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1. Industrial context

Figure 1: Tensile experiment on a sample with a size flaw c.

σc =

√
2Eγ√
πc

. (1)

The fracture toughness is defined1:

KIc =
√

2Eγ, in plane-stress, (2)

KIc =

√
2Eγ

1− ν2
, in plane-strain. (3)

1A. A. Griffith: The Phenomena of Rupture and Flow in Solids, in: Philos. Trans. R. Soc. Lond.
Ser. A 1921.
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2Eγ, in plane-stress, (2)

KIc =

√
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1− ν2
, in plane-strain. (3)

Mechanical properties vs glass composition
1Griffith: The Phenomena of Rupture and Flow in Solids (see n. 1).
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2. Deep learning method

i) network formers: SiO2, B2O3, P2O5, V2O5
and GeO2;

ii) network modifiers: Na2O, K2O, Li2O, CaO,
MgO, SrO, BaO, Fe2O3, Y2O3, La2O3;

iii) network intermediates: Al2O3, TiO2, ZrO2,
ZnO and PbO.

▶ keras of Python ➸ Artificial Neural Networks
(ANN) with 2 or 3 hidden layers with 20
neurons.

▶ The Gaussian error linear units “gelu” activation
function (hidden layers) and linear function for
output layer.

▶ Adam solver used for the optimization.

▶ Variable to fit is normalized.

▶ Spitting of training, validation and test sub-sets
is [0.6; 0.2, 0.2].
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3. Density & molar volume

▶ According to Huggins2 and Huggins and Sun3 for a glass of N oxides MniOmi :

1

ρ
=

N∑
i=1

[(
k + bSiO2

)
ni +mici

] yi
Mi

, (4)

▶ After changing yi in xi :

VM =
N∑
i=1

[(
k + bSiO2

)
ni +mici

]
xi . (5)

ANN model on VM

2M. L. Huggins: The Density of Silicate Glasses as a Function of Composition, in: J. Opt. Soc.
Am. 30.9 (1940), pp. 420–430.

3M. L. Huggins/K.-H. Sun: Calculation of density and optical constants of a glass from its
composition in weight percentage, in: J. Am. Ceram. Soc. 26.1 (1943), pp. 4–11.



6

3. Density & molar volume

▶ According to Huggins2 and Huggins and Sun3 for a glass of N oxides MniOmi :

1

ρ
=

N∑
i=1

[(
k + bSiO2

)
ni +mici

] yi
Mi

, (4)
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[(
k + bSiO2

)
ni +mici

]
xi . (5)

ANN model on VM

2Huggins: The Density of Silicate Glasses as a Function of Composition (see n. 2).
3Huggins/Sun: Calculation of density and optical constants of a glass from its composition in

weight percentage (see n. 3).
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3. Density & molar volume
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Figure 2: Histograms of (a) glasses and (b) max(xi ) in the ρ data-set of 64 420 glasses, (c) pdf
of ρ in kg/m3.
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3. Density & molar volume
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Figure 3: Predicted VM in (cm3/mol) as a function of data-set values for (a) the validation
sub-set and (b) the test sub-set.
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3. Density & molar volume
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Figure 4: ρ (kg/m3) of (a) akaline glasses and (b) SiO2-RnOm glasses. Symbols are
experimental data according to Bansal and Doremus4.

4N. P. Bansal/R. H. Doremus: Handbook of Glass Properties, 1986.
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4. Young’s modulus & packing factor

▶ According to Makishima & Mackenzie5, E is given by

E = 2VtG, (6)

Vt =

N∑
i=1

Vixi

VM
, (7)

G =
N∑
i=1

Gixi . (8)

▶ Gi taken from data of Inaba et al.6.

Vt determined from a deep learning method on E data-set

5A. Makishima/J. D. Mackenzie: Direct calculation of Young’s modulus of glass, in: J. Non-Cryst.
Solids 12.1 (1973), pp. 35–45.

6S. Inaba/S. Fujino/K. Morinaga: Young’s Modulus and Compositional Parameters of Oxide
Glasses, in: J. Am. Ceram. Soc. 82.12 (1999), pp. 3501–3507.
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Vixi

VM
, (7)

G =
N∑
i=1

Gixi . (8)

▶ Gi taken from data of Inaba et al.6.

Vt determined from a deep learning method on E data-set
5Makishima/Mackenzie: Direct calculation of Young’s modulus of glass (see n. 5).
6Inaba/Fujino/Morinaga: Young’s Modulus and Compositional Parameters of Oxide Glasses (see

n. 6).
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4. Young’s modulus & packing factor
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Figure 5: (a) number of glasses and (b) max(xi ) in the data-set of E of 10 846 glasses, (c) pdf of E in
GPa.
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4. Young’s modulus & packing factor
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Figure 6: Predicted Vt as a function of data-set values for the (a) validation sub-set and (b)
test sub-set.
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4. Young’s modulus & packing factor
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(b) 5SiO2-Na2O-xRO
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Figure 7: E in (a) SiO2-R2O and (b) 5SiO2-Na2O-xRO. Data taken in7.

7A. K. Varshneya/J. C. Mauro: Fundamentals of Inorganic Glasses, Third, 2019.
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5. Poisson coefficient

▶ According to Makishima & Mackenzie8, ν is given by

ν =
1

2
− 1

6αVt
, (9)

▶ α=1.2 in Makishima & Mackenzie (1975).

▶ Rocherulle et al.9 proposed α=1.08

ANN model on α

8A. Makishima/J. D. Mackenzie: Calculation of bulk modulus, shear modulus and Poisson’s ratio of
glass, in: J. Non-Cryst. Solids 17 (2 1975), pp. 147–157.

9J. Rocherulle et al.: Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie’s
theory, in: J. Non-Cryst. Solids 108.2 (1989), pp. 187–193.
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5. Poisson coefficient
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Figure 8: (a) number of glasses and (b) max(xi ) in the data-set of ν of 1464 glasses, (c) pdf of ν.
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5. Poisson coefficient

(a) R2=-0.02 (b) R2=0.3 (c) R2=0.94

Figure 9: Comparison of the computation of ν with the data-set for (a) α=1.2, (b) α=1.08 (c)
α from ANN model.



17

5. Poisson coefficient

(a) R=Ba, Sr & Mg
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Figure 10: ν in 5SiO2-Na2O-xRO. Data taken in10.

10Varshneya/Mauro: Fundamentals of Inorganic Glasses (see n. 7).
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6. Synthesis & perspectives

Synthesis

▶ Creation of data-sets with a large amount of glasses (two databases have been
used);

▶ Deep learning method applied to determine mechanical properties;

▶ Coupling with theoretical models enhances the accuracy of the prediction;

▶ Developments of model for Tm (log(η)=1), Ts (log(η)=6.65), and Tg

(log(η)=12) (η in Pa · s).
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6. Synthesis & perspectives
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Figure 11: Spider-graph with a based composition (0.74SiO2-0.13Na2O-0.13CaO): (a) E vs. ρ
and (b) E vs. Tm.
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6. Synthesis & perspectives

Perspectives

▶ Extend the work to KIc and γ the fracture surface energy;

▶ Determination of glass compositions based on genetic algorithm;

▶ Introduce probability aspect to determine prediction uncertainties.

Thank you for your attention!
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