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Abstract— On-site ergonomic prevention aims at decreasing 

work-related musculoskeletal disorders in the industry. 

Recognition of hazardous posture during the execution of 

manual tasks by humans moves towards this direction by 

helping to classify those tasks as potential assignments to a 

robot. Sensor-driven motion capture using body-mounted 

inertial sensors associated with pattern recognition enables to 

track joints all along with a hazardous task. In this work, 

different deep neural networks were compared for time series 

classification of motion primitives based on the Ergonomic 

Assessment Worksheet.  Moreover, to investigate the possibility 

of using a reduced number of sensors for the recognition, the 

performance achieved using only an optimal set of sensors is 

contrasted as well. This optimal set of sensors was formed using 

a stochastic-biomechanic approach, the Gesture Operational 

Model. Compared to all-sensor configuration, the best 

performance was achieved using the optimal set of sensors and 

the Rocket transformation.   

I. INTRODUCTION 

The growing implementation of human-robot 
collaboration in industry has led to the development of human 
motion recognition for better interaction and increased safety. 
More than a tool, the robot becomes an extension of the 
human body which will ultimately free the worker from any 
hazardous task. Preventing the worker from repeated 
exposure to high- or low-intensity loads over a long period of 
time, is key to avoiding most work-related musculoskeletal 
disorders (MSDs). MSD prevalence is highest among “blue-
collar workers”, such as plant and machine operators and 
assemblers (66%) [1]. From lower and upper limbs to the 
back, shoulders and neck, the spectrum of muscular pains 
reported in work-related MSDs is broad and frequently 
associated with mental well-being low-levels. Preventive 
measures are effective not only on the workers’ health but 
also on economic and societal dimensions by reducing 
healthcare costs, work absenteeism or productivity loss. 

Any prevention strategy begins with an on-site ergonomic 
risk assessment, which can be conducted by worker self-
assessment, observation by ergonomists, direct measurements 
on the worker's body, or computer-based assessment from 
camera recordings [2, 3]. Real-time continuous ergonomic 
assessment based on inertial measurement units (IMUs) in an 
industrial environment enables both identifying the most 
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exposed joints during task execution and detecting the most 
MSD-dangerous tasks [4]. A restrained number of IMUs 
embedded in an arm-mounted smartphone provides pattern-
distinguishable data that reflect complex activity pertained to 
occupational tasks and can be exploited by machine learning 
classification models [5]. The breakthrough of human activity 
recognition (HAR) fuelled by the progress in recent years of 
both sensor-based motion capture and machine learning 
approaches has paved the way to a real-time evaluation of 
ergonomic risks on industrial sites which would use robots to 
human monitoring and assistance in the riskiest tasks [6]. 

In this framework, the present study implements deep 
learning recognition of motion primitives based on the EAWS 
Ergonomic Assessment Worksheet (also called European 
Assembly Worksheet [7]) with the aim to reliably detect 
motion primitives with known ergonomic risk levels. The 
motion primitives’ detection allows estimating accurately the 
ergonomic risks workers are exposed to throughout the 
execution of any professional tasks. This information may 
enable the design of ergonomically effective human-robot 
collaboration systems in which the robots execute the most 
hazardous motions while preventing workers from exposing 
themselves to ergonomic risks. 

Design a Human Robot Collaboration (HRC) which is 
both human-centred and compliant to physical and cognitive 
ergonomic principles is a challenging research area [8]. 
General HRC principles for system design (ISO 9241-
110:2019) stresses “suitability for individualization”, namely 
“the possibility of adapting the robot to the workers’ needs 
and abilities” [9]. Personalised levels of assistance entail 
robots’ flexibility and mobility in the collaborative workspace 
either by straightforwardly leading the worker towards an 
optimized ergonomic body posture to fulfil a task [10, 11] or 
by providing assistance as soon as a fatigue threshold is 
exceeded [12]. Any human-robot interaction requires a human 
kinodynamic monitoring coupling whole-body motion 
recording with forward dynamics musculoskeletal modelling 
based for instance on electromyography (EMG) [9]. EAWS-
related activities recognition algorithms based on whole-body 
kinematic tracking enable bypassing musculoskeletal models 
by providing an automatic ergonomic scoring to workers [13]. 
Implemented in task scheduling strategy, this feedback could 
enable fine-tuned adjustment of human–robot task sequence 
assignment and planning based on physical ergonomics 
aspects [14].  

