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ABSTRACT 
In the coming years, the electrical grid will have to deal 
with deep changes in the way we consume and produce 
electricity. These changes result from the democratization 
of the electric vehicle, the rise of household production of 
photovoltaic energy, and the implementation of building 
retrofitting policies to name but a few. To support the grid 
to face these evolutions, the development of prediction 
tools for planning studies becomes vital for stakeholders 
and distribution system operators. It is in that context that 
the load curve simulator MOSAIC, developed by ENEDIS 
and Mines Paris, comes into play. This bottom-up 
approach simulates the current and future electric 
consumption of a wide range of uses (e.g. electric heating, 
cooking) for residential and tertiary customers. MOSAIC 
has been validated in the scope of residential customers 
during peak and average demand. Today the objective is 
to improve the accuracy of the simulator by providing a 
better calibration of the different uses. To this end, we 
propose in this paper a calibration process based on 
simplified versions of the models implemented in MOSAIC. 
Then an optimization approach is conducted to find the 
best parameters to fit observations. Scores improvements 
are observed not only with traditional error criteria, but 
also with new metrics proposed in this study. 

NOMENCLATURE 
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𝐶𝑂𝑃 𝐶𝑜𝑒𝑓. 𝑜𝑓	𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑑𝑒𝑣𝑖𝑐𝑒	[∅]	
𝑃 𝑃𝑜𝑤𝑒𝑟	𝑜𝑓	𝑡ℎ𝑒	𝐸𝐻	𝑎𝑡	𝑡ℎ𝑒	𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔	𝑙𝑒𝑣𝑒𝑙	[𝑊]	
𝑆 𝑆𝑢𝑟𝑓𝑎𝑐𝑒	𝑜𝑓	𝑤𝑖𝑛𝑑𝑜𝑤𝑠	𝑓𝑎𝑐𝑖𝑛𝑔	𝑠𝑜𝑢𝑡ℎ	[𝑚(]	
𝐸 𝑆𝑜𝑙𝑎𝑟	𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒	[𝑊/𝑚(]	
𝑃,- 𝐷𝑎𝑖𝑙𝑦	𝑝𝑜𝑤𝑒𝑟	𝑎𝑡	𝑡ℎ𝑒	𝑓𝑒𝑒𝑑𝑒𝑟	𝑙𝑒𝑣𝑒𝑙	[𝑊]	
𝑇#$%-  𝐷𝑎𝑖𝑙𝑦	𝑜𝑢𝑡𝑑𝑜𝑜𝑟	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	[𝐾]	
𝑁, 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠	𝑎𝑡	𝑓𝑒𝑒𝑑𝑒𝑟	𝑓	
𝐹 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑒𝑒𝑑𝑒𝑟	
𝐼 𝑆𝑒𝑡	𝑜𝑓	𝑡ℎ𝑒	𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔	𝑝𝑎𝑟𝑡𝑠	(𝑒. 𝑔. 𝑤𝑎𝑙𝑙, 𝑓𝑙𝑜𝑜𝑟,𝑤𝑖𝑛𝑑𝑜𝑤) 

𝐸"#$% 	𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑙𝑜𝑎𝑑	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑎𝑡	𝑓𝑒𝑒𝑑𝑒𝑟	𝑓	

 
INTRODUCTION 
Transitioning to a low-carbon energy economy requires 
the development and the management of a resilient 
electrification system associated with appropriate long-
term local investment strategies. These strategies range 
from the renovations of old dwellings, the development of 
electric car charging infrastructures, to the growth of 
rooftop photovoltaic energy production systems. In such a 
changing environment the projection of long-term 
electricity consumption becomes of great importance for 
supporting urban strategic decision-making and assessing 
their impact on the grid. For those reasons, Enedis, 
France’s main electricity distribution system operator 
(DSO), and MinesParis are developing a new method 
based on a bottom-up electric load curve simulator. This 
simulator, named MOSAIC [1], [2], will enable Enedis to 
assess the impacts of different city-development-scenarios 
on the electrical grid for the household, industrial, and 
services sectors, at various time, and spatial scales. 
 
