal and Doremus⁴.

⁴N. P. Bansal/R. H. Doremus: Handbook of Glass Properties, 1986.

According to Makishima & Mackenzie⁵, E is given by

$$E = 2V_t \mathcal{G}, \qquad (6)$$

$$V_t = \frac{\sum_{i=1}^{N} V_i x_i}{\mathcal{V}_{\mathcal{M}}}, \qquad (7)$$

$$\mathcal{G} = \sum_{i=1}^{N} G_i x_i. \qquad (8)$$

• G_i taken from data of Inaba et al.⁶.

⁶S. Inaba/S. Fujino/K. Morinaga: Young's Modulus and Compositional Parameters of Oxide Glasses, in: J. Am. Ceram. Soc. 82.12 (1999), pp. 3501–3507.

⁵A. Makishima/J. D. Mackenzie: Direct calculation of Young's modulus of glass, in: J. Non-Cryst. Solids 12.1 (1973), pp. 35–45.

According to Makishima & Mackenzie⁵, E is given by

$$E = 2V_t \mathcal{G},$$

$$V_t = \frac{\sum_{i=1}^{N} V_i x_i}{\mathcal{V}_{\mathcal{M}}},$$

$$\mathcal{G} = \sum_{i=1}^{N} G_i x_i.$$
(6)
(7)
(8)

• G_i taken from data of Inaba et al.⁶.

V_t determined from a deep learning method on E data-set

⁵Makishima/Mackenzie: Direct calculation of Young's modulus of glass (see n. 5). ⁶Inaba/Fujino/Morinaga: Young's Modulus and Compositional Parameters of Oxide Glasses (see n. 6).

Figure 5: (a) number of glasses and (b) $\max(x_i)$ in the data-set of *E* of 10846 glasses, (c) pdf of *E* in GPa.

MINES DAD

Figure 6: Predicted V_t as a function of data-set values for the (a) validation sub-set and (b) test sub-set. PSL * Comef

Figure 7: E in (a) SiO₂-R₂O and (b) 5SiO₂-Na₂O-xRO. Data taken in⁷.

⁷A. K. Varshneya/J. C. Mauro: Fundamentals of Inorganic Glasses, Third, 2019.

• According to Makishima & Mackenzie⁸, ν is given by

$$\nu = \frac{1}{2} - \frac{1}{6\alpha V_t},\tag{9}$$

- $\alpha = 1.2$ in Makishima & Mackenzie (1975).
- ▶ Rocherulle et al.⁹ proposed α =1.08

⁸A. Makishima/J. D. Mackenzie: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass, in: J. Non-Cryst. Solids 17 (2 1975), pp. 147–157.

⁹J. Rocherulle et al.: Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie's theory, in: J. Non-Cryst. Solids 108.2 (1989), pp. 187–193.

• According to Makishima & Mackenzie⁸, ν is given by

$$\nu = \frac{1}{2} - \frac{1}{6\alpha V_t},\tag{9}$$

▶ Rocherulle et al.⁹ proposed α =1.08

ANN model on α

⁸Makishima/Mackenzie: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass (see n. 8).

⁹Rocherulle et al.: Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie's theory (see n. 9).

Figure 8: (a) number of glasses and (b) $max(x_i)$ in the data-set of ν of 1464 glasses, (c) pdf of ν .

Figure 9: Comparison of the computation of ν with the data-set for (a) α =1.2, (b) α =1.08 (c) α from ANN model.

Figure 10: ν in 5SiO₂-Na₂O-xRO. Data taken in¹⁰.

 $^{^{10}\}mbox{Varshneya}/\mbox{Mauro:}$ Fundamentals of Inorganic Glasses (see n. 7).

Synthesis

- Creation of data-sets with a large amount of glasses (two databases have been used);
- Deep learning method applied to determine mechanical properties;
- Coupling with theoretical models enhances the accuracy of the prediction;
- Developments of model for T_m (log(η)=1), T_s (log(η)=6.65), and T_g (log(η)=12) (η in Pa · s).

MINES DAD

Figure 11: Spider-graph with a based composition (0.74SiO₂-0.13Na₂O-0.13CaO): (a) E vs. ρ and (b) E vs. T_m .

Perspectives

- Extend the work to K_{lc} and γ the fracture surface energy;
- Determination of glass compositions based on genetic algorithm;
- Introduce probability aspect to determine prediction uncertainties.

Perspectives

- Extend the work to K_{lc} and γ the fracture surface energy;
- Determination of glass compositions based on genetic algorithm;
- Introduce probability aspect to determine prediction uncertainties.

Thank you for your attention!