Deep learning has proven successful in recognition of 
human movements and professional tasks [15]. Thus, this 
study explores diverse deep learning approaches to identify 
the most efficient method for recognizing the motion 
primitives.  Moreover, it evaluates the possibility of training 
deep learning models with data from a reduced set of sensors 
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solely (optimal set), defined by the Gesture Operation Model 
as proposed by Olivas-Padilla et al. [16]. The next section 
presents the HAR pipeline on which this study is based, 
notably the generated data set, the statistical analysis for 
feature selection, and the baseline Hidden Markov Models 
(HMM) classification. The different deep learning time series 
classifiers are described in the methodology section. 
Accuracy performance and discussion of the main results are 
presented in Section IV. Section V summarizes the present 
work and sets the way forward. 

II. RELATED WORK 

Sensor-based motion capture using body-mounted inertial 
sensors allows rebuilding the kinematic skeleton through the 
orientation and acceleration of the measured body segments. 
The motion trajectories are thus directly connected to the 
body joint movements involved in the worker’s motions, 
providing critical information regarding body posture during a 
hazardous task. Based on this hypothesis, Olivas-Padilla and 
coll. developed an occupational vocabulary based on the 
EAWS evaluation including symmetric and asymmetric 
working postures for standing, sitting, and kneeling with 
rotation, lateral bending and far reach [7, 16, 17] (Table I). 
This EAWS data set is composed of 28 motions recorded in 
ten healthy human agents, with three repetitions, six seconds 
each, using IMU full-body suit, and described by computed 
whole-body joint angles (Euler angles) on the three axes x, y, 
and z. Based on state-space modelling, the Gesture 
Operational Model (GOM) proposed by Manitsaris and coll. 
[18] has been applied to describe the cooperation of body 
parts in the execution of the EAWS motions. A statistical 
analysis over the models that compose GOM enabled the 
selection of an optimal set of five sensors contributing the 
most to the 28 motion primitives and maximizing the F-score 
of HMM classification by 91.77% [16]. 

III. METHODOLOGY 

To compare deep learning recognition of hazardous 
motions to the HMM approach, a range of deep neural 
networks (DNNs) have been applied to the EAWS data set 
collected by Olivas-Padilla and coll. both in its full and its 
optimal-GOM sensor configurations, namely Spine 2, Left 
Arm, Right shoulder, Right UpLeg, Left Fore Arm [16]. In 
addition to those 3D joint angles coordinates (“Full-angles” 
and “Optimal-angles”), 3D local joint positions coordinates 
have been computed through the full-sensor configuration, i.e. 

TABLE I.  TWENTY-EIGHT MOTION PRIMITIVES (M01 TO M28) DERIVED 

FROM EAWS DATA SET [7] ACCORDING TO [16, 17]. 

 
Standing 

postures 
Seated Kneeling 

Upright 
*M01, M02

a, 

M03
b 

**M15 
***M21, M22

a, 

M23
b 

Bent forward  

(20-60°) 

M04, M05
a,b, 

M06
a,b,c 

  

Strongly bent 

forward (>60°) 

M07, M08
a,b, 

M09
a,b,c 

M16, M17
a,b, 

M18
a,b,c 

M24, M25
a,b, 

M26
a,b,c 

With elbow at / 

above shoulder level 

M10
d, M11

a,b,d, 

M12
a,b,c 

 M27
c, M28

a,b,c 

With hands above 

head level 
M13, M14

a,b,c M19
c, M20

a,b,c  

Initial postures: *standing, no body support; **upright with back support slightly bent forward 
or backwards; ***upright. Variations in the postures: a. with torso rotation; b. with laterally torso 
bending; c. arms stretching; d. with forearms 90° bending.  

“Full-positions”. To leverage computer vision dedicated 
models as well, 3D joint full-positions have been converted 
into RGB images according to the process defined by [19]. 
All in all, four variants of the EAWS (Table II) have been 
used to train the selected DNNs.  

Different DNNs for multivariate time series classification 
have been implemented according to the overview displayed 
by Fawaz and coll. [20] (Table III). DNNs apply non-linear 
transformations on the input time series to finally output 
probability distribution over classes. In generative DNNs, the 
time series are first represented in a latent space before 
classification [21, 22], while in discriminative ones, hidden 
features are directly learnt from time series. Outside of DNNs 
framework, one of the most effective machine learning 
algorithms, the Gradient boosting (namely gradient boosted 
decision trees), has been also tested. Overall, 14 models have 
been trained with four variants of the EAWS data set and 
transfer learning has been applied by employing four 
pretrained models on ImageNet with the “RGB images”. 
Transfer learning is consisted of shallow retraining of only the 
last layers of the model. Lightweight model architectures have 
been employed to mitigate the small size of the EAWS data 
set of 840 samples, with only slight adaptations in the number 
of convolutional or fully connected layers, filters and kernel 
size, according to the specificity of the data set (e.g., low or 
high dimensionality, sequences or RGB images). 