Today, MOSAIC is calibrated through a set of empirical 
rules and physics-based knowledge for various uses 
ranging from electric heating (EH) to cooking needs. The 
ability of the model to simulate peak and average demand 
is validated on electricity consumption datasets from the 
household sector. The next step consists in improving the 
robustness, and the accuracy of the simulator by proposing 
an automated calibration process of the different 
modelling parameters. For this purpose, a large validation 
dataset composed of residential and tertiary consumers is 
considered. A straightforward optimization of the various 
parameters is not conceivable due to the tremendous 
computation time required to fit MOSAIC on this dataset. 
 
This paper proposes to consider metamodels, which are 
simplified versions of the physics-based models 
implemented in MOSAIC, to reduce the computational 
complexity of the calibration process. The purpose of the 
metamodel is to mimic locally the behavior of the complex 
model as a function of the parameters that we want to 
calibrate. This methodology has to be practical with large 
numbers of parameters and observations. In this case, 
the estimation procedure implies a high dimensional 
optimization problem. The aim of this metamodel is both  
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to increase the speed of computation and to be compatible 
with linear high dimensional optimization algorithms. In a 
nutshell, these metamodels mimic the behavior of 
MOSAIC but at higher temporal and spatial scales (i.e. not 
all customers and temporal instances are simulated). Then 
during the calibration step, an optimization algorithm is 
used to adjust the metamodels’ parameters to fit 
observations. The proposed calibration method permits to 
achieve higher accuracy compared to simulations 
generated from default values. Scores improvements are 
observed not only with traditional error criteria, but also 
with new metrics proposed in this study. 
 
The paper is organised as follows. First, the load curve 
simulator MOSAIC is introduced. Then, the calibration 
methodology is detailed, while the next section discusses 
the outcomes. Finally, conclusions are drawn.  
 
 
MOSAIC 
This section introduces the load curve simulator MOSAIC. 
To assist the reader, Figure 1 provides an overview of the 
simulator, its inputs, and the way the calibration process is 
performed.  

Modelling strategies 
Typically, energy consumption modelling techniques are 
split into two fundamental categories: top-down and 
bottom-up approaches [3]. This wording can be seen as a 
shortcut for aggregated and disaggregated models. On the 
one hand, the top-down strategy is based on high-level 
information (i.e. macroscopic data) collected regarding an 
activity and its energy consumption, and often rely on 
statistical tools [4]. On the other hand, the bottom-up 
approach needs an exhaustive inventory (i.e. microscopic 
data) of all the equipment and its consumption pattern [4], 
then an extrapolation is performed to determine the 
consumption of the whole system (here a dwelling for 
instance). Therefore, this last philosophy is more detailed  

but also more data intensive. In that respect, this high 
computation cost can be an issue when outputs are 
expected rapidly. The electric load curve simulator 
MOSAIC belongs to this last class of models.  

Structure of the simulator 
MOSAIC is based on a set of grey box models that 
combine complex physical approaches and fast statistical 
tools. As each model is devoted to a specific energy use, a 
compromise has been sought between models’ complexity 
and computational time. Thus, for some uses such as EH 
and air conditioning (AC), MOSAIC computes a “RC” 
model (Equation 1) at each time step, while for other 
devices like the washing machine, we use blocks of power 
profiles (i.e.  the first block represents the heating of water, 
the second, the washing cycle, and the third, the spinning 
step) associated with probabilistic laws to determine the 
number and duration of each instance. In the end, the 
simulator can generate in a few tens of seconds the yearly 
consumption of hundreds of customers at an hourly 
resolution. The architecture of the simulator is flexible 
enough to allow the integration of new elementary models 
that stand for additional consumption devices. One 
strength of MOSAIC is its capability to model the 
electricity consumption of a wide range of customers and 
uses. Thus, the load curve simulator is able to model the 
consumption of various devices found in the residential 
sector (i.e. houses and apartments): EH, AC, domestic 
water heater (DWH), freezer, refrigerator, oven, cooktop, 
washing machine, dryer, dishwasher, swimming pool, 
computer, TV, light, and miscellaneous. In addition, 
MOSAIC can also model the load consumption of tertiary 
sectors such as offices, teaching/research, shops, shops 
with food, restaurants, hotels, and charging stations for 
electric vehicles. The number of parameters associated 
with all the elementary models is tremendous. Up to now, 
the calibration of these parameters has been performed 
with data from the literature. 
 