The inputs of the models (I) vary according to both the 
models’ requirements and the variants of the EAWS data set, 
namely (1) Optimal-angles (I1), (2) Full-angles and Full-
positions (I2), and (3) RGB images (I3) (Table III). Among 
the end-to-end models dedicated to times series models, the 
family of Gated Recurrent Units (GRU) and Bidirectional-
GRU (Bi-GRU) is represented with its hybrids formed with 
the Convolutional Neural Networks (CNNs) (CNN-GRU and 
CNN-BiGRU). Well-known in computer vision, the CNNs 
are also effective for time series classification. CNN 1D 
concatenates the 3D joint coordinates in one vector for every 
time step while CNN 2D is trained on three time-series 
corresponding to x, y, z (e.g., for “Optimal-angles”, I1 = 
(540,15) and (540,5,3) respectively). Rocket model developed 
by Dempster and coll. uses 10,000 random convolutional 
kernels to transform the time series into features to be trained 
by a linear classifier [23]. The MiniRocket model is a more 
deterministic and optimized variant of the former one [24]. 
Finally, the Temporal Convolutional Network (TCN) exploits 
the features of CNNs and Recurrent Neural Networks (RNNs) 
by using causal and dilated convolutions to capture long-
range temporal patterns with an output of the same length as 
the input [25]. 

TABLE II.  FOUR VARIANTS OF THE EAWS DATA SET COMPUTED FROM 

JOINT ANGLES [16]. 

Joints 

computation 

on x, y, z 

Full-

angles 

Optimal-

angles 

Full-

positions 

RGB 

imagesa 

Joints 

number 
65 5 65 65 

Time series 

length 
540 (6 seconds x 90 frames/second) 

Data design 840 (10 human agents x 28 motions x 3 repetitions) 

a. Conversion of joint full-positions on x, y, z according to [19]. 



  

TABLE III.  DEEP NEURAL NETWORKS SELECTED FOR MULTIVARIATE 

TIMES SERIES CLASSIFICATION [20]. 

Models 

(1) Optimal-

angles  

I1 = (540,15) 

(2) Full-angles and 

Full-positions 

I2 = (540,195) 

(3) RGB images 

I3 = (224,672) 

I. Discriminative models – End-to-End 

Convolutional Neural Networks 

CNN 1D K7a I1,2,3→C(16,7)→C(64,7)→MP(5)→F→FC(128)→FC(28) 

CNN 1D K540a 
I1,2→C(16,540)→F→FC(195)→FC(28) 

I3→C(16,3)→C(64,3)→F→FC(128)→FC(28) 

CNN 2D 1cb 
I1→C(16,5)→F→FC(128)→FC(28) 

I2,3→C(16,7)→MP(5)→F→FC(128)→FC(28) 

CNN 2D 2cb 
I1→C(16,5)→C(64,1)→F→FC(128)→FC(28) 

I2,3→C(16,7)→C(64,7)→MP(5)→F→FC(128)→FC(28) 

Rocket and MiniRocket kernels=10,000, ridge classifier 

Temporal Convolutional Network I1,2,3→TCN(11)→FC(28) 
Gated Recurrent Units and Bidirectional-GRU 

GRU I1,2,3→GRU(256)→GRU(128)→FC(28) 

Bi-GRU I1,2,3→Bi-GRU(256)→Bi-GRU(128)→FC(28) 

CNN-GRU 
I1,2,3→C(16,7)→C(64,7)→MP(5) 

→GRU(256)→GRU(128) →FC(28) 

CNN-BiGRU 
I1,2,3→C(16,7)→C(64,7)→MP(5) 

→Bi-GRU(256)→Bi-GRU(128)→FC(28) 

II. Discriminative models – Time series transformation into RGB images 

Pretrained models on ImageNet with input I3=(224,224,3), shallow retraining 

I3→VGG16/MobileNet/DenseNet201/InceptionV3→F→FC(128) →FC(28) 

III. Generative models 
GRU-autoencoder 

Encoder I1,2,3→GRU(256)→GRU(128)→RepeatVector(time steps)… 

Decoder →GRU(128)→GRU(256)→TimeDistributed(FC(features)) 

Full-model Encoder→F→FC(128)→FC(28) 

Echo state network units in reservoir: 500 
I=(,): input size(time steps, features); C(,): convolutional layer(filters,kernel); MP(): max 

pooling(pool size); F: flatten; FC(): fully connected layer(units); TCN(): temporal convolutional layer 
(kernel). a. CNN 1D with Kernel 7/540. b. CNN 2D with 1/2 convolutional layer(s). Optimizer= 
Adam(learning rate= 1e-3); loss = sparse categorical crossentropy (except GRU-autoencoder: 
loss(autoencoder) = mean squared error; loss(full-model)=categorical crossentropy); earlyStopping; 
activation function=softmax; train/test split (90-10%).  

IV. RESULTS AND DISCUSSION 

Sixty trainings have been performed using the 14 models 
applied to the four EAWS data set variants and the 4 
pretrained models on “RGB images”. Table IV displays the 
19 results exceeding the result (F-score of 91.77%) obtained 
with the GOM-HMM pipeline on 3D joint angles coordinates 
with the optimal sensor-set [16]. Eight out of 19 results are 
attributed to Rocket and MiniRocket models which confirm 
their high efficiency in time series classification. Eleven out 
of 19 results have been achieved by the selected joint angles 
by GOM (“Optimal-angles”), while for the other variants of 
the EAWS data set, almost exclusively Rocket and 
MiniRocket outperformed the 91.77% F-score. GRU, Bi-
GRU, CNN-BiGRU, CNN-GRU, ESN, and TCN provided 
good performance as well as the CNN models with the lighter 
architectures in this small dataset framework.  

Pretrained models on ImageNet do not outperform the 
91.77% F-score due to the artificial RGB images from EAWS 
data set that differ significantly from the natural color images 
of ImageNet. Furthermore, the change of domain from 3D 
coordinate sequences to RGB images does not provide 
additional advantages usually pertained to image data sets. 
Finally, an analysis of the misclassified motions according to 
the different models was conducted which led to the 
characterization of 9 movements from the EAWS data set as 
outliers. 

TABLE IV.  MAIN RESULTS OBTAINED WITH DIFFERENT DEEP LEARNING 

APPROACHES AND VARIANTS OF EAWS DATA SET. SHADED BOXES MARK F-
SCORES ABOVE  91.77%, THAT IS THE F-SCORE OBTAINED WITH GOM-HMM 

PIPELINE ON ‘OPTIMAL-ANGLES’ DATA SET [16]. 

Dataset 
Full-

angles 

Optim

al-

angles 

Full-

positio

ns 

RGB 

images 

Rocket 0.929 0.988 0.928 0.940 

MiniRocket 0.976 0.928 0.953 0.937 

ESNa 0.951 0.976 0.916 0.889 

TCNb 0.873 0.952 0.904 0.863 

GRUc 0.803 0.964 0.828 0.887 

CNNd-GRU 0.855 0.951 0.866 0.782 

Bie-GRU 0.807 0.900 0.833 0.808 

CNN-BiGRU 0.845 0.952 0.864 0.819 

CNN 1D K7f 0.917 0.948 0.906 0.632 

CNN 1D K540g 0.893 0.940 0.889 0.684 

CNN 2D 1ch 0.861 0.940 0.928 0.863 

CNN 2D 2ci 0.795 0.940 0.897 0.786 

GRU-autoEj 0.731 0.797 0.658 0.717 

Gradboostk 0.901 0.911 0.709 0.687 

VGG16l – – – 0.913 

DenseNet201l – – – 0.892 

MobileNetl – – – 0.900 

InceptionV3l – – – 0.754 

a. Echo state network. b. Temporal Convolutional Network. c. Gated Recurrent Units. d. 

Convolutional Neural Networks. e. Bidirectional. f. CNN 1D with Kernel 7.  g. CNN 1D with Kernel 

540. h. CNN 2D with 1 convolutional layer. i. CNN 2D with 2 convolutional layers. j. GRU-

autoencoder. k. GradBoost: Gradient boosting (not a  DNN), XGBClassifier 

(objective='multi:softmax', num_classes=28, max_depth=7, n_estimators=100). l. Transfer learning 

with shallow retraining of only the last layers and without data augmentation. 

 

V. CONCLUSION 

This paper explores the application of diverse DNNs to 

recognize motion primitives with different ergonomic risk 

levels and evaluates the possibility of using a reduced set of 

selected sensors for tracking the joints of the human body. 

Choosing the most meaningful sensors with the GOM 

approach and training DNNs with their corresponding data 

results in a high classification performance of the 28 motion 

primitives. This opens the very promising possibility of 

detecting accurately dangerous motions on industrial sites 

using only a small number of sensors. An additional study on 

the selection of the joint positions which contribute the most 

to the 28 motions using GOM will be carried out in 

comparison with the results of the joints angles selection. 

Establishing an occupational vocabulary dedicated to human 

motion recognition unlocks a wide range of possibilities for 

on-site ergonomic risk assessment, and with respect to 

hazardous tasks, it leads to the future undertaking of those 

tasks by robots. 
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