Figure 1 Overview of the simulation chain 
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Inputs  
The inputs used to populate MOSAIC are large databases 
that have been matched together (the matching process is 
tackled in [2]). Some of these main databases are DSO 
customer information, national census, and meteorological 
information (i.e. temperature and irradiance). Thus, 
ENEDIS provides customer information regarding 
subscribed power, spatial location, and type of customer 
(residential or tertiary client). The BDTOPO database [5] 
from the National Institute of Geographic and Forest 
Information gathers buildings characteristics (e.g. text 
addresses and geometry of buildings), while the National 
Institute of Statistics and Economic Studies collects 
households information (e.g. type of heating, age of the 
building, number of inhabitants). Concretely, the simulator 
needs the following inputs to generate the load 
consumption of a residential customer: (1) the household 
characteristics (e.g. ownership rate of the different 
consumption devices, number of inhabitant), and (2) the 
building characteristics (e.g. surface, geometry, age, 
thermal properties). Then, the power of the devices, the 
frequency and the duration of use are determined by 
dedicated models embedded in MOSAIC from these 
inputs (e.g. the number of people living in the dwelling 
leads to the power of the DWH).  

Outputs 
As a bottom-up modelling-based strategy, MOSAIC 
provides as outputs the energy consumption time series of 
all uses selected by the user. This fine granulometry 
enables us to calibrate each use individually. It is worth 
mentioning that MOSAIC delivers load time series with a 
fine temporal scale up to the minute resolution. Such a 
resolution is vital to simulate realistic peak consumption 
and engagement of devices associated with off-peak hours 
(e.g. DWH).   
 

Scope of application 
MOSAIC is designed to simulate the current and future 
electric consumption of a wide range of uses for thousands 
of residential and tertiary customers. This tool can be used 
to support planning studies by assessing, for instance, the 
impact of building’s thermal properties retrofitting 
strategies over electric consumption. In that sense, 
MOSAIC offers the possibility to policy makers to 
estimate energy savings and financial return associated 
with building retrofit policies. Its flexibility enables us to 
integrate new uses (e.g. electric vehicles) or upgrades of 
existing consumption devices, which provides valuable 
knowledge regarding the evolution of the electricity 
demand. Such information is of prime importance for the 
DSOs regarding the sizing of the power network, the 
demand side management, and the smart control of storage 
devices. MOSAIC, by simulating the energy need of a 
whole city, can also assist councillors in determining 
which suburbs have to renovated and how.  

DATA 

Thanks to the large-scale deployment of smart meters, 
DSOs record the electric consumption at strategic points 
of the grid. As a result, for the purpose of this study we 
have at our disposal a three-year dataset of electricity 
consumption from around 940 distribution substations at a 
10-minutes temporal granularity. Each substation gathers 
around 1000-10000 low-voltage electricity customers. In 
addition, ENEDIS provides information regarding the 
different clients (e.g. subscribed power) associated with 
each feeder. The local temperature and the irradiance data 
is also considered to account for thermal-related uses. 

Before considering the calibration process, it is necessary 
to process these consumption time series to remove 
outliers. First, we identify and reject frozen observations 
(i.e. values that remain constant for several time steps) and 

Figure 2 Overview of the optimization strategy. 
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data outsides the physical constraints imposed by the 
number of customers. In a second step, we look for 
potential changes in the consumption regimes. Such 
variations can result from an alteration in the number of 
customers connected to the feeder. To achieve this goal, 
we resort to a clustering algorithm fed with features such 
as the daily consumption, the daily temperature and the 
day of the year.  

METHODOLOGY 
In this section, we detail the approach developed to 
calibrate parameters that intervene in MOSAIC’s 
modelling. In this regard, Figure 2 illustrates the 
optimisation strategy implemented. First, the calibration 
process focuses only on uses that have a significant impact 
on the load curve (e.g. EH, AC, and DWH). These primary 
uses consume more energy and usually have noticeable 
effects on the load observations. For instance, EH and AC 
devices impact the thermosensivity of the consumption 
(i.e. the variation of electricity consumption due to the 
variation of the outdoor temperature). For the sake of 
conciseness, in this paper we only consider the EH. Then, 
we need to assess the use consumption sensitivity to the 
model’s parameters, and to optimize only the most 
influential parameters. We highlight that the thermal 
resistance of the building has a genuine impact on the load 
curve.  
 

𝐶
𝑑𝑇!"(𝑡)
𝑑𝑡 + 𝑈"[𝑇!"(𝑡) − 𝑇#$%(𝑡)] = 𝐶𝑂𝑃 ⋅ 𝑃(𝑡) + 𝑆 ⋅ 𝐸(𝑡)	 (1) 

 

 
The second step consists in deriving consumption 
indicators that constitute a bridge between the theoretical 
modelling and the observations. For each customer, 
MOSAIC computes a “RC” model (Equation 1) at each 
time step to determine the indoor temperature and the  
energy needs to reach the target temperature. First, we 
impose some simplifying assumptions to reduce the 
computational complexity of the model: we consider (1) a 
steady state, (2) 𝑇&!(𝑡) = 𝑇'	∀𝑡, (3)	𝐸(𝑡) = 0	∀𝑡, and (4) 
𝐶𝑂𝑃 = 1. For all the dwellings of the considered feeder, 
Equation (1) becomes: 

𝑃,- = −𝑇#$%- `𝑈"

."

"/0

+`a𝑈" ⋅ 𝑇&(𝑡)b

."

"/0

			𝑇#$%- ≤ 𝑇' (2) 

 
Then, the term ∑ 𝑈"

."
"/0  represents the thermosensivity of 

the consumption at the feeder level. From a theoretical 
perspective 𝑈" is the thermal transmittance of the building 
and is computed as 𝑈! = ∑ 𝑢𝑖,𝑗𝑛

	𝐼
𝑖=1 . The term 𝑢!,*!

	  
represents the thermal transmittance of the different walls 
of the building envelop (e.g. floor, windows, ceiling) for 
several classes of thermal performances based on the 
building’s age. These values are derived from the 3CL-
DPE diagnostic tool [6], which is an energy performance 
rating method. A straightforward linear regression 
between the daily consumption at the feeder level and the 
outdoor temperature leads to the observed 
thermosensitivity, 𝛼"( (Figure 3). We introduce 𝛽, a 

corrective parameter of the thermal transmittance 
parameters. As a result, the optimisation problem is: 

𝑚𝑖𝑛
𝛽 `g𝛼,- − i``𝛽!,*! ⋅ 𝑢𝑛,𝑓,𝑖,𝑗𝑛

𝑁𝑓

𝑛=1

6

!/0

jg
7

,/0

	 (3) 

 
As it is formulated, this problem can be solved with a least-
square regression approach. Nevertheless, we turn to linear 
programming [7] to provide a generic framework that can 
be applied with other optimisation parameters, and that 
allows the consideration of constraints (e.g. thermal 
performances of new building are better than older ones).  

 
Figure 3 Observed consumption w.r.t. the outdoor temperature 
measured at the feeder f level. 𝑇' represents the threshold 
temperature below which customers used their EH, while 𝛼,- 
stands for the daily thermosensitivity obtained via a linear 
regression. 𝑏,- is the daily consumption measured when 𝑇#$%- =
0°𝐶, while 𝑏,8

-stands for the daily consumption without thermal-
related uses. 

VALIDATION 
Two distinct simulations are run. First, we consider the 
default parameters of MOSAIC (this constitutes our 
reference model), then the parameters dedicated to the 
thermal properties of the building envelop are updated 
following: 𝑈!∗ = 𝛽 ⋅ 𝑈!. For both approaches, all other 
uses (e.g. AC, DWH, cooking) are simulated with the 
default parameters of MOSAIC, and then aggregated with 
the EH consumption. In other words, only the load 
associated with the EH differs between the two 
simulations. 
 
Data pre-processing  
We have at our disposal a large range of observations that 
may represent distinct customer behaviours. For instance, 
the energy consumption of some feeder is driven by large 
scale companies that are not thermo-sensible, or by rural 
area highly depending on wood fires. In that context, such 
observations are not relevant for the EH calibration, and 
are then excluded.  
To allow inter-comparison between the measured and 
simulated consumption time series, the latter are 
normalised with the maximal observed load at the 
substation level.  
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Evaluation Metrics 
To assess the forecasting performances of the different 
approaches under consideration, it is necessary to define 
some metrics to quantify differences between observed 
and simulated values. We turn to a widely used metric, 
namely the normalised Mean Absolute Error (nMAE), 
which is described in Equation (4). In addition, we also 
compare the thermosensitivity exhibited by each feeder via 
Equation (5). This score makes it possible to assess only 
the EH influence. Scores are computed individually for the 
different feeders, before being averaged for ease of 
understanding.  

𝑛𝑀𝐴𝐸" =
1
𝑁"
78

𝐸!*+, − 𝐸!-&.

𝐸"#$%
8	

/!

!01

(4) 

 
𝑛𝑇𝑆" = <𝛼"*+, − 𝛼"-&.< (5) 

 
Performances Assessment 
From an energy perspective, Table 1 shows that the 
proposed optimization approach has a slight positive 
impact on the nMAE score: an averaged improvement of 
around 0.5% is observed for all considered substations. 
The proposed methodology leads to a 5.6% enhancement 
of the thermosensitivity-based score w.r.t. the reference 
approach. This significative outcome validates the 
proposed optimisation strategy regarding the parameters of 
the thermal envelop of the buildings.  

Table 1 Average score 

Simulation 
nMAE  

(% of 𝑬𝒇𝑴𝒂𝒙) 
nTS  

(% of 𝑬𝒇𝑴𝒂𝒙/°C) 
Reference 0.263 0.0101 
Optimised 0.262 0.00953 

 

CONCLUSION AND PERSPECTIVES 
In this paper, a new optimization framework is developed 
to calibrate the parameters of MOSAIC, a bottom-up 
energy demand model. This need for calibration originates 
from the fact that default parameters used in the model 
result from technical literature, survey, census, and other 
modeling strategies that may partially represent the 
effective customers’ behavior. On the contrary, in this 
work, optimized parameters are derived from a large 
consumption databased composed of hundreds of 
measurements at the substation level during 3 years. As a 
first step, the proposed methodology is applied to calibrate 
the thermal properties of the building envelop. To do so, 
we rely on the thermosensivity parameter that is easily 
computed from observations and derived from the heat 
transfer coefficients of the building used in MOSAIC. The 
optimization strategy improves the consistency of the 
thermal properties between the observed dataset and 
simulated load curves, while having a very slight influence 
on the total amount of consumed energy.  
The following step consists in extending the proposed 
approach by including the optimization of target 
temperature parameter. Then, this approach will be applied 

to optimize the parameters of the AC, before tackling the 
calibration of the DWH. 
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